(Conditional) Independence

Independence

Two variables are **independent** if: $\forall x, y P(x, y) = P(x)P(y)$

We denote this as $X \! \perp \! \! \! \! \perp Y$

Conditional Independence

X is **conditionally independent** of Y given Z

if and only if:
$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

or, equivalently, if and only if $\forall x, y, z : P(x|z, y) = P(x|z)$

$X \bot\!\!\!\perp Y | Z$

Conditional Independence

Traffic, Umbrella, Raining

XIIY Z 1 Raining

$$T \perp U^{2}$$

$$T \perp U \mid R$$

$$p(T \mid R, U) = p(T \mid R)$$

Conditional Independence

(Smole datector) Fire, Smoke, Alarm

X TTX S

Independence vs. Conditional Independence

Rain Traffic Pedestrian holding umbrella Flood in the house Trip cancelled

. . .

P(Traffic | Rain, Umbrella) = P(Traffic | Rain) Conditional Independent

Conditional distribution / independence allows us to model the probability of a certain event only using relevant factors.

Bayes Net

Bayesian Network Example

Traffic, Umbrella, Raining

P(t, u, r)

= P(r) P(t | r) P(u | r, t) (always hold by chain rule) = P(r) P(t | r) P(u | r)T $\perp U | R$

Bayesian Network (BN)

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - Suppose a node as m parents, and suppose each random variable can take d different values

XES

- What is the size of the table?
- The BN models the joint probability as

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | \text{parents}(X_i))$$

$$\# \text{rms} = \int^{m+\ell} d^{m+\ell}$$

Bayesian Network Example

Fire, Smoke, Alarm

Recap

А⊥В

Example: Car Insurance

Example: Medical Diagnosis

Marin Prcela et al. Information Gain of Structured Medical Diagnostic Tests -Integration of Bayesian Networks and Ontologies

Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents) and easier to think about
- BNs need not be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - Arrows that reflect correlation, but not necessary causality

Causality?

Independence Given Evidence

General question: Are two variables *X*, *Y* independent of each other conditioned on $Z = \{Z_1, Z_2, ...\}$?

Or: Are X and Y "D-separated" by Z?

Algorithm

- 1. Consider just the **ancestral subgraph** consisting of X, Y, Z, and their ancestors.
- 2. Add links between any unlinked pair of nodes that share a common child; now we have the so-called **moral graph**.
- 3. Replace all directed links by undirected links.
- 4. If Z blocks all paths between X and Y in the resulting graph, then Z d-separates X and Y.

Example

 $\begin{array}{ll} R \bot B & \text{Yes} \\ R \bot B | T \\ R \bot B | T' \end{array}$

Example

Example

- Variables:
 - R: Raining
 - T: Traffic
 - D: Roof drips
 - S: I'm sad
- Questions:
 - $T \! \perp \!\!\! \perp D$
 - $T \perp\!\!\!\perp D | R$ Yes $T \perp\!\!\!\perp D | R, S$

Proof Sketch

Statement: If X and Y and separated by Z in the moral graph, then $X \perp Y \mid Z$

The moral graph gives a way to "factorize" the joint distribution of BN. Each clique in the moral graph is a factor.

$$\underbrace{\mathsf{P}(\mathsf{a}) \; \mathsf{P}(\mathsf{b}) \; \mathsf{P}(\mathsf{c}) \; \mathsf{P}(\mathsf{d} \mid \mathsf{a}, \mathsf{b}, \mathsf{c})}_{\phi(\mathsf{a}, \mathsf{b}, \mathsf{c}, \mathsf{d})} \underbrace{\mathsf{P}(\mathsf{e}) \; \mathsf{P}(\mathsf{f} \mid \mathsf{d}, \mathsf{e})}_{\phi(\mathsf{d}, \mathsf{e}, \mathsf{f})} = \phi(\mathsf{a}, \mathsf{b}, \mathsf{c}, \mathsf{d}) \; \phi(\mathsf{d}, \mathsf{e}, \mathsf{f})$$

Proof Sketch

Statement: If X and Y and separated by Z in the moral graph, then $X \perp Y \mid Z$

Structure Implications

• Given a Bayes net structure, can run d-separation algorithm to build a complete list of conditional independences that are necessarily true of the form

$$X_i \perp \perp X_j | \{X_{k_1}, \dots, X_{k_n}\}$$

• This list determines the set of probability distributions that can be represented

Topology Limits Distributions

 $\{X \perp\!\!\!\perp Y, X \perp\!\!\!\perp Z, Y \perp\!\!\!\perp Z,$

 $X \perp\!\!\!\perp Z \mid Y, X \perp\!\!\!\perp Y \mid Z, Y \perp\!\!\!\perp Z \mid X \}$

(Z)

 $\{X \perp\!\!\!\perp Z \mid Y\}$

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- Adding arcs increases the set of distributions, but has several costs

Application: Language Modeling

• Markov Model

- Probabilistic program: Markov model For each position $i=1,2,\ldots,n$: Generate word $X_i\sim p(X_i\mid X_{i-1})$

Application: Object Tracking

• Hidden Markov Model

Probabilistic program: hidden Markov model (HMM)
For each time step $t = 1, \ldots, T$:
Generate object location $H_t \sim p(H_t \mid H_{t-1})$ Generate sensor reading $E_t \sim p(E_t \mid H_t)$

Inference: given sensor readings, where is the object?

Application: Topic Modeling

• Latent Dirichlet Allocation

Probabilistic program: latent Dirichlet allocation
Generate a distribution over topics $\alpha \in \mathbb{R}^K$ For each position $i = 1, \ldots, L$:
Generate a topic $Z_i \sim p(Z_i \mid \alpha)$ Generate a word $W_i \sim p(W_i \mid Z_i)$

Document classification, information retrieval, customer segmentation, ...

Inference: given a text document, what topics is it about?

Exact Inference in Bayesian Networks

The "Join" Operation in Bayesian Network

The BN defines four factors P(A), P(B|A), P(C|A), P(D|B,C)

Α **Join on B:** Combine all factors that involve B Α P(A), P(B|A), P(C|A), P(D|B,C)С В B,D С P(A), P(B,D | A,C), P(C|A)D **Further join on C:** Combine all factors that involve C P(A), P(B,D | A,C), P(C|A)Α $P(A), P(B,C,D \mid A)$ B,C,D

Exercise

BCC

What are the factors after joining on B?

P(A) P(B|A) p(C(A,B) p(b|B,C)) $P(\beta, c, \rho | A)$

P(b,a|e) = P(5)P(a|b,e)

Exercise

Review: Inference by Enumeration

General case:

• Evidence variables:
$$E_1 \dots E_k = e_1 \dots e_k$$

• Query* variable: Q
• Hidden variables: $H_1 \dots H_r$
 $P(Q|e_1 \dots e_k) = ?$
 $P(\subseteq I, \dots, E_K, Q, H_1, A, H_Y)$

Inference by Enumeration

Step 1. Select the entries consistent with the evidenceStep 2. Sum out H to get joint probability of Query and evidenceStep 3. Normalize

Inference by Enumeration

Step 0. Create a joint probability table

P(B,E,A,J,M) = P(B) P(E) P(A | B,E) P(J | A) P(M | A)

В	Е	А	J	Μ	P(B,E,A,J,M)	
Т	Т	Т	Т	Т	0.001 * 0.002 * 0.95 * 0.90 * 0.70	
Т	Т	Т	Т	F	0.001 * 0.002 * 0.95 * 0.90 * 0.30	
Т	Т	Т	F	Т	0.001 * 0.002 * 0.95 * 0.10 * 0.70	
F	F	F	F	F	0.999 * 0.998 * 0.999 * 0.95 * 0.99	

$$P(B | +j, +m) = ?$$

Step 0: Create a Joint Probability Table

P(B,E,A,J,M) = P(B) P(E) P(A | B,E) P(J | A) P(M | A)

Join on A

В

Ε

Α

Inference by Enumeration

Step 1. Select the entries consistent with the evidence

В	Е	А	J	Μ	P(B,E,A,J,M)	
Т	Т	Т	Т	Т	0.001 * 0.002 * 0.95 * 0.90 * 0.70	
Т	Т	F	Т	Т	0.001 * 0.002 * 0.05 * 0.05 * 0.01	
Т	F	Т	Т	Т	0.001 * 0.998 * 0.94 * 0.90 * 0.70	
Т	F	F	Т	Т	0.001 * 0.998 * 0.06 * 0.05 * 0.01	
F	Т	Т	Т	Т	0.999 * 0.002 * 0.29 * 0.90 * 0.70	
F	Т	F	Т	Т	0.999 * 0.002 * 0.71 * 0.05 * 0.01	
F	F	Т	Т	Т	0.999 * 0.998 * 0.001 * 0.90 * 0.70	
F	F	F	Т	Т	0.999 * 0.998 * 0.999 * 0.05 * 0.01	

$$P(B | +j, +m) = ?$$

Inference by Enumeration

Step 2. Sum out hidden variable to get joint probability of query and evidence (Marginalize)

P(B | +j, +m) = ?

В	J	Μ	P(B,J,M)
Т	Т	Т	0.0006
F	Т	Т	0.0015
Inference by Enumeration

Step 3. Normalize

Inference by Enumeration?

How did we do Inference by Enumeration?

P(B,E,A,J,M) = P(B) P(E) P(A | B,E) P(J | A) P(M | A)

Α

How did we do Inference by Enumeration?

Improving the Algorithm

- First improvement: Instead of eliminating rows inconsistent with the evidence at the end, we will only keep rows consistent with evidence from the beginning.
- Second improvement: Instead of marginalize all hidden variables at the end after joining all variables, we will interleave joining and marginalization.

Improving the Algorithm

 $P(B | +\dot{\sigma}, +m)$

Inference by Enumeration

Query: P(B | +j, +m) = ?

Query: P(B | +j, +m) = ?

with the evidence

Query: P(B | +j, +m) = ?

Query: P(B | +j, +m) = ?

Query: P(B | +j, +m) = ?

Query: P(B | +j, +m) = ?

We can then get P(B | +j, +m) by normalizing this table

Query: P(B | +j, +m) = ?

Can be done in different orders

- Start with initial factors but instantiated by evidence
- While there are still hidden variables:
 - Pick a hidden variable X
 - Join all factors mentioning X
 - Eliminate (sum out) X (i.e., marginalize X)
- Join all the remaining factors
- Normalize

Ordering of the Join and Eliminate?

- The time and space of variable elimination are dominate by the **size of the largest factor** constructed during the algorithm.
- It's hard to determine the optimal ordering
 - Heuristics: Choose the variable that minimize the size of the next factor to be constructed.

Approximate Inference in Bayesian Networks

Sampling

- Basic idea
 - Draw N samples from a sampling distribution S
 - Compute an approximate posterior probability
 - Show this converges to the true probability P

- Why sample?
 - Often very fast to get a decent approximate answer
 - The algorithms are very simple and general (easy to apply to fancy models)
 - They require very little memory (*O*(*n*))
 - They can be applied to large models, whereas exact algorithms blow up

Sampling in Bayes nets

- Prior sampling
- Rejection sampling
- Likelihood weighting
- Gibbs sampling

Prior Sampling

Prior Sampling

For *i*=1, 2, ..., *n* (in topological order): Sample X_i from P($X_i | parents(X_i)$) Return ($x_1, x_2, ..., x_n$)

Prior Sampling

• This process generates samples with probability:

 $S_{PS}(x_1,\ldots,x_n) = \prod_i P(x_i \mid parents(X_i)) = P(x_1,\ldots,x_n)$

...i.e. the BN's joint probability

- Let the number of samples of an event be $N_{PS}(x_1,...,x_n)$
- Estimate from N samples is $Q_N(x_1,...,x_n) = N_{PS}(x_1,...,x_n)/N$
- Then $\lim_{N\to\infty} Q_N(x_1,...,x_n) = \lim_{N\to\infty} N_{PS}(x_1,...,x_n)/N$ = $S_{PS}(x_1,...,x_n)$ = $P(x_1,...,x_n)$
- I.e., the sampling procedure is *consistent*

Example

- We'll get a bunch of samples from the BN:
 - C, ¬S, r, W C, S, r, W ¬C, S, r, ¬W C, ¬S, r, W ¬C, ¬S, ¬r, W
- If we want to know P(W)
 - We have counts $\langle w:4, \neg w:1 \rangle$
 - Normalize to get *P(W)* = <w:0.8, ¬w:0.2>
 - This will get closer to the true distribution with more samples

Rejection Sampling

- A simple application of prior sampling for estimating conditional probabilities
 - Let's say we want $P(C | r, w) = \alpha P(C, r, w)$
 - For these counts, samples with ¬*r* or ¬*w* are not relevant
 - So count the C outcomes for samples with *r*, *w* and reject all other samples
- This is called *rejection sampling*
 - It is also consistent for conditional probabilities (i.e., correct in the limit)

C, ¬S, r, W __C, __S, ¬r, ¬W __C, __S, __r __C, ¬S, r, W

Rejection Sampling

```
Input: evidence e_1, ..., e_k

For i=1, 2, ..., n

Sample X_i from P(X_i | parents(X_i))

If x_i not consistent with evidence

Reject: Return, and no sample is generated in this cycle

Return (x_1, x_2, ..., x_n)
```

- Problem with rejection sampling:
 - If evidence is unlikely, rejects lots of samples
 - Evidence not exploited as you sample
 - Consider P(*Shape*|*Color=blue*)

- Idea: fix evidence variables, sample the rest
 - Problem: sample distribution not consistent!
 - Solution: *weight* each sample by probability of evidence variables given parents

pyramid, green pyramid, red sphere, blue cube, red sphere, green

pyramid, blue pyramid, blue sphere, blue cube, blue sphere, blue


```
Input: evidence e_1, \dots, e_k
w = 1.0
for i=1, 2, ..., n
   if X_i is an evidence variable
        X_i = observed value<sub>i</sub> for X_i
        Set w = w^* P(x_i | parents(X_i))
   else
        Sample x_i from P(X_i | parents(X_i))
return (x_1, x_2, ..., x_n), w
```

Likelihood Weighting is Consistent

• Sampling distribution if Z sampled and e fixed evidence

 $S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{j} P(z_j \mid parents(Z_j))$

• Now, samples have weights

 $w(\mathbf{z}, \mathbf{e}) = \prod_{k} P(e_{k} | parents(E_{k}))$

• Together, weighted sampling distribution is consistent

 $S_{WS}(\mathbf{z}, \mathbf{e}) \cdot w(\mathbf{z}, \mathbf{e}) = \prod_{j} P(z_{j} \mid parents(Z_{j})) \prod_{k} P(e_{k} \mid parents(E_{k}))$ $= P(\mathbf{z}, \mathbf{e})$

- Likelihood weighting is good
 - All samples are used
 - The values of *downstream* variables are influenced by *upstream* evidence

- Likelihood weighting still has weaknesses
 - The values of *upstream* variables are unaffected by *downstream* evidence
 - E.g., suppose evidence is a video of a traffic accident
 - With evidence in k leaf nodes, weights will be $O(2^{-k})$
 - With high probability, one lucky sample will have much larger weight than the others, dominating the result
- We would like each variable to "see" *all* the evidence!

-b,-e,-a,+j:,-m~ -b .- l .- a , - ; ,- m ~ b = e , a = - s = m b = e , a + = + m

Query: P(B | +j, +m) = ?

Gibbs sampling

- Ideas
 - States are complete assignments to all variables
 - like *local search* (for constraint satisfaction problems)
 - Evidence variables remain fixed, other variables change
 - To generate the next state, pick a variable and sample a value for it conditioned on all the other variables: X_i' ~ P(X_i | x₁,..,x_{i-1},x_{i+1},..,x_n)
 - Will tend to move towards states of higher probability, but can go down too
 - In a Bayes net, $P(X_i | x_1, ..., x_{i+1}, ..., x_n) = P(X_i | markov_blanket(X_i))$
- Theorem: Gibbs sampling is consistent*

Gibbs Sampling Example: P(S | +r)

- Step 1: Fix evidence
 - R = +r

- Step 2: Initialize other variables
 - Randomly

- Steps 3: Repeat
 - Choose a non-evidence variable X
 - Resample X from P(X | all other variables)

Advantages of MCMC

- Samples soon begin to reflect all the evidence in the network
- Eventually they are being drawn from the true posterior!

Car Insurance: *P*(*PropertyCost* | *e*)

Car Insurance: *P*(*PropertyCost* | *e*)

Gibbs sampling algorithm

• Repeat many times: Sample a non-evidence variable X_i from

l

involves X;

- $P(X_i | x_1, ..., x_{i-1}, x_{i+1}, ..., x_n)$
- $= P(X_i | \text{Markov_blanket}(X_i))$
- = $\alpha P(X_i | \text{Parents}(X_i)) \prod_i P(y_i | \text{Parents}(Y_i))$
- Markov_blanket(X_i) includes
 - X_i 's parents
 - X_i 's children
 - X_i 's children's parent

Efficient Resampling of One Variable

$$P(S | +c, +r, -w)$$

$$= \frac{P(S, +c, +r, -w)}{P(+c, +r, -w)} (S = +s, -s)$$

$$= \frac{P(S, +c, +r, -w)}{\sum P(s, +c, +r, -w)}$$

$$= \frac{P(S, +c, +r, -w)}{\sum P(s, +c, +r, -w)}$$

$$= \frac{P(FC) P(S | +c) P(-w | s, -c, +r)}{\sum P(FC) P(s | +c) P(-w | s, -c, +r)}$$

Gibbs Sampling in practice

- The most commonly used method for large Bayes nets
 - See, e.g., BUGS, JAGS, STAN, infer.net, BLOG, etc.
- Can be *compiled* to run very fast
 - Eliminate all data structure references, just multiply and sample
 - ~100 million samples per second on a laptop
- Can run asynchronously in parallel (one processor per variable)

Bayes' Net Inference Summary

- Exact Inference
 - Inference by Enumeration
 - Variable Elimination
- Approximate Inference
 - Prior sampling
 - Rejection sampling
 - Likelihood weighting
 - Gibbs sampling