Independence

Two variables are **independent** if: $\forall x, y P(x, y) = P(x)P(y)$

We denote this as $X \perp \!\!\! \perp Y$

Conditional Independence

X is **conditionally independent** of Y given Z

if and only if:
$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

or, equivalently, if and only if $\forall x, y, z : P(x|z, y) = P(x|z)$

$$X \perp \!\!\! \perp Y | Z$$

Conditional Independence

Traffic, Umbrella, Raining

$$T \perp U^{2}$$

$$T \perp U \mid R$$

$$P(T \mid R, U) = P(T \mid R)$$

Conditional Independence

(Smole detector)

Fire, Smoke, Alarm

Independence vs. Conditional Independence

Rain
Traffic
Pedestrian holding umbrella
Flood in the house
Trip cancelled

. . .

P(Traffic | Rain, Umbrella) = P(Traffic | Rain)

Conditional Independent

Conditional distribution / independence allows us to model the probability of a certain event only using relevant factors.

Bayesian Networks

Bayes Net

Bayesian Network Example

Traffic, Umbrella, Raining

P(t, u, r)

= P(r) P(t | r) P(u | r, t) (always hold by chain rule)

= P(r) P(t | r) P(u | r)

T L U | R

R	Η	P(T R)
0	0	0.5
0	1	0.5
1	0	0.2
1	1	0.8

R	U	P(U R)
0	0	0.8
0	1	0.2
1	0	0.1
1	1	0.9

Bayesian Network (BN)

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - \bullet Suppose a node as m parents, and suppose each random variable can take d different values
 - What is the size of the table?
- The BN models the joint probability as

$$\# roms = d^{m+l}$$

Bayesian Network Example

Fire, Smoke, Alarm

Bayesian Network Example

0,00 Earthquake, Smoke, Alarm

$$P(e, s, a) = P(e) P(s) P(a | e, s)$$

Pr(Earthquake | Alarm) Pr(Earthquake | Alarm, Smoke)

Recap

Common cause

A and B are not independent in general

They could still be independent in special cases

They could still be independent in special of

• Causal chain

• Common effect

Example: Car Insurance

Example: Medical Diagnosis

Marin Prcela et al. Information Gain of Structured Medical Diagnostic Tests - Integration of Bayesian Networks and Ontologies

Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents) and easier to think about
- BNs need not be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - Arrows that reflect correlation, but not necessary causality

Causality?

Independence Given Evidence

General question: Are two variables X, Y independent of each other conditioned on $Z = \{Z_1, Z_2, ...\}$?

Or: Are X and Y "D-separated" by Z?

Algorithm

- 1. Consider just the **ancestral subgraph** consisting of X, Y, Z, and their ancestors.
- 2. Add links between any unlinked pair of nodes that share a common child; now we have the so-called **moral graph**.
- 3. Replace all directed links by undirected links.
- 4. If Z blocks all paths between X and Y in the resulting graph, then Z d-separates X and Y.

.

Example

 $R \perp \!\!\! \perp B$ Yes

Example

$$L \perp T' \mid T$$
 Yes

$$L \bot\!\!\!\bot B$$
 Yes

$$L \bot\!\!\!\bot B | T$$

$$L \! \perp \! \! \perp \! \! B | T, R$$
 Yes

Example

- Variables:
 - R: Raining
 - T: Traffic
 - D: Roof drips
 - S: I'm sad
- Questions:

Proof Sketch

Statement: If X and Y and separated by Z in the moral graph, then $X \perp \!\!\! \perp Y \mid Z$

The moral graph gives a way to "factorize" the joint distribution of BN. Each clique in the moral graph is a factor.

$$P(a) P(b) P(c) P(d \mid a, b, c) P(e) P(f \mid d, e) = \phi(a, b, c, d) \phi(d, e, f)$$

$$\phi(a, b, c, d) \phi(d, e, f)$$

Proof Sketch

Statement: If X and Y and separated by Z in the moral graph, then $X \perp\!\!\!\perp Y \mid Z$

$$P(a|d) = \frac{P(a,d)}{P(d)} = \frac{\sum_{f} \phi(a,d)\phi(d,f)}{\sum_{a,f} \phi(a,d)\phi(d,f)} = \frac{\phi(a,d)\sum_{f} \phi(d,f)}{\sum_{a} \phi(a,d)\sum_{f} \phi(d,f)} = \frac{\phi(a,d)}{\sum_{a} \phi(a,d)}$$

$$P(a|d,f) = \frac{P(a,d,f)}{P(d,f)} = \frac{\phi(a,d)\phi(d,f)}{\sum_{a} \phi(a,d)\phi(d,f)} = \frac{\phi(a,d)}{\sum_{a} \phi(a,d)}$$

Structure Implications

 Given a Bayes net structure, can run d-separation algorithm to build a complete list of conditional independences that are necessarily true of the form

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

This list determines the set of probability distributions that can be represented

Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- Adding arcs increases the set of distributions, but has several costs

Application: Language Modeling

Markov Model

For each position $i=1,2,\ldots,n$: Generate word $X_i \sim p(X_i \mid X_{i-1})$

Wreck a nice beach
$$X_1$$
 X_2 X_3 X_4

Application: Object Tracking

Hidden Markov Model

Probabilistic program: hidden Markov model (HMM)7

For each time step $t=1,\ldots,T$:

Generate object location $H_t \sim p(H_t \mid H_{t-1})$

Generate sensor reading $E_t \sim p(E_t \mid H_t)$

Inference: given sensor readings, where is the object?

Application: Topic Modeling

Latent Dirichlet Allocation

Probabilistic program: latent Dirichlet allocation

Generate a distribution over topics $lpha \in \mathbb{R}^K$ For each position $i=1,\ldots,L$:

Generate a topic $Z_i \sim p(Z_i \mid lpha)$

Generate a word $W_i \sim p(W_i \mid Z_i)$

Document classification, information retrieval, customer segmentation, ...

Inference: given a text document, what topics is it about?

Next Time

Inference