
Independence

Two variables are independent if:

We denote this as 



Conditional Independence

X is conditionally independent of Y given Z

if and only if:

or, equivalently, if and only if



Conditional Independence

Traffic, Umbrella, Raining



Conditional Independence

Fire, Smoke, Alarm



Independence vs. Conditional Independence

Rain

Traffic 

Pedestrian holding umbrella 

Flood in the house

Trip cancelled

…

Dependent

P(Traffic | Rain,  Umbrella) =  P(Traffic | Rain) Conditional Independent

Conditional distribution / independence allows us to model the probability of a certain 

event only using relevant factors. 



Bayesian Networks



Bayesian Network Example

Traffic, Umbrella, Raining

R

T U

R T P(T|R)

0 0 0.5

0 1 0.5

1 0 0.2

1 1 0.8

R U P(U|R)

0 0 0.8

0 1 0.2

1 0 0.1

1 1 0.9

R P(R)

0 0.7

1 0.3

P(t, u, r)

(always hold by chain rule)= P(r) P(t | r) P(u | r, t)

= P(r) P(t | r) P(u | r)

T ⫫ U | R



Bayesian Network (BN)

● A directed, acyclic graph, one node per random variable

● A conditional probability table (CPT) for each node

● Suppose a node as 𝑚 parents, and suppose each random variable can 

take 𝑑 different values

● What is the size of the table? 

● The BN models the joint probability as

    



Bayesian Network Example

Fire, Smoke, Alarm
F

S

A

P(f, s, a) = P(f) P(s | f) P(a | s) (by BN semantics)

Prove F ⫫ A | S? 



Bayesian Network Example

Earthquake, Smoke, Alarm

A

E SP(e, s, a)= P(e) P(s) P(a | e, s)

E ⫫ S | A ?E ⫫ S ?

Pr( Earthquake | Alarm) Pr( Earthquake | Alarm, Smoke)? “Explain away”



Recap

● Common cause

● Causal chain

● Common effect

C

A B

C

A B

CA B CA B

C

A B

C

A B

A ⫫ B

A and B are not 

independent in general

They could still be 

independent in special cases

A ⫫ B | C 

A ⫫ B A ⫫ B | C 

A ⫫ B A ⫫ B | C 



Example:  Car Insurance



Example:  Medical Diagnosis

Marin Prcela et al. Information Gain of Structured Medical Diagnostic Tests - 

Integration of Bayesian Networks and Ontologies



Causality?

● When Bayes’ nets reflect the true causal patterns:

● Often simpler (nodes have fewer parents) and easier to think about 

● BNs need not be causal

● Sometimes no causal net exists over the domain (especially if variables are missing)

● Arrows that reflect correlation, but not necessary causality

Rain

Traffic

cause

effect

P(r, t) = P(r) P(t | r)

Rain

Traffic

P(r, t) = P(t) P(r | t)



Causality? 



Independence Given Evidence 

General question:  Are two variables 𝑋, 𝑌 independent of each other 

conditioned on 𝑍 = 𝑍1, 𝑍2, … ? 

Algorithm

1.  Consider just the ancestral subgraph consisting of X, Y, Z, and their ancestors.

2.  Add links between any unlinked pair of nodes that share a common child; now     

     we have the so-called moral graph. 

3.  Replace all directed links by undirected links. 

4.  If Z blocks all paths between X and Y in the resulting graph, then Z d-separates 

     X and Y. 

Or:  Are X and Y  “D-separated” by Z? 



Example

Yes R

T

B

T’



Example

R

T

B

D

L

T’

Yes

Yes

Yes



Example

● Variables:

● R: Raining

● T: Traffic

● D: Roof drips

● S: I’m sad

● Questions: T

S

D

R

Yes



Proof Sketch

Statement:  If X and Y and separated by Z in the moral graph, then X ⫫ Y | Z 

The moral graph gives a way to “factorize” the joint distribution of BN.    

P(a) P(b) P(c) P(d | a, b, c)  P(e) P(f | d, e)

Each clique in the moral graph is a factor. 

𝜙(a, b, c, d) 𝜙(d, e, f)

=  𝜙(a, b, c, d) 𝜙(d, e, f)



Proof Sketch

Statement:  If X and Y and separated by Z in the moral graph, then X ⫫ Y | Z 

Let’s try to prove a ⫫ f | d 

𝑃 𝑎 𝑑

𝑃 𝑎 𝑑, 𝑓

=
𝑃(𝑎, 𝑑)

𝑃(𝑑)
=

σ𝑓 𝜙 𝑎, 𝑑 𝜙(𝑑, 𝑓)

σ𝑎,𝑓 𝜙 𝑎, 𝑑 𝜙(𝑑, 𝑓)
=

𝜙 𝑎, 𝑑 σ𝑓 𝜙(𝑑, 𝑓)

σ𝑎 𝜙 𝑎, 𝑑 σ𝑓 𝜙(𝑑, 𝑓)
=

𝜙 𝑎, 𝑑

σ𝑎 𝜙 𝑎, 𝑑

=
𝑃(𝑎, 𝑑, 𝑓)

𝑃(𝑑, 𝑓)
=

𝜙 𝑎, 𝑑 𝜙(𝑑, 𝑓)

σ𝑎 𝜙 𝑎, 𝑑 𝜙(𝑑, 𝑓)
=

𝜙 𝑎, 𝑑

σ𝑎 𝜙 𝑎, 𝑑



Structure Implications

● Given a Bayes net structure, can run d-separation algorithm to build a complete 

list of conditional independences that are necessarily true of the form

● This list determines the set of probability distributions that can be represented 



X

Y

Z

Topology Limits Distributions

● Given some graph topology G, only 

certain joint distributions can be 

encoded

● The graph structure guarantees 

certain (conditional) independences

● Adding arcs increases the set of 

distributions, but has several costs

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z X

Y

Z X

Y

Z

X

Y

Z X

Y

Z X

Y

Z



Application:  Language Modeling

● Markov Model



Application:  Object Tracking

● Hidden Markov Model



Application: Topic Modeling

Document classification,

information retrieval,

customer segmentation, …

● Latent Dirichlet Allocation



Next Time

● Inference
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