
(Conditional) Independence



Independence

Two variables are independent if:

We denote this as 



Conditional Independence

X is conditionally independent of Y given Z

if and only if:

or, equivalently, if and only if



Conditional Independence

Traffic, Umbrella, Raining



Conditional Independence

Fire, Smoke, Alarm



Independence vs. Conditional Independence

Rain

Traffic 

Pedestrian holding umbrella 

Flood in the house

Trip cancelled

…

Dependent

P(Traffic | Rain,  Umbrella) =  P(Traffic | Rain) Conditional Independent

Conditional distribution / independence allows us to model the probability of a certain 

event only using relevant factors. 



Bayesian Networks



Bayesian Network Example

Traffic, Umbrella, Raining

R

T U

R T P(T|R)

0 0 0.5

0 1 0.5

1 0 0.2

1 1 0.8

R U P(U|R)

0 0 0.8

0 1 0.2

1 0 0.1

1 1 0.9

R P(R)

0 0.7

1 0.3

P(t, u, r)

(always hold by chain rule)= P(r) P(t | r) P(u | r, t)

= P(r) P(t | r) P(u | r)

T ⫫ U | R



Bayesian Network (BN)

● A directed, acyclic graph, one node per random variable

● A conditional probability table (CPT) for each node

● Suppose a node as 𝑚 parents, and suppose each random variable can 

take 𝑑 different values

● What is the size of the table? 

● The BN models the joint probability as

    



Bayesian Network Example

Fire, Smoke, Alarm
F

S

A

P(f, s, a) = P(f) P(s | f) P(a | s) (by BN semantics)

Prove F ⫫ A | S? 



Bayesian Network Example

Earthquake, Smoke, Alarm

A

E SP(e, s, a)= P(e) P(s) P(a | e, s)

E ⫫ S | A ?E ⫫ S ?

Pr( Earthquake | Alarm) Pr( Earthquake | Alarm, Smoke)? “Explain away”



Recap

● Common cause

● Causal chain

● Common effect

C

A B

C

A B

CA B CA B

C

A B

C

A B

A ⫫ B

A and B are not 

independent in general

They could still be 

independent in special cases

A ⫫ B | C 

A ⫫ B A ⫫ B | C 

A ⫫ B A ⫫ B | C 



Example:  Car Insurance



Example:  Medical Diagnosis

Marin Prcela et al. Information Gain of Structured Medical Diagnostic Tests - 

Integration of Bayesian Networks and Ontologies



Causality?

● When Bayes’ nets reflect the true causal patterns:

● Often simpler (nodes have fewer parents) and easier to think about 

● BNs need not be causal

● Sometimes no causal net exists over the domain (especially if variables are missing)

● Arrows that reflect correlation, but not necessary causality

Rain

Traffic

cause

effect

P(r, t) = P(r) P(t | r)

Rain

Traffic

P(r, t) = P(t) P(r | t)



Causality? 



Independence Given Evidence 

General question:  Are two variables 𝑋, 𝑌 independent of each other 

conditioned on 𝑍 = 𝑍1, 𝑍2, … ? 

Algorithm

1.  Consider just the ancestral subgraph consisting of X, Y, Z, and their ancestors.

2.  Add links between any unlinked pair of nodes that share a common child; now     

     we have the so-called moral graph. 

3.  Replace all directed links by undirected links. 

4.  If Z blocks all paths between X and Y in the resulting graph, then Z d-separates 

     X and Y. 

Or:  Are X and Y  “D-separated” by Z? 



Example

Yes R

T

B

T’



Example

R

T

B

D

L

T’

Yes

Yes

Yes



Example

● Variables:

● R: Raining

● T: Traffic

● D: Roof drips

● S: I’m sad

● Questions: T

S

D

R

Yes



Proof Sketch

Statement:  If X and Y and separated by Z in the moral graph, then X ⫫ Y | Z 

The moral graph gives a way to “factorize” the joint distribution of BN.    

P(a) P(b) P(c) P(d | a, b, c)  P(e) P(f | d, e)

Each clique in the moral graph is a factor. 

𝜙(a, b, c, d) 𝜙(d, e, f)

=  𝜙(a, b, c, d) 𝜙(d, e, f)



Proof Sketch

Statement:  If X and Y and separated by Z in the moral graph, then X ⫫ Y | Z 

Let’s try to prove a ⫫ f | d 

𝑃 𝑎 𝑑

𝑃 𝑎 𝑑, 𝑓

=
𝑃(𝑎, 𝑑)

𝑃(𝑑)
=

σ𝑓 𝜙 𝑎, 𝑑 𝜙(𝑑, 𝑓)

σ𝑎,𝑓 𝜙 𝑎, 𝑑 𝜙(𝑑, 𝑓)
=

𝜙 𝑎, 𝑑 σ𝑓 𝜙(𝑑, 𝑓)

σ𝑎 𝜙 𝑎, 𝑑 σ𝑓 𝜙(𝑑, 𝑓)
=

𝜙 𝑎, 𝑑

σ𝑎 𝜙 𝑎, 𝑑

=
𝑃(𝑎, 𝑑, 𝑓)

𝑃(𝑑, 𝑓)
=

𝜙 𝑎, 𝑑 𝜙(𝑑, 𝑓)

σ𝑎 𝜙 𝑎, 𝑑 𝜙(𝑑, 𝑓)
=

𝜙 𝑎, 𝑑

σ𝑎 𝜙 𝑎, 𝑑



Structure Implications

● Given a Bayes net structure, can run d-separation algorithm to build a complete 

list of conditional independences that are necessarily true of the form

● This list determines the set of probability distributions that can be represented 



X

Y

Z

Topology Limits Distributions

● Given some graph topology G, only 

certain joint distributions can be 

encoded

● The graph structure guarantees 

certain (conditional) independences

● Adding arcs increases the set of 

distributions, but has several costs

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z X

Y

Z X

Y

Z

X

Y

Z X

Y

Z X

Y

Z



Application:  Language Modeling

● Markov Model



Application:  Object Tracking

● Hidden Markov Model



Application: Topic Modeling

Document classification,

information retrieval,

customer segmentation, …

● Latent Dirichlet Allocation



Exact Inference in Bayesian Networks 



The “Join” Operation in Bayesian Network

D

A

B C

The BN defines four factors P(A),  P(B|A),  P(C|A),  P(D|B,C)

Join on B:  

P(A),  P(B|A),  P(C|A),  P(D|B,C)

P(A),  P(B,D | A,C),  P(C|A)

Further join on C:  

P(A),  P(B,C,D | A)

P(A),  P(B,D | A,C),  P(C|A)

Combine all factors that involve B

Combine all factors that involve C

A

B,D C

A

B,C,D



Exercise

D

A

B

C

What are the factors after joining on B? 



Exercise

Burglary Earthquake

Alarm

B P(B)

T 0.001

F 0.999

E P(E)

T 0.002

F 0.998

B E A P(A|B,E)

T T T 0.95

T T F 0.05

T F T 0.94

T F F 0.06

F T T 0.29

F T F 0.71

F F T 0.001

F F F 0.999

B A E P(B,A|E)

T T T

T T F

T F T

T F F

F T T

F T F

F F T

F F F

Can you calculate P(B, A|E)? 



= ?

Review:  Inference by Enumeration

All variables

General case:

● Evidence variables: 

● Query* variable:

● Hidden variables:

Step 1.  Select the entries consistent with the evidence 

Step 2. Sum out H to get joint probability of Query and evidence

Step 3.  Normalize

Inference by Enumeration



Inference by Enumeration

B E A J M P(B,E,A,J,M)

T T T T T 0.001 * 0.002 * 0.95 * 0.90 * 0.70

T T T T F 0.001 * 0.002 * 0.95 * 0.90 * 0.30

T T T F T 0.001 * 0.002 * 0.95 * 0.10 * 0.70

… … … … …

F F F F F 0.999 * 0.998 * 0.999 * 0.95 * 0.99

P(B,E,A,J,M) = P(B)  P(E)  P(A | B,E) P(J | A)  P(M | A)

Step 0. Create a joint probability table

P( B | +j, +m) = ?



Step 0:  Create a Joint Probability Table 
P(B,E,A,J,M)  =  P(B)  P(E)  P(A | B,E) P(J | A)  P(M | A)

B P(B)

T

F

E P(E)

T

F

B E A P(A|B,E)

T T T

T T F

… … …

F F F

B A E P(B,A|E)

T T T

T T F

… … …

F F F

A J P(J|A)

T T

… …

A M P(M|A)

T T

… …

P(B,E,A,J,M)

B E A P(B,E,A)

T T T

T T F

… … …

F F F

Join on B

Join on E

Join on A



Inference by Enumeration

Step 1. Select the entries consistent with the evidence 

B E A J M P(B,E,A,J,M)

T T T T T 0.001 * 0.002 * 0.95 * 0.90 * 0.70

T T F T T 0.001 * 0.002 * 0.05 * 0.05 * 0.01

T F T T T 0.001 * 0.998 * 0.94 * 0.90 * 0.70

T F F T T 0.001 * 0.998 * 0.06 * 0.05 * 0.01

F T T T T 0.999 * 0.002 * 0.29 * 0.90 * 0.70

F T F T T 0.999 * 0.002 * 0.71 * 0.05 * 0.01

F F T T T 0.999 * 0.998 * 0.001 * 0.90 * 0.70

F F F T T 0.999 * 0.998 * 0.999 * 0.05 * 0.01

P( B | +j, +m) = ?



Inference by Enumeration

P( B | +j, +m) = ?

Step 2. Sum out hidden variable to get joint 

probability of query and evidence (Marginalize)

B E A J M P(B,E,A,J,M)

T T T T T 0.001 * 0.002 * 0.95 * 0.90 * 0.70

T T F T T 0.001 * 0.002 * 0.05 * 0.05 * 0.01

T F T T T 0.001 * 0.998 * 0.94 * 0.90 * 0.70

T F F T T 0.001 * 0.998 * 0.06 * 0.05 * 0.01

F T T T T 0.999 * 0.002 * 0.29 * 0.90 * 0.70

F T F T T 0.999 * 0.002 * 0.71 * 0.05 * 0.01

F F T T T 0.999 * 0.998 * 0.001 * 0.90 * 0.70

F F F T T 0.999 * 0.998 * 0.999 * 0.05 * 0.01

B J M P(B,J,M)

T T T 0.0006

F T T 0.0015



Inference by Enumeration

P( B | +j, +m) = ?

Step 3. Normalize

B E A J M P(B,E,A,J,M)

T T T T T 0.001 * 0.002 * 0.95 * 0.90 * 0.70

T T F T T 0.001 * 0.002 * 0.05 * 0.05 * 0.01

T F T T T 0.001 * 0.998 * 0.94 * 0.90 * 0.70

T F F T T 0.001 * 0.998 * 0.06 * 0.05 * 0.01

F T T T T 0.999 * 0.002 * 0.29 * 0.90 * 0.70

F T F T T 0.999 * 0.002 * 0.71 * 0.05 * 0.01

F F T T T 0.999 * 0.998 * 0.001 * 0.90 * 0.70

F F F T T 0.999 * 0.998 * 0.999 * 0.05 * 0.01

B J M P(B,J,M)

T T T 0.0006

F T T 0.0015

B P(B | +j, +m)

T 0.285

F 0.715



Inference by Enumeration? 

SocioEconAge

GoodStudent ExtraCar

VehicleYear
YearsLicensed

DrivingSkill

DrivingBehavior

OwnCarDamage

PropertyCostLiabilityCostMedicalCost

OtherCost
OwnCarCost

Theft

Ruggedness

Accident

SafetyFeatures

Airbag

CarValue

Garaged

AntiTheft

Cushioning

RiskAversion

Mileage

MakeModel

DrivingRecord



How did we do Inference by Enumeration? 
P(B,E,A,J,M)  =  P(B)  P(E)  P(A | B,E) P(J | A)  P(M | A)

B P(B)

T

F

E P(E)

T

F

B E A P(A|B,E)

T T T

T T F

… … …

F F F

B A E P(B,A|E)

T T T

T T F

… … …

F F F

A J P(J|A)

T T

… …

A M P(M|A)

T T

… …

P(B,E,A,J,M)

B E A P(B,E,A)

T T T

T T F

… … …

F F F

Join on B

Join on E

Join on A

We first create a big table by joining all variables, 

and then 

1)  Removing entries inconsistent with the evidence  

2)  Perform marginalization to eliminate hidden variables



How did we do Inference by Enumeration? 

B E

A|B,E

J|A M|A

B, E, A

J|A M|A

B, E, A, J, M

B, E, A, +j, +m

1) only keep rows consistent 

with the evidence (Step 1)

B, +j, +m

2) Marginalize hidden variables 

(Step 2)

Joining all variables (Step 0)

Each node here represents a “table”



Improving the Algorithm

● First improvement: Instead of eliminating rows inconsistent with the evidence 

at the end, we will only keep rows consistent with evidence from the 

beginning.

● Second improvement: Instead of marginalize all hidden variables at the end 

after joining all variables, we will interleave joining and marginalization. 



Improving the Algorithm

B E

A|B,E

J|A M|A

B,E,A

J|A M|A

B, E, A, J, M B, E, A, +j, +m

B, +j, +m

B E

A|B,E

+j|A +m|A
+j|A +m|A

B,E,A

+j|A +m|A

B,A

Inference by Enumeration

Variable Elimination

B, A, +j, +m

B, +j, +m

Marginalize E and A

Marginalize E
Marginalize A

A variable can only be marginalized 

when it’s only involved in one factor. 

Otherwise, it has to be joined first. 

Join on B,E Join on A

Join on B,E
Join on A



Variable Elimination

B E

A|B,E

J|A
M|A

B P(B)

T

F

E P(E)

T

F

B E A P(A|B,E)

T T T

T T F

… … …

F F F

A J P(J|A)

T T

T F

F T

F F

A M P(M|A)

T T

T F

F T

F F

Query:  P( B | +j, +m) = ?



Variable Elimination

B E

A|B,E

+j|A
+m|A

B P(B)

T

F

E P(E)

T

F

B E A P(A|B,E)

T T T

T T F

… … …

F F F

A J P(J|A)

T T

F T

A M P(M|A)

T T

F T

Query:  P( B | +j, +m) = ?

1) Only keep rows consistent 

with the evidence 



Variable Elimination

B,E,A

+j|A
+m|A

A J P(J|A)

T T

F T

A M P(M|A)

T T

F T

Query:  P( B | +j, +m) = ?

B E A P(B,E,A)

T T T

T T F

… … …

F F F

Join on B and E



Variable Elimination

+j|A
+m|A

A J P(J|A)

T T

F T

A M P(M|A)

T T

F T

Query:  P( B | +j, +m) = ?

B A P(B,A)

T T

T F

F T

F F
B,A

2) Marginalize E (earlier than 

in inference by enumeration)



Variable Elimination Query:  P( B | +j, +m) = ?

B A J M P(B,A,J,M)

T T T T

T F T T

F T T T

F F T T

B,A,+j,+m

Join on A



Variable Elimination Query:  P( B | +j, +m) = ?

B J M P(B,J,M)

T T T

F T T
B,+j,+m

We can then get P(B | +j, +m) by normalizing this table

Marginalize A



Variable Elimination

Can be done in different orders

B, +j, +m

B E

A|B,E

+j|A +m|A +j|A +m|A

B,E,A

+j|A +m|A

B,A
B, A, +j, +m

Marginalize E Marginalize A

B E

A|B,E

+j|A +m|A

E

+j,+m,A|B,E

B
Marginalize A

E

+j,+m |B,E

B

+j,+m, E|B

B

+j,+m|B

B

Marginalize E

Join on B,E

Join on A
Join on E

B, +j, +m

Join on B

Query:  P( B | +j, +m) = ?

Join on A



Variable Elimination

● Start with initial factors but instantiated by evidence

● While there are still hidden variables:

● Pick a hidden variable X

● Join all factors mentioning X

● Eliminate (sum out) X   (i.e., marginalize X)

● Join all the remaining factors

● Normalize



Ordering of the Join and Eliminate? 

● The time and space of variable elimination are dominate by the size of the 

largest factor constructed during the algorithm. 

● It’s hard to determine the optimal ordering 

● Heuristics: Choose the variable that minimize the size of the next factor to be 

constructed.  



Exercise

T

R

L

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

Rain

Traffic

Late

Calculate P(L) 
(Use the heuristic:  minimize the size of the next constructed factor)

P(L) 

+l
-l



Approximate Inference in Bayesian Networks



Sampling

● Basic idea

● Draw N samples from a sampling 
distribution S

● Compute an approximate posterior probability

● Show this converges to the true probability P

● Why sample?

● Often very fast to get a decent 
approximate answer

● The algorithms are very simple and 
general (easy to apply to fancy 
models)

● They require very little memory (O(n))

● They can be applied to large models, 
whereas exact algorithms blow up



Sampling in Bayes nets

● Prior sampling

● Rejection sampling

● Likelihood weighting

● Gibbs sampling



s r w 0.99

w 0.01

r w 0.90

w 0.10

s r w 0.90

w 0.10

r w 0.01

w 0.99

Prior Sampling

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

c 0.5

c 0.5

c s 0.1

s 0.9

c s 0.5

s 0.5

c r 0.8

r 0.2

c r 0.2

r 0.8

Samples:

c, s,    r, w

c,    s, r, w

…

P(W | S,R)

P(S | C) P(R | C)

P(C)



Prior Sampling

For i=1, 2, …, n (in topological order): 

      Sample Xi from P(Xi | parents(Xi))

 Return (x1, x2, …, xn)



Prior Sampling

● This process generates samples with probability:

 SPS(x1,…,xn) = 

 …i.e. the BN’s joint probability

● Let the number of samples of an event be NPS(x1,…,xn)

● Estimate from N samples is QN(x1,…,xn) = NPS(x1,…,xn)/N 

● Then limN→ QN(x1,…,xn)  =  limN→ NPS(x1,…,xn)/N 

              = SPS(x1,…,xn) 

              = P(x1,…,xn) 

● I.e., the sampling procedure is consistent

i P(xi | parents(Xi)) = P(x1,…,xn) 



Example

● We’ll get a bunch of samples from the BN:

    c, s,    r,    w

    c,    s,    r,    w

 c,    s,    r, w

    c, s,    r,    w

 c, s, r,    w

● If we want to know P(W)

● We have counts <w:4, w:1>

● Normalize to get P(W) = <w:0.8, w:0.2>

● This will get closer to the true distribution with more samples

S R

W

C



   c, s,    r,    w
    c,    s, r
 c,    s,    r, w
    c, s, r
 c, s,    r,    w

Rejection Sampling

● A simple application of prior sampling for 

estimating conditional probabilities

● Let’s say we want P(C| r, w) = α P(C, r, w)

● For these counts, samples with r or w are not 

relevant

● So count the C outcomes for samples with r, w and 

reject all other samples 

● This is called rejection sampling

● It is also consistent for conditional probabilities (i.e., 

correct in the limit)

S R

W

C



Rejection Sampling

Input: evidence e1,..,ek

 For i=1, 2, …, n

 Sample Xi from P(Xi | parents(Xi))

 If xi not consistent with evidence

Reject:  Return, and no sample is generated in this cycle

 Return (x1, x2, …, xn)



● Idea: fix evidence variables, sample the 
rest
● Problem: sample distribution not consistent!

● Solution: weight each sample by probability 
of evidence variables given parents

Likelihood Weighting

● Problem with rejection sampling:
● If evidence is unlikely, rejects lots of 

samples

● Evidence not exploited as you sample

● Consider P(Shape|Color=blue)

Shape ColorShape Color

pyramid,  green
 pyramid,  red
 sphere,     blue
 cube,         red
sphere,      green

pyramid,  blue
 pyramid,  blue
 sphere,     blue
 cube,         blue
 sphere,      blue



Likelihood Weighting

c 0.5

c 0.5

c s 0.1

s 0.9

c s 0.5

s 0.5

c r 0.8

r 0.2

c r 0.2

r 0.8

s r w 0.99

w 0.01

r w 0.90

w 0.10

s r w 0.90

w 0.10

r w 0.01

w 0.99

Samples:

, s,   , w

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

P(W | S,R)

P(S | C) P(R | C)

P(C)

w = 1.0 x 0.1 x 0.99c r



Likelihood Weighting

Input: evidence e1,..,ek

 w = 1.0

 for i=1, 2, …, n

 if Xi is an evidence variable

 xi = observed valuei for Xi

 Set w = w * P(xi | parents(Xi))

 else

 Sample xi from P(Xi | parents(Xi))

 return (x1, x2, …, xn), w



Likelihood Weighting is Consistent

● Sampling distribution if Z sampled and e fixed evidence

 SWS(z,e) = j P(zj | parents(Zj)) 

● Now, samples have weights

 w(z,e) = k P(ek | parents(Ek)) 

● Together, weighted sampling distribution is consistent

 SWS(z,e)  w(z,e) =  j P(zj | parents(Zj)) k P(ek | parents(Ek))

                  = P(z,e) 

Cloudy

R

C

S

W



Likelihood Weighting

● Likelihood weighting is good

● All samples are used

● The values of downstream variables are 

influenced by upstream evidence

 

● Likelihood weighting still has weaknesses

● The values of upstream variables are unaffected by 

downstream evidence
● E.g., suppose evidence is a video of a traffic accident

● With evidence in k leaf nodes, weights will be O(2-k)

● With high probability, one lucky sample will have 

much larger weight than the others, dominating the 

result

● We would like each variable to “see” all 

the evidence!



Query:  P( B | +j, +m) = ?



Gibbs sampling

● Ideas

● States are complete assignments to all variables

● like local search (for constraint satisfaction problems)

● Evidence variables remain fixed, other variables change

● To generate the next state, pick a variable and sample a value for it conditioned 

on all the other variables:   Xi’ ~ P(Xi | x1,..,xi-1,xi+1,..,xn)

● Will tend to move towards states of higher probability, but can go down too

● In a Bayes net, P(Xi | x1,..,xi-1,xi+1,..,xn) = P(Xi | markov_blanket(Xi))

● Theorem: Gibbs sampling is consistent*



● Step 2: Initialize other variables 

● Randomly

Gibbs Sampling Example: P( S | +r)

● Step 1: Fix evidence

● R = +r

● Steps 3: Repeat

● Choose a non-evidence variable X

● Resample X from P( X | all other variables)
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Advantages of MCMC

● Samples soon begin to reflect all the 

evidence in the network

● Eventually they are being drawn from the 

true posterior!



Car Insurance: P(PropertyCost | e)
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Gibbs sampling algorithm

● Repeat many times:  Sample a non-evidence variable  Xi from

P(Xi | x1,..,xi-1,xi+1,..,xn) 

= P(Xi | Markov_blanket(Xi))

=   α P(Xi | Parents (Xi))  j P(yj | Parents(Yj))

● Markov_blanket(Xi) includes

● Xi’s parents

● Xi’s children

● Xi’s children’s parent

. . .

. . .U1 Um
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Z1j
X



Efficient Resampling of One Variable

●  Sample from P(S | +c, +r, -w) 

S +r

W

C



Gibbs Sampling in practice

● The most commonly used method for large Bayes nets

● See, e.g., BUGS, JAGS, STAN, infer.net, BLOG, etc.

● Can be compiled to run very fast

● Eliminate all data structure references, just multiply and sample

● ~100 million samples per second on a laptop

● Can run asynchronously in parallel (one processor per variable)



Bayes’ Net Inference Summary

● Exact Inference

● Inference by Enumeration

● Variable Elimination

● Approximate Inference

● Prior sampling

● Rejection sampling

● Likelihood weighting

● Gibbs sampling
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