(Conditional) Independence



Independence

Two variables are independent if:  Vz,y P(x,y) = P(x)P(y)

We denotethisas X Il Y



Conditional Independence

X Is conditionally independent of Y given Z
ifand only if:  Vx,y,z: P(x,y|lz) = P(x|z)P(y|z)

or, equivalently, if and only if Vz,y,z : P(z|z,y) = P(x|z)

X1Y|Z



Conditional Independence

Traffic, Umbrella, Raining

XAY|Z
1
Rn‘.n;ua




Conditional Independence

(Smokee defectar)
Fire, Smoke, Alarm

Y LY[?

% ( Alaom

)

5mkg,) = P(A'(Afrv\.

Smake F'we)




Independence vs. Conditional Independence

Rain

Traffic

Pedestrian holding umbrella
Flood in the house

Trip cancelled

P(Traffic | Rain, Umbrella) = P(Traffic | Rain) Conditional Independent

Conditional distribution / independence allows us to model the probability of a certain
event only using relevant factors.



Bayesian Networks
@aamj Mt



Bayesian Network Example

Traffic, Umbrella, Raining

P(t, u, r)

=P(@r)P(t|r) P(u|r t) (always hold by chain rule)
=P(r) P(t|r)P(ulr)

\

TLU|R

R P(R)

e 0 0.7

1 0.3

R | T |P(TR) R | U | PUIR)
0| 0| 05 0|0 0.8
0 | 1 0.5 0|1 0.2
1 10| 02 1|0 0.1
1 |1 0.8 1|1 0.9




Bayesian Network (BN)

e Adirected, acyclic graph, one node per random variable

W
e A conditional probabillity table (CPT) for each node

e Suppose a node as m parents, and suppose each random variable can
take d different values

e \What is the size of the table?

e The BN models the joint probability as

n
P(:Cl, o, .. :Bn) == H P(:cz-|parents(X7;))
=1
M+
1 roms < 0/




Bayesian Network Example

Fire, Smoke, Alarm

GD(f,\S,,a) = P(f) P(s | f@(by BN semantics)
ProvegF LA]|S? \72

N P(—f)P(sH)@(a{s,a‘D
N




Bayesian Network Example

6.00| 0,60]

Earthquake, Smoke, Alarm

e

P(e, s, a)=P(e) P(s) P(a| e, s)

S | F(SJJ

E P(E-)
o‘l—ﬁi‘i 0 \ 0,599
[ | o001 \ 2107)

ELS? s Eus|a?
:..[/E'{ 5)
— 1 / ;\DC E=(or
TR
DO , rrwke
Pr( Earthquake | Alarm) 2 E_[Lliarthquake | Alarm, Smoke) “Explain away”
T , _
$ 5
(/Z ) {\\9\



Recap

e Common cause
A and B are not Q @

Independent in general
AlLB|C

They could still be
independent in special cases

e Causal chain

AXB ALB|C

NG NG
e Common effect
© ©
AlB

AXB|C



Example: Car Insurance

Hidden
variables

Hidden variables are

essential for structuring
the network so that it is

reasonably sparse with a

manageable number of

].‘LH'LHHCR‘I'.\

MedicalCost LiabilityCost



Example: Medical Diagnhosis

Ejection
fraction

I EA ratio

Pulrmonary
EfEma

Evstolic bhooo
[ressUre

D

ia=stolic blood Hea rate
ressure
P

]
/I“
S
(o

Marin Prcela et al. Information Gain of Structured Medical Diagnostic Tests -
Integration of Bayesian Networks and Ontologies

Cwepnes
Crtophines




Causality?

e When Bayes’ nets reflect the true causal patterns:
e Often simpler (nodes have fewer parents) and easier to think about

e BNs need not be causal
e Sometimes no causal net exists over the domain (especially if variables are missing)
e Arrows that reflect correlation, but not necessary causality

Rain cause Rain

P(r,t)=P(r) P(t|r) P(r,t)=P({) P(r|t)




Causality?

Burglary

P(J)

90
05

P(E)
Earthquake 000
B E | PA)
root 95
tf 94
;oo 29
o oo
A |P(M)
MaryCalls ¢ |70
f o1

Burglary

(a)

Earthquake

MaryCalls




Independence Given Evidence

General question: Are two variables X, Y independent of each other
conditionedon Z = {Z,Z,, ... }?

Or. Are XandY “D-separated” by Z?

Algorithm

1.
2.

Consider just the ancestral subgraph consisting of X, Y, Z, and their ancestors.
Add links between any unlinked pair of nodes that share a common child; now
we have the so-called moral graph.

Replace all directed links by undirected links.

If Z blocks all paths between X and Y in the resulting graph, then Z d-separates

X and.




Example

R1 B Yes
R1B|T
R B|T’



Example

LUTT  VYes

—

LI B Yes
L B|T

L1 B|T

LU B|T,R VYes



Example

e Variables:
e R: Raining
e T: Traffic
e D: Roof drips
e S:I'm sad

e Questions:

T1.D|R
T1.D|R, S

Yes



Proof Sketch

Statement: If X and Y and separated by Z in the moral graph, then X 1L Y | Z

G G

AW

®

The moral graph gives a way to “factorize” the joint distribution of BN.
Each clique in the moral graph is a factor.

P(a) P(b) P(c) P(d | a, b,c) P(e)P(f|d,e) = ¢(a, b, c,d) ¢(d,e,f

¢(a, b, c, d) ¢(d, e, f)




Proof Sketch

Statement: If X and Y and separated by Z in the moral graph, then X 1L Y | Z

:
@\T Let's try to prove a 1L f| d
® © e
AV
Pad) 3 9@dp@f) _ p@dI; ¢@f)  $ad)

CP@ 3, 0@dedf)  Tadad) T, df)  To dlad)

P@df)  ¢plad@f) _ ¢lad)

P(ald, = — —
LD =%@n =% s@ded 3. s@d




Structure Implications

e Given a Bayes net structure, can run d-separation algorithm to build a complete
list of conditional independences that are necessarily true of the form

X; L Xi{ Xy -, Xk, }

e This list determines the set of probabillity distributions that can be represented



Topology Limits Distributions

(X UY,X 1 ZY 1l Z,
XULZ|Y,XUY|ZY1Z|X}

®
® @

(XU Z|Y)

e Given some graph topology G, only
certain joint distributions can be
encoded

e The graph structure guarantees
certain (conditional) independences

e Adding arcs increases the set of
distributions, but has several costs

PP PFP




Application: Language Modeling

e Markov Model

% Probabilistic program: Markov model-

For each positionz = 1,2,...,n:
Generate word X; ~ p(X; | Xi_1)

Wreck a nice beach

X)) ~(Xy) Xy



Application: Object Tracking

e Hidden Markov Model

-@ Probabilistic program: hidden Markov model (HMM)-

Foreachtimestept =1,...,T":
Generate object location Hy ~ p(H; | Hy_1)
Generate sensor reading E; ~ p(E; | Hy)

@IH( :v% Hﬁ'
@@@..

Inference: given sensor readings, where is the object?




Application: Topic Modeling

e Latent Dirichlet Allocation

-@ Probabilistic program: latent Dirichlet allocation-

Generate a distribution over topics o € RE
For each positionz =1, ..., L:
Generate a topic Z; ~ p(Z; | a)
Generate a word W; ~ p(W; | Z;)

{travel:0.8,Europe:0.2}

Document classification,
Europe iInformation retrieval,

customer segmentation, ...
beach @ s @ Euro

Inference: given a text document, what topics is it about?

travel ( Zq



Exact Inference in Bayesian Networks



The “Join” Operation in Bayesian Network

Q The BN defines four factors P(A), P(B|A), P(C|A), P(D|B,C)
Join on B: Combine all factors that involve B
e g P(A), P(BIA), P(C|A), P(D|B,C)
s 00 )
P(A), P(B,D|A,C), P(C|A)
6 Further join on C:  Combine all factors that involve C
P(A), P$B,D|A,C), P(CJ|A) °
/

P(A), P(B,C,D|A) @



Exercise

What are the factors after joining on B?

@ FA) #619) a(c[0.8)p(o].)

T T—
p(A) p(eco ) A)




Exercise

B| P(B)

T | 0.001

F | 0.999
B|E|A/|P(A|BE)

T|T|T 0.95

T|T]|F 0.05

TIF|T 0.94

T|I|F|F 0.06

FITI|T 0.29

F|T|F 0.71

FIF [T 0.001

FIF|F 0.999

(b, 2le) < P(B)P(Q‘b.cl

-

p(

bal

Burglary

P(B,A|E)

E P(E)
T 0.002
F 0.998

Earthquake

ou calculate P(B, A|E)?

o )~ W(L/@q’(o\/b,@)

il R R e

M4 |44 |>

Mm|iA ||| |d|T|—|Mm




Review: Inference by Enumeration

General case:

e Evidence variables: Fq...E, =eq1...€ep
e Query* variable: Q

e Hidden variables: Hy...H,

\

> All variables

~/

P@lr. e =7 P(E £ o, by

, J ’ /

Inference by Enumeration

Step 1. Select the entries consistent with the evidence

Step 2. Sum out H to get joint probability of Query and evidence
Step 3. Normalize




Inference by Enumeration

Step 0. Create a joint probability table

P P(B,E.A,J,M)

95

94 0.001 * 0.002 * 0.95 * 0.90 * 0.70

29

001 0.001 *0.002 * 0.95 *0.90 * 0.30

| d| 4| ™
— || 4| m
| 4|4 >
|| | «
| T| 4| Z

0.001 *0.002 *0.95*0.10*0.70

A |P(M)
} :g? F F F F F|0.999*0.998 *0.999 *0.95* 0.99




Step 0: Create a Joint Probability Table

P(B,E,AJ,M) = P(B) P(E) P(A|B,E) P(A|A) P(M|A)

\
B| P(B)
T
F
B|E| A |P(AB,E) N
T|T|T
T|T|F
FIF|F
_
Join on B

B|A PBAE)|
TI|T
T B|E|A|P®B,EA)
TITIT
FIF TIT[F
E| P(E) FIF|F
=
E Al J | PQJA)
~ TI|T
Join on E
A | M| PMIA)
TI|T

Join on A

.

-

P(B,E,A,J,M)



Inference by Enumeration

Step 1. Select the entries consistent with the evidence

P(B,E,A,J,M)
0.001 * 0.002 * 0.95 * 0.90 * 0.70
0.001 * 0.002 * 0.05 * 0.05 * 0.01
0.001 * 0.998 * 0.94 * 0.90 * 0.70
0.001 * 0.998 * 0.06 * 0.05 * 0.01
0.999 * 0.002 * 0.29 * 0.90 * 0.70
0.999 * 0.002 * 0.71 * 0.05 * 0.01
0.999 * 0.998 * 0.001 * 0.90 * 0.70
0.999 * 0.998 * 0.999 * 0.05 * 0.01

Burglary I;((i) Earthquake ];(Oi)

P(A)
95
94

29
001

A |P(M)
t '70
f 101

MMM |H|T
MM |d|(d | |T|d|4|m
m|idA(m|d(mn|d(Tn|d|>
Al |d|d|d|d|d ||«
||| ||| Z




Inference by Enumeration

Burglary I;((i)

Earthquake

P(E)

002

P(A)

95
94
29
001

~ o~~~ |y

P(M)

70
01

+ <

+ <

'd

Step 2. Sum out hidden variable to get joint
probability of query and evidence (Marginalize)

B E A J M P(B,E,A,J,M)

T T T T T/ 0.001*0.002*0.95*0.90 * 0.70
T T F T T/ 0.001*0.002*0.05*0.05*0.01
T F T T T/ 0.001*0.998*0.94*0.90 * 0.70
T F F T T/ 0.001*0.998*0.06 *0.05 * 0.01
F T T T T/ 0.999*0.002*0.29 * 0.90 * 0.70
F T F T T/ 0.999*0.002*0.71 * 0.05 * 0.01
F F T T T/0.999*0.998*0.001 *0.90 * 0.70
F F F T T/0.999*0.998*0.999 *0.05 * 0.01
B J M| P®BJM)

T T T 0.0006

F T T 0.0015




Inference by Enumeration

Burglary I;((i)

Earthquake

P(E)

002

P(A)

95
94
29
001

P(M)

70
01

+ <

+ <

'd

Step 3. Normalize

P(B,E,A,J,M)

0.001 *0.002 *0.95*0.90 *0.70

0.001 * 0.002 * 0.05 *0.05 * 0.01

0.001 *0.998 *0.94 *0.90 *0.70

0.001 *0.998 * 0.06 * 0.05 * 0.01

0.999 * 0.002 *0.29 *0.90 *0.70

0.999 *0.002 *0.71 *0.05 * 0.01

0.999 * 0.998 * 0.001 * 0.90 * 0.70

n|m|m|(n|4|A|d|4|w

MM |d|(m ||| |m

m|idA(m|d(mn|d(Tn|d|>

Al ||| ]H]|H]| <

||| A[4]|4]|=Z

0.999 * 0.998 * 0.999 * 0.05 * 0.01

o

o

P(B,J,M) B| P(B]|+j,+m)

0.0006 » T 0.285

4=

0.0015 F 0.715




Inference by Enumeration?

Age

GoodStudent

RiskAversion

SocioEcon

DrivingSkill
DrivingRecord

DrivingBehavior

MedicalCost LiabilityCost

PropertyCost



How did we do Inference by Enumeration?

P(B,E,AJ,M) = P(B) P(E) P(A|B,E) P(A|A) P(M|A)

B P(B)|
T
= B|A PBAE)|
T|T
B|E|A]|P(AB,E) TI|T B|E|A]|P(B,EA)
T 7T TITIT
TITIF FIF > [ T|T]F
=TT AEE F F F
- T
Join on B = Al J | PJUA
~ T|T
Joinon E
. : L : A | M| PM|A
We first create a big table by joining all variables, T (MIA)
and then
1) Removing entries inconsistent with the evidence

2) Perform marginalization to eliminate hidden variables

>~ P(B,E,AJM)

—/

Join on A



How did we do Inference by Enumeration?

e
O ) G

Joining all variables (Step 0)

» Ceradm » Cosiem D

1) only keep rows consistent 2) Marginalize hidden variables
with the evidence (Step 1) (Step 2)

Each node here represents a “table”

»  CseaimD



Improving the Algorithm

e First improvement: Instead of eliminating rows inconsistent with the evidence
at the end, we will only keep rows consistent with evidence from the

beginning.

e Second improvement: Instead of marginalize all hidden variables at the end
after joining all variables, we will interleave joining and marginalization.



Improving the Algorithm & (@ +° 4 m)

Inference by Enumeration

.\ /@> Join on B,E Joinon A Marginalize E and A
t 1 » » »
@5 (MIA>

A variable can only be marginalized
when it’s only involved in one factor.
Otherwise, it has to be joined first.

Variable Elimination

Marginalize A

.\ Jom on B,E Marginalize E
Join on A
- z 1 » orum> B Conm)



Variable Elimination

B

P(B)

T

F

Query: P(B|+},+m) ="

P(E)

P(A|B,E)

—

—

—]

P(JIA)

P(M|A)

MM |>

| |n|4|

MM |4|>

MM H[Z




Variable Elimination

B| P(B)

E | A|P(AB,E)

—

—
_|

TI|F @

_|
_|

T3 TRom @ @

1) Only keep rows consistent
with the evidence

Query: P(B|+},+m) ="

P(E)

F G G

P(M|A)

—

—




Variable Elimination Query: P(B | +j, +m) =2

B|E|A|PBEA)

_|
—
—

Joinon B and E

_|
_|
—
_|

AlJd | PQIA) » @ A | M| PM|A)




Variable Elimination Query: P(B | +j, +m) =2

P(B,A)

2) Marginalize E (earlier than
In inference by enumeration)

M| |H|w
m|A|TM| 4>

_|
_|
—
_I

AlJd | PQIA) @ @ A | M| PM|A)




Variable Elimination Query: P(B | +j, +m) =2

Join on A P(B.A,J,M)

mM|{H ||
m|4|T| 4>
|||«

|44 Z




Variable Elimination Query: P(B | +j, +m) =2

Marginalize A BlJIM P(B,J,M)

e

We can then get P(B | +j, +m) by normalizing this table




Variable Elimination Query: P(B | +j, +m) =2

Can be done in different orders

e Join on B,E o .
Marginalize E Join on A Marginalize A

CBEA > (BAD
2 eyt T

e Join on A _

.\ ﬁ) e e Marginalize A Join on E Marginalize E

» » ® ©® 4 @ €
AmABE > TAmBE>  CmEp> B

.‘v Join on B



Variable Elimination

e Start with initial factors but instantiated by evidence

e While there are still hidden variables:
e Pick a hidden variable X
e Join all factors mentioning X
e Eliminate (sum out) X (i.e., marginalize X)

e Join all the remaining factors
e Normalize




Ordering of the Join and Eliminate?

e The time and space of variable elimination are dominate by the size of the
largest factor constructed during the algorithm.

e It's hard to determine the optimal ordering

e Heuristics: Choose the variable that minimize the size of the next factor to be
constructed.



Exercise Calculate P(L)

(Use the heuristic: minimize the size of the next constructed factor)

P(R)
+r | 0.1 P(L)
T 09 +]
D ——— ¥

e Rain P(T|R)

+r | +t |0.8

—— 1

[+r[t]02
-
.

6 Traffic ([ + 0.1
_-r | -t |0.9
Cram

G Late -




Approximate Inference in Bayesian Networks



Sampling

e Basic idea e \Why sample?
e Draw N samples from a sampling o Often very fast to get a decent
distribution S approximate answer

e The algorithms are very simple and
general (easy to apply to fancy

e Show this converges to the true probability P models)
e They require very little memory (O(n))

e They can be applied to large models,
whereas exact algorithms blow up

e Compute an approximate posterior probability



Sampling in Bayes nets

e Prior sampling

e Rejection sampling
e Likelihood weighting
e Gibbs sampling



Prior Sampling

P(C)

0.5

—C

0.5

P(S | C)
c | s [01
—s | 0.9
—c| s |05
—s | 0.5
P(W | S,R)
) r w 0.99
—w [ 0.01
—r w 0.90
—w [ 0.10
. r w 0.90
—w [ 0.10
—r w 0.01
—w | 0.99

P(R | C)

r 10.8

—r | 0.2

r [0.2

—r | 0.8

Samples:

C,—S, ILw

—C,

S, =L W




Prior Sampling

For i=1, 2, ..., n (in topological order):
Sample X; from P(X; | parents(X))
Return (X, X,, ..., X))




Prior Sampling

This process generates samples with probability:
Sps(Xq,---,X,) = 11 P(x; | parents(X)) = P(xy,...,x,)
...i.e. the BN’ s joint probability

Let the number of samples of an event be Np<(X4,...,X,)
Estimate from N samples is Q(X4,...,X,) = Nps(Xq,...,X,)/N
Then limy_,, Qn(Xq,---,X%,) = limy_,, Npg(Xq,...,X,)/N

= Sps(Xy,--Xn)

= P(Xq,..-,X,)
l.e., the sampling procedure is consistent



Example

e \We'll get a bunch of samples from the BN:
C,—=S, I, W
cC, S, L W
—C, S, I, =W
cC,—S, I, W
—C, =S, =, W

e |f we want to know P(W)
e \We have counts <w:4, —w:1>
e Normalize to get P(W) = <w:0.8, —w:0.2>
e This will get closer to the true distribution with more samples



Rejection Sampling

e A simple application of prior sampling for
estimating conditional probabilities
e Let'ssay wewant P(C|r,w)=aP(C, r, w)

e For these counts, samples with —r or —w are not
relevant

e S0 count the C outcomes for samples with r, w and
reject all other samples

e This is called rejection sampling

e It is also consistent for conditional probabillities (i.e., Cr=8,=F
correct in the limit) —C, =S, I, W




Rejection Sampling

Input: evidence e,,..,e,
Fori=1,2,...,n
Sample X; from P(X; | parents(X))
If x; not consistent with evidence
Reject: Return, and no sample is generated in this cycle

Return (x4, X5, ..., X,)




Likelthood Weighting

e Problem with rejection sampling: e |dea: fix evidence variables, sample the
e If evidence is unlikely, rejects lots of rest
samples e Problem: sample distribution not consistent!
e Evidence not exploited as you sample e Solution: weight each sample by probability
e Consider P(Shape|Color=blue) of evidence variables given parents
pyramid—green pyramid, blue
pyramid, blue

pyramid—red
sphere, blue sphere, blue
edbe—red cube, blue

sphere,—con sphere,  blue



Likelihood Weighting

P(C)
C 0.5
—c | 0.5
P(S | C) P(R | C)
c |.s 01 c | rlos
—s [ 0.9 —r 0.2 P("C 5[}/)
—c|-S |0.5 —cl r 0.2
—s | 0.5 —r | 0.8 Wz+w}
R —
P(W | S,R) - U, + Wy + VG +l, + W
Samples:
S f v
—w | 0.01 c,s, r,w wi=10 x0.1 x0.99
—r | w [0.90 ( —¢,5 A, W Wy=
—w | 0.10 ~C, 5,/ Uy
. , w | 0.90 c.5-rw 2%
—w | 0.10 c,s, 0w Wg
—r Y 0.01
—w | 0.99




Likelthood Weighting

Input: evidence e,,..,e,
w=1.0
fori=1, 2, ..., n
If X, Is an evidence variable
X; = observed value; for X
Setw =w * P(x; | parents(X))
else
Sample x; from P(X; | parents(X))

return (X, Xy, ..., X,), W




Likelihood Weighting is Consistent

e Sampling distribution if Z sampled and e fixed evidence Cc
Sws(z.€) = 11 P(z | parents(Z))) 'o
e Together, weighted sampling distribution is consistent

e Now, samples have weights
Sws(z.€) - w(z,e) = II; P(z; | parents(Z))) 11 P(e, | parents(Ey))
=P(z,e)

w(z,e) = |1, P(e, | parents(E,))



Likelthood Weighting

e Likelihood weighting is good e Likelihood weighting still has weaknesses
e All samples are used e The values of upstream variables are unaffected by
e The values of downstream variables are downstream evidence
influenced by upstream evidence E.g., suppose evidence is a video of a traffic accident
e With evidence in k leaf nodes, weights will be O(2'k)
. . ‘ e With high probability, one lucky sample will have

much larger weight than the others, dominating the

..“ ‘ ‘ result

= A QO e We would like each variable to “see” all
OQOOLOO the evidence!

(0 QO O
@O O



~b,-€, —a, +},-m

~b o~ e, - o P(E)

002

Burglary

Earthquake

B E | PQA
t ot 95

t o f 94

- oot 29

N\d Roma Ty ™ £ | oot

—

A | PU) A |P(M)
t .90 70
f 105 f |01

Query: P(B|+],+m) =7



Gibbs sampling

e |deas
e States are complete assignments to all variables
e like local search (for constraint satisfaction problems)
e Evidence variables remain fixed, other variables change

e To generate the next state, pick a variable and sample a value for it conditioned
on all the other variables: X"~ P(Xi | Xq,-.,Xi.1, X4 15--,X)

e Will tend to move towards states of higher probability, but can go down too
e In a Bayes net, P(X;| Xq,.., X 1,Xi11,--.X,) = P(X | markov_blanket(X)))

e Theorem: Gibbs sampling is consistent*



Gibbs Sampling Example: P( S| +r)

e Step 2: Initialize other variables
e Randomly

e Step 1: Fix evidence
o R=+r

e Steps 3: Repeat
e Choose a non-evidence variable X
° Resample X from P( X | all other variables)

eﬁ@oﬁ@eﬁ@

Sample from P(S|+ ¢, —w,+r)  Sample from P(C|+ s, —w, +1) Sample from P(W|+ s, +c, +r)




Advantages of MCMC

Q e Samples soon begin to reflect all the

evidence in the network
OO O O Q

e Eventually they are being drawn from the
true posterior!



Car Insurance: P(PropertyCost | e)

0.02 |
Gibbs sampling =
Likelihood weighting ===
0.015
0.01 lll
0.005 {"|
W
0 ”f“'\ “‘ e "

0 200000 400000 600000 800000 1x10°
Number of samples



Car Insurance: P(PropertyCost | e)

0.02 1 | |
Gibbs sampling

|  Likelihood weighting ——-
0.015 {]

i

A D

‘I‘\,AVMV‘/” VN v

0.005 { {f \’
0

0 200000 400000 600000 800000 1x10°
Number of samples



Gibbs sampling algorithm

e Repeat many times: Sample a non-evidence variable X from
PO | Xy Xi 13 X415, Xp) V. e chidr of Xi
= P(X;| Markov_blanket(X))) ;"
= a P(X;| Parents (X)) Il P(y;| Parents(Y)))

\_,f_n/?(::;‘y;

e Markov_blanket(X)) includes
e X/'s parents
e X/'s children
e X's children’s parent




Efficient Resampling of One Variable

e Sample from P(S | +c, +r1, -w) @

P(S[+e.er. )

B P(S,fog—r,—w)

P(tc 4r,—w ) - LS ) “'-S) F(‘rCr&W)
— (S tc ,+r,-W) = P(c) |O(S‘C) P((q(c) P(W(r,cﬁ)
Z P 5.1C Ar --W) Na,kw_bb[@f(S);fC ) W’R}

. M P(s[ec) pled) p(-ls, 1)
T s <) pLoAR@) p(-w s e




Gibbs Sampling in practice

e The most commonly used method for large Bayes nets
e See, e.g., BUGS, JAGS, STAN, infer.net, BLOG, etc.

e Can be compiled to run very fast
e Eliminate all data structure references, just multiply and sample
e ~100 million samples per second on a laptop

e Can run asynchronously in parallel (one processor per variable)



Bayes’ Net Inference Summary

e Exact Inference
e Inference by Enumeration
e Variable Elimination

e Approximate Inference
e Prior sampling
e Rejection sampling
e Likelihood weighting
e Gibbs sampling
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