Independence

Two variables are **independent** if: $\forall x, y \, P(x, y) = P(x)P(y)$

We denote this as $X \perp\!\!\!\perp Y$

Conditional Independence

X is **conditionally independent** of Y given Z

if and only if: $\forall x, y, z : P(x,y|z) = P(x|z)P(y|z)$

or, equivalently, if and only if $\forall x, y, z : P(x|z, y) = P(x|z)$

$X \perp\!\!\!\perp Y | Z$

Conditional Independence

Traffic, Umbrella, Raining

 $\begin{array}{c|c} \times \mathbb{T} & \times & \mathsf{R} \end{array}$ Raining

$$
\frac{7\mu U^{2}}{\sqrt{\frac{T\mu U}{R}}}
$$
\n
$$
p(T|R,U) = p(T|R)
$$

Conditional Independence

(Smoke detector)
Fire, Smoke, Alarm

XIXS

$$
P(A | \text{a.m } | \text{smoke}) \stackrel{?}{=} P(A | \text{a.m } | \text{smoke }, \text{Fire})
$$

Independence vs. Conditional Independence

Rain **Traffic** Pedestrian holding umbrella Flood in the house Trip cancelled

…

P(Traffic | Rain, Umbrella) = P(Traffic | Rain) **Conditional Independent**

Conditional distribution / independence allows us to model the probability of a certain event only using relevant factors.

Bayesian NetworksBayes Net

Bayesian Network Example

Traffic, Umbrella, Raining

 $P(t, u, r)$

 $= P(r) P(t | r) P(u | r, t)$ (always hold by chain rule) $= P(r) P(t | r) P(u | r)$ T ⫫ U | R

Bayesian Network (BN)

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
	- Suppose a node as m parents, and suppose each random variable can take d different values

 ϵ for d

 $X \in \mathcal{S}$

- What is the size of the table?
- The BN models the joint probability as

$$
P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))
$$

rows = $\int_{1}^{m+1} f(x_i) f(x_i) dx$

Bayesian Network Example

Fire, Smoke, Alarm $\begin{array}{cc} \left(\begin{array}{cc} F & \rightarrow \end{array} \right) & \left(\begin{array}{cc} F & \rightarrow \end{array} \right) \end{array}$

Recap

A II B A **X** B | C

Example: Car Insurance

Example: Medical Diagnosis

Marin Prcela et al. Information Gain of Structured Medical Diagnostic Tests - Integration of Bayesian Networks and Ontologies

Causality?

- When Bayes' nets reflect the true causal patterns:
	- Often simpler (nodes have fewer parents) and easier to think about
- BNs need not be causal
	- Sometimes no causal net exists over the domain (especially if variables are missing)
	- Arrows that reflect correlation, but not necessary causality

Causality?

Independence Given Evidence

General question: Are two variables X, Y independent of each other conditioned on $Z = \{Z_1, Z_2, ...\}$?

Or: Are X and Y "D-separated" by Z?

Algorithm

- 1. Consider just the **ancestral subgraph** consisting of X, Y, Z, and their ancestors.
- 2. Add links between any unlinked pair of nodes that share a common child; now we have the so-called **moral graph**.
- 3. Replace all directed links by undirected links.
- 4. If Z blocks all paths between X and Y in the resulting graph, then Z d-separates X and Y.

Example

 $R \perp\!\!\!\perp B$ $\frac{R \!\perp\!\!\!\perp B | T}{R \!\perp\!\!\!\perp B | T'}$

Example

Example

- Variables:
	- R: Raining
	- T: Traffic
	- D: Roof drips
	- S: I'm sad
- Questions: *T*
	- $T {\perp\!\!\!\perp} D$
	- $T \perp\!\!\!\perp D | R$ *Yes* $T \perp\!\!\!\perp D | R, S$

Proof Sketch

Statement: If X and Y and separated by Z in the moral graph, then X ⫫ Y | Z

The moral graph gives a way to **"factorize"** the joint distribution of BN. Each **clique** in the moral graph is a **factor**.

$$
\frac{P(a) P(b) P(c) P(d | a, b, c)}{\phi(a, b, c, d)}
$$
 $\frac{P(e) P(f | d, e)}{\phi(d, e, f)}$ = $\phi(a, b, c, d) \phi(d, e, f)$

Proof Sketch

Statement: If X and Y and separated by Z in the moral graph, then X ⫫ Y | Z

Structure Implications

• Given a Bayes net structure, can run d-separation algorithm to build a complete list of conditional independences that are necessarily true of the form

$$
X_i \perp \!\!\! \perp X_j | \{X_{k_1},...,X_{k_n}\}
$$

● This list determines the set of probability distributions that can be represented

Topology Limits Distributions

X

 ${X \perp\!\!\!\perp Y, X \perp\!\!\!\perp Z, Y \perp\!\!\!\perp Z,}$

Y

 $X \perp\!\!\!\perp Z \mid Y, X \perp\!\!\!\perp Y \mid Z, Y \perp\!\!\!\perp Z \mid X$

 (z)

 $\overline{\mathsf{X}}$

 $\overline{\mathsf{X}}$

 $\overline{\mathsf{X}}$

Z**)** (X

Z**)** (X

 $\overline{\mathsf{X}}$

 $\overline{\mathsf{X}}$

Y

Y

Z**)** (X

Z**)** (X

Y

Y

Y

 $\{X \perp\!\!\!\perp Z \mid Y\}$

Y

Y

Y

Y

Z

Z

Z

Z

Z

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- Adding arcs increases the set of distributions, but has several costs

Application: Language Modeling

● Markov Model

Probabilistic program: Markov model-For each position $i=1,2,\ldots,n$: Generate word $X_i \sim p(X_i \mid X_{i-1})$

Application: Object Tracking

● Hidden Markov Model

Probabilistic program: hidden Markov model (HMM) For each time step $t=1,\ldots,T$: Generate object location $H_t \sim p(H_t \mid H_{t-1})$ Generate sensor reading $E_t \sim p(E_t \mid H_t)$

Inference: given sensor readings, where is the object?

Application: Topic Modeling

Latent Dirichlet Allocation

Probabilistic program: latent Dirichlet allocation-Generate a distribution over topics $\alpha \in \mathbb{R}^K$ For each position $i=1,\ldots,L$: Generate a topic $Z_i \sim p(Z_i \mid \alpha)$ Generate a word $W_i \sim p(W_i \mid Z_i)$

Document classification, information retrieval, customer segmentation, …

Inference: given a text document, what topics is it about?

Next Time

● Inference