Independence

Two variables are independent if:  Vz,y P(x,y) = P(x)P(y)

We denotethisas X Il Y



Conditional Independence

X Is conditionally independent of Y given Z
ifandonly if:  Vx,y,z: P(x,y|z) = P(x|z)P(y|z)

or, equivalently, if and only if Vz,y,z : P(z|z,y) = P(x|z)

X1Y|Z



Conditional Independence

Traffic, Umbrella, Raining

XAY|Z
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Conditional Independence
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Fire, Smoke, Alarm
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Independence vs. Conditional Independence

Rain

Traffic

Pedestrian holding umbrella
Flood in the house

Trip cancelled

P(Traffic | Rain, Umbrella) = P(Traffic | Rain) Conditional Independent

Conditional distribution / independence allows us to model the probability of a certain
event only using relevant factors.
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Bayesian Network Example

Traffic, Umbrella, Raining

P(t, u, r)

=P(@r)P(t|r) P(u|r t) (always hold by chain rule)
=P(r) P(t|r)P(ulr)

\
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e 0 0.7

1 0.3

R | T |P(TR) R | U | PUIR)
0| 0| 05 0|0 0.8
0 | 1 0.5 0|1 0.2
1 10| 02 1|0 0.1
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Bayesian Network (BN)

e Adirected, acyclic graph, one node per random variable

W
e A conditional probabillity table (CPT) for each node

e Suppose a node as m parents, and suppose each random variable can
take d different values

e \What is the size of the table?

e The BN models the joint probability as

n
P(:Cl, o, .. :Bn) == H P(:cz-|parents(X7;))
=1
M+
1 roms < 0/




Bayesian Network Example

Fire, Smoke, Alarm

GD(f,\S,,a) = P(f) P(s | f@(by BN semantics)
ProvegF LA]|S? \72
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Bayesian Network Example

6.00| 0,60]

Earthquake, Smoke, Alarm

e

P(e, s, a)=P(e) P(s) P(a| e, s)
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Recap

e Common cause
A and B are not Q @

Independent in general
AlLB|C

They could still be
independent in special cases

e Causal chain

AXB ALB|C

NG NG
e Common effect
© ©
AlB

AXB|C



Example: Car Insurance

Hidden
variables

Hidden variables are

essential for structuring
the network so that it is

reasonably sparse with a

manageable number of

].‘LH'LHHCR‘I'.\
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Example: Medical Diagnhosis

Ejection
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Marin Prcela et al. Information Gain of Structured Medical Diagnostic Tests -
Integration of Bayesian Networks and Ontologies
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Causality?

e When Bayes’ nets reflect the true causal patterns:
e Often simpler (nodes have fewer parents) and easier to think about

e BNs need not be causal
e Sometimes no causal net exists over the domain (especially if variables are missing)
e Arrows that reflect correlation, but not necessary causality

Rain cause Rain

P(r,t)=P(r) P(t|r) P(r,t)=P({) P(r|t)




Causality?

Burglary
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Independence Given Evidence

General question: Are two variables X, Y independent of each other
conditionedon Z = {Z,Z,, ... }?

Or: Are XandY “D-separated” by Z?

Algorithm

1.
2.

Consider just the ancestral subgraph consisting of X, Y, Z, and their ancestors.
Add links between any unlinked pair of nodes that share a common child; now
we have the so-called moral graph.

Replace all directed links by undirected links.

If Z blocks all paths between X and Y in the resulting graph, then Z d-separates

X and.




Example

R1 B Yes
R1B|T
R B|T’



Example

LUTT  VYes

—

LI B Yes
L B|T

L1 B|T

LU B|T,R VYes



Example

e Variables:
e R: Raining
e T: Traffic
e D: Roof drips
e S:I'm sad

e Questions:

T1.D|R
T1.D|R, S

Yes



Proof Sketch

Statement: If X and Y and separated by Z in the moral graph, then X 1L Y | Z

G G

AW

®

The moral graph gives a way to “factorize” the joint distribution of BN.
Each clique in the moral graph is a factor.

P(a) P(b) P(c) P(d | a, b,c) P(e)P(f|d,e) = ¢(a, b, c,d) ¢(d,e,f

¢(a, b, c, d) ¢(d, e, f)




Proof Sketch

Statement: If X and Y and separated by Z in the moral graph, then X 1L Y | Z

:
@\T Let's try to prove a 1L f| d
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Structure Implications

e Given a Bayes net structure, can run d-separation algorithm to build a complete
list of conditional independences that are necessarily true of the form

X; L Xi{ Xy -, Xk, }

e This list determines the set of probabillity distributions that can be represented



Topology Limits Distributions

(X UY,X 1 ZY 1l Z,
XULZ|Y,XUY|ZY1Z|X}

®
® @

(XU Z|Y)

e Given some graph topology G, only
certain joint distributions can be
encoded

e The graph structure guarantees
certain (conditional) independences

e Adding arcs increases the set of
distributions, but has several costs

PP PFP




Application: Language Modeling

e Markov Model

% Probabilistic program: Markov model-

For each positionz = 1,2,...,n:
Generate word X; ~ p(X; | Xi_1)

Wreck a nice beach

X)) ~(Xy) Xy



Application: Object Tracking

e Hidden Markov Model

-@ Probabilistic program: hidden Markov model (HMM)-

Foreachtimestept =1,...,T":
Generate object location Hy ~ p(H; | Hy_1)
Generate sensor reading E; ~ p(E; | Hy)

@IH( :v% Hﬁ'
@@@..

Inference: given sensor readings, where is the object?




Application: Topic Modeling

e Latent Dirichlet Allocation

-@ Probabilistic program: latent Dirichlet allocation-

Generate a distribution over topics o € RE
For each positionz =1, ..., L:
Generate a topic Z; ~ p(Z; | a)
Generate a word W; ~ p(W; | Z;)

{travel:0.8,Europe:0.2}

Document classification,
Europe iInformation retrieval,

customer segmentation, ...
beach @ s @ Euro

Inference: given a text document, what topics is it about?

travel ( Zq



Next Time

e Inference
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