
Constraint Satisfaction
Chen-Yu Wei



Constraint Satisfaction Problems (CSP)

● Variables:  𝑋1, 𝑋2, … , 𝑋𝑁

● Domains:   Domain1, … , Domain𝑁

● 𝑋𝑖 takes values in Domain𝑖

● Constraints:  specifying the relations between the variables

● Solution:  An assignment 𝑋1: 𝑣1, 𝑋2: 𝑣2, … , 𝑋𝑁: 𝑣𝑁 that satisfies all constraints



Example: Map Coloring

● Variables:

● Domains:

● Constraints: adjacent regions must have 

different colors

● Solutions are assignments satisfying all 

constraints, e.g.:

Implicit:

Explicit:



Example: Cryptarithmetic

● Variables:

● Domains:

● Constraints:



Example: Sudoku

● Variables:  Each (open) square

● Domains:   {1,2,…,9}

● Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

(or can have a bunch of 

pairwise inequality 

constraints)



Real-World CSPs

● Assignment problems: e.g., who teaches what class

● Timetabling problems: e.g., which class is offered when and where?

● Hardware configuration

● Transportation scheduling

● Factory scheduling

● Circuit layout

● …

● Many real-world problems involve real-valued variables



Factor Graph

Variable

Factor 

𝑓1 𝑂, 𝑅, 𝑋1 = ቊ
1,  if 𝑂 + 𝑂 = 𝑅 + 10𝑋1 
0,  otherwise 

Weight = ෑ

𝑖=1

4

𝑓𝑖(𝐹, 𝑇, 𝑈, 𝑊, 𝑅, 𝑂, 𝑋1, 𝑋2, 𝑋3)



Constraint Graph

Variable

constraint

(more convenient for binary constraint CSPs)

Every constraint involves at most 2 variables



How to Solve CSP? 

● Treat it as a search problem

● Assign one variable at a time

● State: A partial assignment 

● Action: Assign value to an unassigned variable

● Goal test: check whether all constraint are 

satisfied

● But there’s more structure to leverage

● Variable ordering doesn’t matter

● Variables are interdependent in a local way

● We will start from known search algorithms, 

and try to speed it up 



Backtracking Search



Backtracking Search

If 𝑥 is a complete assignment:  return 𝑥. 

BacktrackingSearch(𝑥, Domain):  

Let 𝑋𝑖 be the next unassigned variable. 

For each value 𝑣 ∈ Domain𝑖: 

𝑥′ ← 𝑥 ∪ 𝑋𝑖: 𝑣  

If 𝑥′ violates constraints:  continue 

return BacktrackingSearch(𝑥′, Domain)

return failure

BacktrackingSearch({ }, Domain) returns an assignment or reports failure.

Backtracking search = DFS + failure-on-violation



Improving Backtracking Search

● Forward checking

● Maintaining arc consistency (more powerful than forward checking)

● Dynamic ordering



Vanilla Backtracking Search

Suppose we assign the variables in the order of 

WA,  Q,  V,  NT,  NSW,  SA

WA Q VNT NSW SA

No valid assignment for SA.  

Then the algorithm backtracks to try other assignments… 



Forward Checking

Cross off values that violate a constraint when added to 

the existing assignment

WA Q VNT NSW SA

Inconsistency found for SA (even though we haven’t reached the layer of SA). 



Forward Checking

If 𝑥 is a complete assignment:  return 𝑥. 

BacktrackingSearch(𝑥, Domain):  

Let 𝑋𝑖 be the next unassigned variable. 

For each value 𝑣 ∈ Domain𝑖: 

𝑥′ ← 𝑥 ∪ 𝑋𝑖: 𝑣  

If 𝑥′ violates constraints:  continue 

return BacktrackingSearch(𝑥′, Domain′)

return failure



Forward Checking

If 𝑥 is a complete assignment:  return 𝑥. 

BacktrackingSearch(𝑥, Domain):  

Let 𝑋𝑖 be the next unassigned variable. 

For each value 𝑣 ∈ Domain𝑖: 

𝑥′ ← 𝑥 ∪ 𝑋𝑖: 𝑣  

If not Consistent:  continue 

return BacktrackingSearch(𝑥′, Domain′)

return failure

Domain′, Consistent = ForwardChecking(𝑥′, 𝑋𝑖 , 𝑣, Domain)

For all 𝑋𝑗 that is unassigned in 𝑥′ and connected to 𝑋𝑖: 

Delete values in Domain𝑗
′ that are inconsistent with 𝑋𝑖: 𝑣

ForwardChecking (𝑥′, 𝑋𝑖 , 𝑣, Domain):  

Domain′ ← Domain

If Domain𝑗
′ is empty:   return Domain′, 𝐹𝑎𝑙𝑠𝑒

return Domain′, 𝑇𝑟𝑢𝑒 



Can We Prune Even More? 

WA Q VNT NSW SA

With forward checking: 

After assigning Q with green, NT and SA’s domains are left with only blue. 

But NT and SA are neighbors, so there is no consistent assignment from here. 

How can we detect such inconsistency at this step? 



Arc Consistency

𝑋𝑖 𝑋𝑗

Domain𝑖 Domain𝑗

Fact.  Let 𝑣 ∈ Domain𝑖 be such that for all 𝑤 ∈ Domain𝑗, 𝑋𝑖: 𝑣,  𝑋𝑗: 𝑤  violates 

the constraint on (𝑋𝑖 , 𝑋𝑗).  Then we can remove 𝑣 from Domain𝑖.  

Idea to prune more:  keep checking whether we can remove elements from 

any Domain using the fact above.  (i.e., always maintaining arc consistency)

Definition (Arc Consistency on 𝑋𝑖 → 𝑋𝑗).  For all 𝑣 ∈ Domain𝑖, there is some 

𝑤 ∈ Domain𝑗 such that 𝑋𝑖: 𝑣,  𝑋𝑗: 𝑤  satisfies the constraint on (𝑋𝑖 , 𝑋𝑗). 



Maintaining Arc Consistency (MAC)

WA
SA

NT Q

NSW

V

Forward checking:  maintaining arc consistency from unassigned variables to 

newly assigned variables.  



Maintaining Arc Consistency (MAC)

WA SA

NT Q

NSW

V

We can prune more if we ensure arc consistency for all arcs. 

Remember: Delete 
from  the tail!

If X’s domain changes, neighbors of X need to be rechecked!



Maintaining Arc Consistency (MAC)

queue ← initial queue

AC3:  

while queue not empty: 

(𝑋𝑖 , 𝑋𝑗) ← POP(queue)

if arc 𝑋𝑖 → 𝑋𝑗 is not consistent:  

if Domain𝑖  is empty:  return 𝐹𝑎𝑙𝑠𝑒  

for each 𝑋𝑘 connected to 𝑋𝑖:   

add (𝑋𝑘 , 𝑋𝑖) to queue

return 𝑇𝑟𝑢𝑒

Revise Domain𝑖  to make it consistent



Arc Consistency in Map Coloring Problems

● Useful when there is only one color left at the arc head

● Actually, this is also the only useful case in the map coloring problem



Arc Consistency in Other Problems

𝑋𝑖 ∈ Domain𝑖 = {1,2,3,4,5}

𝑋𝑗 ∈ Domain𝑗 = {1,2}

Constraint:  𝑋𝑖 + 𝑋𝑗 = 4



Limitations of Arc Consistency

● Some failure modes cannot be detected 

by arc consistency.

● Therefore, we still need “backtracking”.



Maintaining Arc Consistency (MAC)

If 𝑥 is a complete assignment:  return 𝑥. 

BacktrackingSearch(𝑥, Domain):  

Let 𝑋𝑖 be the next unassigned variable. 

For each value 𝑣 ∈ Domain𝑖: 

𝑥′ ← 𝑥 ∪ 𝑋𝑖: 𝑣  

If not Consistent:  continue 

return BacktrackingSearch(𝑥′, Domain′)

return failure

Domain′, Consistent = AC3(𝑥′, 𝑋𝑖 , 𝑣, Domain)

Combining AC3 with backtracking search: 



Maintaining Arc Consistency (MAC)

queue ← { 𝑋𝑗 , 𝑋𝑖  for all 𝑋𝑗 that is unassigned in 𝑥′ and connected to 𝑋𝑖}

AC3(𝑥′, 𝑋𝑖 , 𝑣, Domain):  

while queue not empty: 

(𝑋𝑘, 𝑋ℓ) ← POP(queue)

if arc 𝑋𝑘 → 𝑋ℓ is not consistent:  

if Domain𝑘
′  is empty:  return Domain′, 𝐹𝑎𝑙𝑠𝑒  

for each 𝑋𝑚 that is unassigned in 𝑥′ and connected to 𝑋𝑖:   

add (𝑋𝑚, 𝑋𝑘) to queue

return Domain′, 𝑇𝑟𝑢𝑒

Revise Domain𝑘
′  to make it consistent

Domain′ ← Domain



Maintaining Arc Consistency (MAC)

Drawbacks of backtracking search with arc-consistency check? 



Video:  Forward Checking



Video:  Maintaining Arc Consistency



K-Consistency

2-Consistency (= Arc-Consistency)

● For any assignment 𝑋𝑖 = 𝑣𝑖, there exists an assignment of 𝑋𝑗 = 𝑣𝑗 such that ൛

ൟ

𝑋𝑖 = 𝑣𝑖 ,

𝑋𝑗 = 𝑣𝑗  satisfies the constraint on 𝑋𝑖 , 𝑋𝑗 .

3-Consistency

● For any consistent assignment 𝑋𝑖 = 𝑣𝑖 , 𝑋𝑗 = 𝑣𝑗 , there exists an assignment 𝑋𝑘 = 𝑣𝑘 

such that 𝑋𝑖 = 𝑣𝑖 , 𝑋𝑗 = 𝑣𝑗 , 𝑋𝑘 = 𝑣𝑘  satisfies constraints on 𝑋𝑖, 𝑋𝑘 , 𝑋𝑗 , 𝑋𝑘 , 𝑋𝑖 , 𝑋𝑗 , 𝑋𝑘 .

K-Consistency

● For any consistent assignment 𝑋(1) = 𝑣(1), … , 𝑋 𝑘−1 = 𝑣(𝑘−1) , there exists an 

assignment 𝑋 𝑘 = 𝑣(𝑘) such that 𝑋(1) = 𝑣(1), … , 𝑋 𝑘 = 𝑣(𝑘)  satisfies all constraints 

among 𝑋(1), … , 𝑋 𝑘 .



“Naked Triples” Strategy in Sudoku

● In any units (i.e., row, column, or box), find three 

squares each have a domain that contains the same 

three numbers or subset of these three numbers 

e.g., the three domains might be {1,8}, {3,8}, {1,3,8}

● Eliminate these three numbers from the domains of 

all other squares in the same unit.

● The idea is similar to checking K-consistency:  For 

any assignment that assigns 1 or 3 or 8 to blue 

squares (see left figure), there is no feasible solution 

for red squares. Therefore, 1, 3, 8 can be eliminated 

from blue squares. 



Improving Backtracking Search

● Forward checking

● Maintaining arc consistency (more powerful than forward checking)

● Dynamic ordering



Ordering

If 𝑥 is a complete assignment:  return 𝑥. 

BacktrackingSearch(𝑥, Domain):  

Let 𝑋𝑖 be the next unassigned variable. 

For each value 𝑣 ∈ Domain𝑖: 

𝑥′ ← 𝑥 ∪ 𝑋𝑖: 𝑣  

If not Consistent:  continue 

return BacktrackingSearch(𝑥′, Domain′)

return failure

Domain′, Consistent = AC3(𝑥′, 𝑋𝑖 , 𝑣, Domain)

Which variable should we pick first? 

Which value should we try first? 



Variable Ordering



Variable Ordering

Minimum Remaining Value (MRV) heuristic

Choose variable that has the fewest left values in its domain.  

Why? 

● Must assign every variable

● If going to fail, fail early → more pruning



Variable Ordering



Variable Ordering

WA Q VNT NSW SA

WA Q VNT NSW SA



Variable Ordering

Degree heuristic

Choose variable that is involved in the largest number of constraint.  

Could be a good tie-breaking strategy along with MRV. 



Value Ordering



Value Ordering

Least Constrained Value (LCV) heuristic

Choose the value that rules out the fewest values in the remaining variables. 

Why? 

● Needs to choose some value

● Choosing value most likely to lead to solution 

● Unlike variable ordering where we have to consider all variables, 

there is no need to consider all values

Can be estimated by forward checking 

or arc-consistency checking



Ordering

Minimum Remaining Value (MRV) heuristic

Choose variable that has the fewest left values in its domain.  

Least Constrained Value (LCV) heuristic

Choose the value that rules out the fewest values in the remaining variables. 

Degree heuristic

Choose variable that is involved in the largest number of constraint.  



Local Search



Iterative Improvement

● Start from some complete assignment that may not satisfy all constraints

● Modify the assignment, trying to resolve violations



Iterative Improvement

MinConflict (MaxSteps):  

𝑥 ← an initial complete assignment 

for iter = 1 to MaxStep:  

Let 𝑋𝑖 be a randomly chosen conflicted variable

Let 𝑣 be the value for 𝑋𝑖 that minimizes conflicts

Reassign 𝑋𝑖 = 𝑣 in 𝑥  

if 𝑥 is a solution then return 𝑥



Iterative Improvement



Failure of MinConflict

{1,2,3} {1,2,3}

{1,2,3}

{1,2} {1,2}

1 2

3

1 2

A feasible solution

3 3

1

1 2

An unfortunate initialization for 

MinConflict

≠ ≠

≠ ≠

≠



Rescue

For local search algorithms like MinConflict, we will randomly generate multiple 

initial assignments. For each initial assignment, we will only run it for MaxStep 

iterations before giving up. 



Homework 2
Xuhui Kang, Matthew Landers 

Deadline:  11:59PM, September 30



Homework 2

1. Choice Questions (10 points)
a. 10 questions. 
b. Answer directly on Gradescope
c. The same requirements as the last time.
d. 1 feedback box for the course 

1. Program Questions (25 points)



Question 1 (4 points): Reflex Agent

Your agent should easily and reliably clear the layout:

Run 10 times for evaluation:

TO receive full credits:

● Wins all the 10 times
● Average score is greater than 1k.



Question 2 (5 points): Minimax

You will write an adversarial search agent.

Work with any number of ghosts:

● Check the number of ghosts first.
● Index 0 is always the Pacman.

Correct implementation will lead to Pacman losing the game in some tests.

In large boards, Pacman will be good at not dying but bad at winning. It is 
not a problem.

When the Pacman believes that his death is unavoidable. Hw will try to end 
the game as soon as possible.



Question 3 (5 points): Alpha-Beta Pruning

Uses alpha-beta pruning to more efficiently 
explore the minimax tree.



Question 4 (5 points): Expectimax

Implement Expectimax Agent to modeling the 
probabilistic behavior of agents who may make 
suboptimal choices.

Correct implementation will lead to Pacman 
losing the game in some tests.



Question 5 (6 points): Evaluation Function

The evaluation function should evaluate states, 
rather than actions like your reflex agent 
evaluation function did.

You can use your search code in last project for 
evaluation.


	Slide 1: Constraint Satisfaction
	Slide 2: Constraint Satisfaction Problems (CSP)
	Slide 3: Example: Map Coloring
	Slide 4: Example: Cryptarithmetic
	Slide 5: Example: Sudoku
	Slide 6: Real-World CSPs
	Slide 7: Factor Graph
	Slide 8: Constraint Graph
	Slide 9: How to Solve CSP? 
	Slide 10: Backtracking Search
	Slide 11: Backtracking Search
	Slide 12: Improving Backtracking Search
	Slide 13: Vanilla Backtracking Search
	Slide 14: Forward Checking
	Slide 15: Forward Checking
	Slide 16: Forward Checking
	Slide 17: Can We Prune Even More? 
	Slide 18: Arc Consistency
	Slide 19: Maintaining Arc Consistency (MAC)
	Slide 20: Maintaining Arc Consistency (MAC)
	Slide 21: Maintaining Arc Consistency (MAC)
	Slide 22: Arc Consistency in Map Coloring Problems
	Slide 23: Arc Consistency in Other Problems
	Slide 24: Limitations of Arc Consistency
	Slide 25: Maintaining Arc Consistency (MAC)
	Slide 26: Maintaining Arc Consistency (MAC)
	Slide 27: Maintaining Arc Consistency (MAC)
	Slide 28: Video:  Forward Checking
	Slide 29: Video:  Maintaining Arc Consistency
	Slide 30: K-Consistency
	Slide 31: “Naked Triples” Strategy in Sudoku
	Slide 32: Improving Backtracking Search
	Slide 33: Ordering
	Slide 34: Variable Ordering
	Slide 35: Variable Ordering
	Slide 36: Variable Ordering
	Slide 37: Variable Ordering
	Slide 38: Variable Ordering
	Slide 39: Value Ordering
	Slide 40: Value Ordering
	Slide 41: Ordering
	Slide 42: Local Search
	Slide 43: Iterative Improvement
	Slide 44: Iterative Improvement
	Slide 45: Iterative Improvement
	Slide 46: Failure of MinConflict
	Slide 47: Rescue
	Slide 48: Homework 2
	Slide 49: Homework 2 
	Slide 50: Question 1 (4 points): Reflex Agent
	Slide 51: Question 2 (5 points): Minimax
	Slide 52: Question 3 (5 points): Alpha-Beta Pruning
	Slide 53: Question 4 (5 points): Expectimax
	Slide 54: Question 5 (6 points): Evaluation Function 

