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Naïve Bayes and Logistic Regression
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Naïve Bayes and Logistic Regression
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Naïve Bayes Logistic Regression

“Neural Net” 

representation



Neural network (NN)
A general tool to model the relation 

between two real-valued vectors

X1

X2

XM

…
Y1

YN

Y2

…

X3

𝑊

Input 

𝑋 ∈ ℝ𝑀

Output

𝑌 ∈ ℝ𝑁

X, Y here are general vectors and do not 

need to correspond to feature and label 

This neural network describes the relation

𝑌𝑖 = ෍

𝑗=1

𝑀

𝑊𝑖𝑗𝑋𝑗  ∀𝑖 = 1, … , 𝑁

or, more succinctly, 𝑌 = 𝑊𝑋

X Y

Pixel values Scores

Digit label in one-hot 

representation

Expected pixel value 

(if pixels value ∈ {0,1})

Digit label in one-hot 

representation

Pixel value

(if pixels value ∈ [0,1])

Spam/ham in one-hot 

representation
Word frequency

(LR)

(NB)

(NB)



Logistic Regression (1-Layer NN for Classification)
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…
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…
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𝑊

Softmax 

exp(𝑍1)

σ𝑗=1
𝑁 exp(𝑍𝑗)

exp(𝑍2)

σ𝑗=1
𝑁 exp(𝑍𝑗)

exp(𝑍𝑁)

σ𝑗=1
𝑁 exp(𝑍𝑗)

= 𝑃𝑊 𝑌 = 1 𝑋)

= 𝑃𝑊 𝑌 = 2 𝑋)

= 𝑃𝑊 𝑌 = 𝑁 𝑋)

෍

𝑠=1

|𝑆|

−log 𝑃𝑊 𝑦𝑠 𝑥𝑠)Find W that minimizes using Stochastic Gradient Descent

Additional operation to fulfill the restriction 

on the final output (e.g., here we want the 

output to be a distribution)



Logistic Regression (1-Layer NN for Classification)
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𝑊

Softmax 

exp(𝑍1)

σ𝑗=1
𝑁 exp(𝑍𝑗)

exp(𝑍2)

σ𝑗=1
𝑁 exp(𝑍𝑗)

exp(𝑍𝑁)

σ𝑗=1
𝑁 exp(𝑍𝑗)

= 𝑃𝑊 𝑌 = 1 𝑋)

= 𝑃𝑊 𝑌 = 2 𝑋)

= 𝑃𝑊 𝑌 = 𝑁 𝑋)

𝑊2 = (𝑊2,1, 𝑊2,2,…,, 𝑊2,64)

𝑍2 will be high if the input pattern 

𝑋 matches 𝑊2  (i.e.,  𝑋 ⋅ 𝑊2 is large)

Higher 𝑍2 

Lower 𝑍2 

The weight associated with an output node acts like a 

“filter” that recognizes a particular pattern on the input. 



The Weights Produced by Logistic Regression

Classification (testing) accuracy:  78.25%



The Weights Produced by Naïve Bayes

Classification (testing) accuracy:  67.30%



2-Layer NN for Classification

𝐻1 :  recognize wheels 

𝐻2 :  recognize windows

𝐻3 :  recognize handlebar

𝑍1 :  recognize car

𝑍2:  recognize bicycle

X1

X2

XM

…

𝐻1

𝐻𝐾

𝐻2

…

X3

𝑍1

𝑍2

Softmax 

𝑊
in

𝑊
out

𝐻𝑖 = 𝑔 ෍

𝑗

𝑊𝑖𝑗
in

𝑋𝑗

g = nonlinear activation function

𝑍𝑖 = ෍

𝑗

𝑊𝑖𝑗
out

𝐻𝑗

𝐻 = 𝑔(𝑊 in 𝑋)

𝑍 = 𝑊 out 𝐻



Activation Functions

Rectified Linear Unit    



Exercise: 2-Layer NN with Activation Function
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If we use the ReLU activation function    𝑍1

𝑍2

0.9

0.7

−0.3

−0.2

What’s Z given input X = (1,2)? 



Multi-Layer NN for Classification

𝐻𝑖
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𝐻(0) ≔ 𝑋 Input layer
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Output layer
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Multi-Layer NN for Classification
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“Intermediate” feature

Intermediate filter

Feature vector used for logistic regressionOriginal feature

Multi-layer neural network enables successive feature transformations

(e.g., from low-level feature to high-level feature)

→ Representation learning

These transformations (through W) is learned automatically from data



Training Multi-Layer Neural Network

𝑃𝑊 𝑦𝑠 𝑥𝑠 =  อ
exp 𝑍𝑦𝑠

σ𝑦 exp 𝑍𝑦

 

input = 𝑥𝑖

=
exp(𝑓𝑊(𝑥𝑠, 𝑦𝑠))

σ𝑦 exp(𝑓𝑊(𝑥𝑠, 𝑦))

We can expand 𝑓𝑊 𝑥, 𝑦  as 

𝑓𝑊 𝑥, 𝑦 = 𝑒𝑦
⊤ 𝑊 out 𝐻(𝐿)

= 𝑒𝑦
⊤𝑊 out 𝑔 𝑊 𝐿,𝐿−1 𝐻 𝐿−1

= 𝑒𝑦
⊤𝑊 out 𝑔 𝑊 𝐿,𝐿−1 𝑔 𝑊 𝐿−1,𝐿−2 𝐻 𝐿−2

= 𝑒𝑦
⊤𝑊 out 𝑔 𝑊 𝐿,𝐿−1 𝑔 𝑊 𝐿−1,𝐿−2 𝑔 … . 𝑔 𝑊(1,0)𝑥

A quite complicated non-linear function of 𝑊 = (𝑊 out , 𝑊 𝐿,𝐿−1 , … , 𝑊(1,0))

Nevertheless, we use the same idea (Maximum Likelihood + Stochastic Gradient Descent) to find a good W



Training Multi-Layer Neural Network

𝑓𝑊 𝑥𝑠, 𝑦𝑠 = 𝑒𝑦𝑠
⊤ 𝑊 out 𝑔 𝑊 𝐿,𝐿−1 𝑔 𝑊 𝐿−1,𝐿−2 𝑔 … . 𝑔 𝑊(1,0)𝑥𝑠

𝑃𝑊 𝑦𝑠 𝑥𝑠 =  อ
exp 𝑍𝑦𝑠

σ𝑦 exp 𝑍𝑦

 

input = 𝑥𝑖

=
exp(𝑓𝑊(𝑥𝑠, 𝑦𝑠))

σ𝑦 exp(𝑓𝑊(𝑥𝑠, 𝑦))

Parameters of the model

The process of calculating the gradient in NNs through chain rule is called Backpropagation.



Training Multi-Layer Neural Network

● Get dataset consisting of (X, Y) pairs: 

● Define the objective function / loss function:

● Use stochastic gradient descent to minimize the loss

𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑆, 𝑦𝑆 ∈  ℝ𝑑 × {1, 2, … , 𝐶}

1

𝑆
෍

𝑠=1

𝑆

−log 𝑃𝑊(𝑦𝑠|𝑥𝑠) =
1

𝑆
෍

𝑠=1

𝑆

−log
exp(𝑓𝑊(𝑥𝑠, 𝑦𝑠))

σ𝑦 exp(𝑓𝑊(𝑥𝑠, 𝑦))

𝐿𝑠(𝑊)

For 𝑡 = 1, 2, …

𝑊𝑡 = 𝑊𝑡−1 − 𝜂 ⋅
1

𝑏
෍

𝑥𝑠,𝑦𝑠 ∈𝐵

∇ 𝐿𝑠(𝑊𝑡−1)

Randomly sample a minibatch 𝐵 ⊂ 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑆, 𝑦𝑆  of size 𝐵 = 𝑏



Multi-Layer Pattern Recognition

The machine can automatically 

discover useful patterns through 

maximum likelihood / loss 

minimization training.  

hidden in W



Neural Network for Regression Problems

● Neural network is a general tool to model the relation between two vectors.  

Besides classification (where output is a distribution over classes), it can also 

solve regression problems (where output is simply a real-valued vector).

● For example, 

𝑋1

𝑋2

𝑋3

𝑋𝑀

… … …

𝑊
1,0 𝑊

2,1

……

…

𝑌1

𝑌𝑁

𝑌2

𝑊
out𝑊

𝐿,𝐿−1



Biases

● Besides weights, we usually include biases. 

X1

X2

XM

…

𝐻1

𝐻𝐾

𝐻2

…

X3

𝑍1

𝑍2

𝑊
in

𝑊
out

𝐻 = 𝑔 𝑊(in)𝑋

𝑍 = 𝑊(in)𝐻

without bias

X1

X2

XM

…

𝐻1

𝐻𝐾

𝐻2

…

X3

𝑍1

𝑍2

𝑊
in

𝑊
out

𝐻 = 𝑔 𝑊(in)𝑋 + 𝑏(in)

𝑍 = 𝑊(in)𝐻 + 𝑏(out)

𝑏𝐾
in

𝑏2
in

𝑏2
out

𝑏1
in

𝑏1
out

with bias



Why Activation Function? 

● To make the model more expressive



𝑦

𝑥1𝑥1

Linear models have severe limitation.

We need a more flexible model!

Different 𝑏 

Different w 

Model Bias

Linear models are too simple … we need more sophisticated modes.

Explanation by prof. Hung-Yi Lee



𝑦

𝑥1𝑥1

0

1

2

3

sum of a set ofconstant    + red curve  = 
Explanation by prof. Hung-Yi Lee



All Piecewise Linear Curves

More pieces require more 

sum of a set ofconstant    + = 

Explanation by prof. Hung-Yi Lee



Beyond Piecewise Linear?

𝑦

𝑥1

To have good approximation, we need sufficient pieces.  

Approximate continuous curve 
by a piecewise linear curve.

Explanation by prof. Hung-Yi Lee



𝑥1

𝑦 = 𝑐
1

1 + 𝑒− 𝑏+𝑤𝑥1

𝑥1

How to represent 
this function? 

sum of a set ofconstant    + red curve  = 

Hard Sigmoid 

Sigmoid Function

= 𝑐 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑏 + 𝑤𝑥1

Explanation by prof. Hung-Yi Lee



Different 𝑤

Change slopes

Different b

Shift

Different 𝑐

Change height



𝑦

𝑥1𝑥1

sum of a set of + constant 

0

2

3

red curve  = 

1

𝑐1 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑏1 + 𝑤1𝑥1

𝑐2 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑏2 + 𝑤2𝑥1

𝑐3 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑏3 + 𝑤3𝑥1

𝑦 = 𝑏 + ෍

𝑖

𝑐𝑖  𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑏𝑖 + 𝑤𝑖𝑥1

0 1 2 3+ +

Explanation by prof. Hung-Yi Lee



Recap:  Neural Network for Classification (Discriminative Model)

𝑋 𝑌

𝑋1

𝑋2

𝑋3

𝑋𝑀

… … …

𝑊
1,0 𝑊

2,1

……

…

𝑍1

𝑍𝑁

𝑍2

𝑊
out𝑊

𝐿,𝐿−1

Softmax 

𝑃 𝑌 = 𝑦1 𝑋

𝑃 𝑌 = 𝑦2 𝑋

𝑃 𝑌 = 𝑦𝑁 𝑋

# Parameters in the most general case = 𝑁 ς𝑖=1
𝑀 |𝑋𝑖|

# Parameters = 𝑀𝐾(1) + 𝐾(1)𝐾(2) + ⋯ + 𝐾 𝐿−1 𝐾 𝐿 + 𝐾(𝐿)𝑁

Transform the features layer by layer and perform logistic regression at the end

feature label

BN representation

NN modeling

Maximum-likelihood training finds the transformations automatically



Recap:  Neural Network can also implement Generative Models

𝑋𝑌

featurelabel

BN representation

𝑋1

𝑋2

𝑋3

𝑋𝑀

………… …

…

𝑍1

𝑍𝑁

𝑍2

Let 𝑍 be the one-hot encoding of the label

 

NN modeling

We less use this structure to perform classification, except for Naïve Bayes (a single-layer version).  

However, such structure is useful in generating new samples. 

Generative Models lead to important applications in modern AI. For example, generating images or 

natural languages (will see more examples in the next week). 



Neural Networks with Special Structures



Convolutional Neural Network (CNN)

𝑋1

𝑋2

𝑋𝑀−2

…
…

𝑋3

𝑋5

𝑋4

𝑋𝑀−1

𝑋𝑀

Difference with the fully connected NN discussed previously:

● Each filter only covers a local region in the previous layer. 

This allows the NN to recognize local patterns. 

e.g., recognize wheels, windows in the image

● Filters of the same color shares the weights. 

e.g., the red filters are able to recognize wheels everywhere 

in the image, and the blue filters recognize windows. 

  

  

Useful in image recognition



Convolutional Neural Network (CNN) for Computer Vision

https://www.linkedin.com/pulse/what-cnn-logesh-s-nxhfc/



Recurrent Neural Network (RNN)

𝑆1

𝑋1

𝑌1

𝑆2

𝑋2

𝑌2

𝑆3

𝑋3

𝑌3

𝑆4

𝑋4

𝑌4

… …

Useful in modeling 
● Sequence-to-sequence mapping

● Translate English to French

● Convert speech to English

● Question and answering

● Language generation
● 𝑋𝑡 = 𝑌𝑡−1

The parameters (i.e., neural network 

weights) for the mappings 𝑋𝑡 → 𝑆𝑡, 𝑆𝑡 → 𝑌𝑡, 

and 𝑆𝑡 → 𝑆𝑡+1 are independent of 𝑡

Restrictions (Markov property): 

𝑆𝑡

𝑋𝑡

𝑌𝑡



Recurrent Neural Network (RNN)

𝑆1

𝑋1

𝑆2

𝑋2

𝑆3

𝑋3

𝑆4

𝑋4

𝑌

Useful in modeling 
● Sequence classification:  language 

detection, sentiment analysis

The parameters (i.e., neural network 

weights) for the mappings 𝑋𝑡 → 𝑆𝑡, 𝑆𝑡 → 𝑌𝑡, 

and 𝑆𝑡 → 𝑆𝑡+1 are independent of 𝑡

Restrictions (Markov property): 



softmax

𝑋1
𝑡 𝑋2

𝑡 𝑋𝑀
𝑡…

…

…

𝑆1
𝑡 𝑆2

𝑡 𝑆𝐾
𝑡…

…

…

𝑍1
𝑡 𝑍2

𝑡 𝑍𝑁
𝑡…

𝑆1
𝑡−1 𝑆2

𝑡−1 𝑆𝐾
𝑡−1…

…… …

…… …

𝑃(𝑌𝑡 = 𝑦1) 𝑃(𝑌𝑡 = 𝑦2) 𝑃(𝑌𝑡 = 𝑦𝑁)

Hidden layers

Hidden layers

RNN for Language

One-hot encoding for input word

Scores for output word



RNN for Language

https://www.nbshare.io/notebook/313339236/English-to-German-Translation-using-Seq2Seq-Models-In-PyTorch/



Homework 5
Deadline:  December 2



Homework 5

1. Choice Questions (10 points)
a. 10 questions. 
b. Answer directly on Gradescope
c. The same requirements as the last time.

1. Program Questions (Machine Learning) (19 points)
● We skipped Question 1 (Perceptron). So we have q2, q3, q4
● We use the original (NumPy) version not PyTorch version. 

○ Libraries needed:
■ Numpy
■ Matplotlib (for 2D plotting)



Introduction of Project 5: Q2 Non-linear Regression

Primary Task:

1. For this question, you will train a neural network 
to approximate sin(x) over [-2pi, 2pi]

2. Backward and dataset loader already 
implemented.

3. You need Implement model with:
a. Initialization
b. Run (model forward)
c. Get_loss (return a loss for a given input and target)
d. Train (train the model using gradient-based updates)

(Similar for the other questions)

1. Receive full points if it gets a loss of 0.02 or lower.



Introduction of Project 5: Q3 Digit Classification

Primary Task:

1. Train a network to classify handwritten 
digits from the MNIST dataset.

2. Each digit is of size 28 by 28 pixels and 
flat to 784 dimensional vector.

3. Achieve an accuracy of at least 97% to 
get the full score.



Introduction of Project 5: Q4 Digit Classification

Primary Task:

1. Figure out, given a piece of text, what 
language the text is written in.

For example:

● discussed → English
● eternidad → Spanish

1. Use RNN to handle variable-length 
inputs.

2. Achieve an accuracy of at least 81% to 
get the full score.



Lectures Next Week

● Tuesday:  applying deep learning to computer vision by Prof. Zezhou Cheng

● Recognition:  image classification, object detection, etc.

● Generation:  image generation, video generation, etc.

● Reconstruction:  2D to 3D, VR/AR, etc.

● Thursday:  applying deep learning to natural languages by Prof. Yu Meng 

● Sequence-to-sequence learning:  language translation, etc.

● Language generation:  large language model (ChatGPT), etc.
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