Neural Network

Chen-Yu Wei

Naïve Bayes and Logistic Regression

Naïve Bayes and Logistic Regression

 W_{ij} : the weight between F_i and C_i

Neural network (NN) A general tool to model the relation
between two real-valued vectors between two real-valued vectors

X, Y here are general vectors and do not need to correspond to feature and label

This neural network describes the relation

$$
Y_i = \sum_{j=1}^{M} W_{ij} X_j \qquad \forall i = 1, ..., N
$$

or, more succinctly, $Y = WX$

Logistic Regression (1-Layer NN for Classification)

 X_1 X_2 $'$ X_M … Z_1 Z_{N} , Z^2 … X_3 W **Softmax** $exp(Z_1)$ $\frac{1}{\sum_{j=1}^{N} \exp(Z_j)}$ = $P_W(Y = 1 | X)$ $exp(Z_2)$ $\sum_{j=1}^N \exp(Z_j)$ $exp(Z_N)$ $\frac{1}{\sum_{j=1}^{N} \exp(Z_j)} = P_W(Y = N | X)$ $= P_W(Y = 2 | X)$ Additional operation to fulfill the restriction on the final output (e.g., here we want the output to be a distribution)

 $s=1$ $|S|$

Find W that minimizes $\qquad \sum_{n=1}^{\infty}$ $-\log P_{W}(y_{s} \mid x_{s})$ using Stochastic Gradient Descent

Logistic Regression (1-Layer NN for Classification)

 $Z₂$ will be high if the input pattern X matches W_2 (i.e., $X \cdot W_2$ is large)

 $W_2 = (W_{2,1}, W_{2,2,...}, W_{2,64})$

The weight associated with an output node acts like a "filter" that recognizes a particular pattern on the input.

The Weights Produced by Logistic Regression

Classification (testing) accuracy: 78.25%

The Weights Produced by Naïve Bayes

Classification (testing) accuracy: 67.30%

2-Layer NN for Classification

Activation Functions

Rectified Linear Unit

Exercise: 2-Layer NN with Activation Function

 $\mathbf{I}_{\mathbf{Z}_1}$ If we use the ReLU activation function

What's Z given input $X = (1,2)$?

$$
H_1 = ReLU (0, 4 - 1.2) = 0
$$

H₂ = ReLU (-0.5 + 6.2) = 0

$$
Z_1 = ReLU(\cdots) = D
$$

$$
Z_2 = ReLU(\cdots) = D
$$

Multi-Layer NN for Classification

$$
H_i^{(0)} := X_i
$$

\n
$$
H_i^{(\ell)} = g\left(\sum_j W_{ij}^{(\ell,\ell-1)} H_j^{(\ell-1)}\right) \quad \forall \ell = 1, ..., L
$$

\n
$$
H_i^{(\ell)} = g(W^{(\ell,\ell-1)} H^{(\ell-1)})
$$

\n
$$
Z_i = \sum_j W_{ij}^{(\text{out})} H_j^{(L)}
$$

\n
$$
Z_i = W^{(\text{out})} H^{(L)}
$$

\n
$$
Z_i = W^{(\text{out})} H^{(L)}
$$

\n
$$
Z = W^{(\text{out})} H^{(L)}
$$

\n
$$
Z = W^{(\text{out})} H^{(L)}
$$

Multi-Layer NN for Classification

Multi-layer neural network enables successive feature transformations (e.g., from low-level feature to high-level feature)

These transformations (through W) is learned automatically from data

→ **Representation learning**

Training Multi-Layer Neural Network

$$
P_W(y_s|x_s) = \frac{\exp(Z_{y_s})}{\sum_{y} \exp(Z_y)} \Big|_{\text{input} = x_i} = \frac{\exp(f_W(x_s, y_s))}{\sum_{y} \exp(f_W(x_s, y))}
$$
\n
$$
\left[\begin{array}{ccc} \circ & \circ & \cdots & \circ & \circ \end{array}\right]
$$
\nWe can expand $f_W(x, y)$ as\n
$$
f_W(x, y) = \underbrace{e_y^{\top} W^{(\text{out})} H^{(L)}}_{= e_y^{\top} W^{(\text{out})} g(W^{(L, L-1)} H^{(L-1)})} \Big|_{\text{input} = e_y^{\top} W^{(\text{out})} g(W^{(L, L-1)} g(W^{(L-1, L-2)} H^{(L-2)})} \Big|_{\text{input} = e_y^{\top} W^{(\text{out})} g(W^{(L, L-1)} g(W^{(L-1, L-2)} g(\dots g(W^{(1, 0)})))) \Big|_{\text{input} = e_y^{\top} W^{(\text{out})} g(W^{(L, L-1)} g(W^{(L-1, L-2)} g(\dots g(W^{(1, 0)}))))} \Big|_{\text{input} = e_y^{\top} W^{(\text{out})} g(W^{(L, L-1)} g(W^{(L-1, L-2)} g(\dots g(W^{(1, 0)})))) \Big|_{\text{input} = e_y^{\top} W^{(\text{out})} g(W^{(L, L-1)} g(W^{(L-1, L-2)} g(\dots g(W^{(1, 0)}))))} \Big|_{\text{input} = e_y^{\top} W^{(\text{out})} g(W^{(L, L-1)} g(W^{(L-1, L-2)} g(\dots g(W^{(1, 0)})))} \Big|_{\text{input} = e_y^{\top} W^{(\text{out})} g(W^{(L, L-1)} g(W^{(L-1, L-2)} g(\dots g(W^{(1, 0)})))} \Big|_{\text{input} = e_y^{\top} W^{(\text{out})} g(W^{(L, L-1)} g(W^{(L-1, L-2)} g(\dots g(W^{(1, 0)})))} \Big|_{\text{input} = e_y^{\top} W^{(\text{out})} g(W^{(L, L-1)} g(W^{(L-1, L-2)} g(\dots g(W^{(1, 0)})))} \Big|_{\text{input} = e_y^{\top} W^{(\text{out})} g(W
$$

A quite complicated **non-linear** function of $W = (W^{(\text{out})}, W^{(L,L-1)}, ..., W^{(1,0)})$

Nevertheless, we use the same idea (Maximum Likelihood + Stochastic Gradient Descent) to find a good W

Training Multi-Layer Neural Network

 \overline{S}

$$
P_W(y_s|x_s) = \frac{\exp(Z_{y_s})}{\sum_{y} \exp(Z_y)} \Big|_{\text{input} = x_i} = \frac{\exp(f_W(x_s, y_s))}{\sum_{y} \exp(f_W(x_s, y))} \qquad \qquad \sqrt{\frac{\partial}{\partial w_i} \cdot L(w)}
$$
\n
$$
f_W(x_s, y_s) = e_{y_s}^{\top} W^{(\text{out})} g\left(W^{(L, L-1)} g\left(W^{(L-1, L-2)} g\left(\dots g\left(W^{(1, 0)}\right)x_s\right)\right)\right) \qquad \qquad \frac{\partial}{\partial w_2} \qquad \qquad \frac{\partial}{\partial w_1}
$$
\n
$$
- \log \left|P_W(y_s|x_s) - L(w)\right|
$$
\n\nParameters of the model

The process of calculating the gradient in NNs through chain rule is called **Backpropagation.**

Training Multi-Layer Neural Network

- Get dataset consisting of (X, Y) pairs: $(x_1, y_1), (x_2, y_2), ..., (x_S, y_S) \in \mathbb{R}^d \times \{1, 2, ..., C\}$
- Define the **objective function / loss function**:

$$
\frac{1}{S} \sum_{s=1}^{S} -\log P_{W}(y_{s} | x_{s}) = \frac{1}{S} \sum_{s=1}^{S} -\log \left(\frac{\exp(f_{W}(x_{s}, y_{s}))}{\sum_{y} \exp(f_{W}(x_{s}, y))} \right)
$$

$$
L_{S}(W)
$$

• Use stochastic gradient descent to minimize the loss

For $t = 1, 2, ...$ $W_t = W_{t-1} - \eta$. 1 \boldsymbol{b} \sum $(x_S, y_S) \in B$ $\nabla L_{s}(W_{t-1})$ Randomly sample a minibatch $B \subset \{(x_1, y_1), (x_2, y_2), ..., (x_S, y_S)\}$ of size $|B| = b$

Multi-Layer Pattern Recognition

The machine can automatically discover **useful patterns** through maximum likelihood / loss minimization training.

hidden in W

Neural Network for Regression Problems

• Neural network is a general tool to model the relation between two vectors. Besides classification (where output is a distribution over classes), it can also solve **regression** problems (where output is simply a real-valued vector).

…

● For example,

Biases

● Besides weights, we usually include **biases**.

 $H = g(W^{(in)}X)$ $Z = W^{(\text{in})}H$

 $H = g(W^{(in)}X + b^{(in)}$ $Z = W^{(\text{in})}H + b^{(\text{out})}$

Why Activation Function?

● To make the model more expressive

Explanation by prof. Hung-Yi Lee

Linear models are too simple … we need more sophisticated modes.

Linear models have severe limitation. *Model Bias* We need a more flexible model!

Explanation by prof. Hung-Yi Lee

All Piecewise Linear Curves

Explanation by prof. Hung-Yi Lee

Beyond Piecewise Linear? \hat{y} \mathcal{X}_1 Approximate continuous curve by a piecewise linear curve.

To have good approximation, we need sufficient pieces.

Recap: Neural Network for Classification (Discriminative Model)

Parameters in the most general case = $N\prod_{i=1}^M |X_i|$ **BN representation** $X \rightarrow Y$ X_i can take X_i different values feature label $W^{(L,L-1)}$ $W^{(2,1)}$ $W^{(1,0)}$ W $W^{(L,L-1)}$ $W^{(out)}$ W X_1 $\rightarrow P(Y=y_1|X)$ Z_1 X_2 **NN modeling** Z^2 Softmax $\longmapsto P(Y=y_2|X)$ … X_3 … //X\\ … … //X\\ … //X\\ … Z_{N} $\rightarrow P(Y=y_N|X)$ X_{M} # Parameters = $MK^{(1)} + K^{(1)}K^{(2)} + \cdots + K^{(L-1)}K^{(L)} + K^{(L)}N$

Transform the features layer by layer and perform logistic regression at the end Maximum-likelihood training finds the transformations automatically

Recap: Neural Network can also implement Generative Models

BN representation

label feature

Let Z be the one-hot encoding of the label

NN modeling

We less use this structure to perform classification, except for Naïve Bayes (a single-layer version). However, such structure is useful in **generating new samples**.

Generative Models lead to important applications in modern AI. For example, generating images or natural languages (will see more examples in the next week).

Neural Networks with Special Structures

Convolutional Neural Network (CNN)

Useful in **image recognition**

Difference with the *fully connected* NN discussed previously:

- Each filter only covers a **local region** in the previous layer. This allows the NN to recognize local patterns. e.g., recognize wheels, windows in the image
- Filters of the same color **shares the weights**. e.g., the red filters are able to recognize wheels everywhere in the image, and the blue filters recognize windows.

Convolutional Neural Network (CNN) for Computer Vision

https://www.linkedin.com/pulse/what-cnn-logesh-s-nxhfc/

Recurrent Neural Network (RNN)

Restrictions (Markov property):

The parameters (i.e., neural network weights) for the mappings $X^t \rightarrow S^t$, $S^t \rightarrow Y^t$, and $S^t \rightarrow S^{t+1}$ are independent of t

Useful in modeling

- Sequence-to-sequence mapping
	- Translate English to French
	- Convert speech to English
	- Question and answering
- Language generation
	- $X^t = Y^{t-1}$

Recurrent Neural Network (RNN)

Restrictions (Markov property):

The parameters (i.e., neural network weights) for the mappings $X^t \rightarrow S^t$, $S^t \rightarrow Y^t$, and $S^t \rightarrow S^{t+1}$ are independent of t

Useful in modeling

● Sequence classification: language detection, sentiment analysis

RNN for Language

https://www.nbshare.io/notebook/313339236/English-to-German-Translation-using-Seq2Seq-Models-In-PyTorch/

Homework 5

Deadline: December 2

Homework 5

- 1. Choice Questions (10 points)
	- a. 10 questions.
	- b. Answer directly on Gradescope
	- c. The same requirements as the last time.
- 1. Program Questions (Machine Learning) (19 points)
	- We skipped Question 1 (Perceptron). So we have q2, q3, q4
	- We use the original (NumPy) version not PyTorch version.
		- Libraries needed:
			- Numpy
			- Matplotlib (for 2D plotting)

Introduction of Project 5: Q2 Non-linear Regression

Primary Task:

- 1. For this question, you will train a neural network to approximate sin(x) over [-2pi, 2pi]
- 2. Backward and dataset loader already implemented.
- 3. You need Implement *model* with:
	- a. Initialization
	- b. Run (model forward)
	- c. Get loss (return a loss for a given input and target)
	- d. Train (train the model using gradient-based updates) (Similar for the other questions)
- 1. Receive full points if it gets a loss of 0.02 or lower.

Introduction of Project 5: Q3 Digit Classification

Primary Task:

- 1. Train a network to classify handwritten digits from the MNIST dataset.
- 2. Each digit is of size 28 by 28 pixels and flat to 784 dimensional vector.
- 3. Achieve an accuracy of at least 97% to get the full score.

Introduction of Project 5: Q4 Digit Classification

Primary Task:

1. Figure out, given a piece of text, what language the text is written in.

For example:

- discussed \rightarrow English
- eternidad \rightarrow Spanish
- 1. Use RNN to handle variable-length inputs.
- 2. Achieve an accuracy of at least 81% to get the full score.

Lectures Next Week

- Tuesday: applying deep learning to **computer vision** by Prof. Zezhou Cheng
	- Recognition: image classification, object detection, etc.
	- Generation: image generation, video generation, etc.
	- Reconstruction: 2D to 3D, VR/AR, etc.
- Thursday: applying deep learning to **natural languages** by Prof. Yu Meng
	- Sequence-to-sequence learning: language translation, etc.
	- Language generation: large language model (ChatGPT), etc.