
Neural Network
Chen-Yu Wei

Naïve Bayes and Logistic Regression

Y

X1 X2 X64
……

𝑌 ∈ 0, … , 9 : class

𝑃 𝑋1, … , 𝑋64 𝑌) 𝑃(𝑌) 𝑃 𝑌 𝑋1, … , 𝑋64) 𝑃 𝑋1, … , 𝑋64

𝑋1, .., 𝑋64: features

Naïve Bayes Logistic Regression

𝑃 𝑋1, … , 𝑋64 𝑌)
= 𝑃 𝑋1 𝑌 𝑃 𝑋2 𝑌 … 𝑃(𝑋64|𝑌)

𝑃 𝑌 𝑋1, … , 𝑋64)

∝ exp 𝑓𝑤 𝑋, 𝑌 = exp 𝑤(𝑌) ⋅ 𝑋

Generative model Discriminative model

Y

X1 X2 X64

……
Modeling

Assumption

Type of model

Bayes Net

representation

Naïve Bayes and Logistic Regression

F1 F2 F64

……

C0 C9C1

… F1 F2 F64

……

C0 C9C1

…

𝐹𝑖 = ෍

𝑗=0

9

𝑊𝑖𝑗𝐶𝑗 𝐶𝑗 = ෍

𝑖=1

64

𝑊𝑖𝑗𝐹𝑖

𝑊𝑖𝑗: the weight

between 𝐹𝑖 and 𝐶𝑗

The meaning of 𝐶𝑗 Class = 𝑗 ⇔ 𝐶0, … , 𝐶9 = (0, … , 1, … , 0) The score between class 𝑗
and the input features

The meaning of 𝐹𝑖
The expected value of 𝑖-th

feature given the input class The 𝑖-th feature

Naïve Bayes Logistic Regression

“Neural Net”

representation

Neural network (NN)
A general tool to model the relation

between two real-valued vectors

X1

X2

XM

…
Y1

YN

Y2

…

X3

𝑊

Input

𝑋 ∈ ℝ𝑀

Output

𝑌 ∈ ℝ𝑁

X, Y here are general vectors and do not

need to correspond to feature and label

This neural network describes the relation

𝑌𝑖 = ෍

𝑗=1

𝑀

𝑊𝑖𝑗𝑋𝑗 ∀𝑖 = 1, … , 𝑁

or, more succinctly, 𝑌 = 𝑊𝑋

X Y

Pixel values Scores

Digit label in one-hot

representation

Expected pixel value

(if pixels value ∈ {0,1})

Digit label in one-hot

representation

Pixel value

(if pixels value ∈ [0,1])

Spam/ham in one-hot

representation
Word frequency

(LR)

(NB)

(NB)

Logistic Regression (1-Layer NN for Classification)

X1

X2

XM

…

Z1

ZN

Z2

…

X3

𝑊

Softmax

exp(𝑍1)

σ𝑗=1
𝑁 exp(𝑍𝑗)

exp(𝑍2)

σ𝑗=1
𝑁 exp(𝑍𝑗)

exp(𝑍𝑁)

σ𝑗=1
𝑁 exp(𝑍𝑗)

= 𝑃𝑊 𝑌 = 1 𝑋)

= 𝑃𝑊 𝑌 = 2 𝑋)

= 𝑃𝑊 𝑌 = 𝑁 𝑋)

෍

𝑠=1

|𝑆|

−log 𝑃𝑊 𝑦𝑠 𝑥𝑠)Find W that minimizes using Stochastic Gradient Descent

Additional operation to fulfill the restriction

on the final output (e.g., here we want the

output to be a distribution)

Logistic Regression (1-Layer NN for Classification)

X1

X2

XM

…

Z1

ZN

Z2

…

X3

𝑊

Softmax

exp(𝑍1)

σ𝑗=1
𝑁 exp(𝑍𝑗)

exp(𝑍2)

σ𝑗=1
𝑁 exp(𝑍𝑗)

exp(𝑍𝑁)

σ𝑗=1
𝑁 exp(𝑍𝑗)

= 𝑃𝑊 𝑌 = 1 𝑋)

= 𝑃𝑊 𝑌 = 2 𝑋)

= 𝑃𝑊 𝑌 = 𝑁 𝑋)

𝑊2 = (𝑊2,1, 𝑊2,2,…,, 𝑊2,64)

𝑍2 will be high if the input pattern

𝑋 matches 𝑊2 (i.e., 𝑋 ⋅ 𝑊2 is large)

Higher 𝑍2

Lower 𝑍2

The weight associated with an output node acts like a

“filter” that recognizes a particular pattern on the input.

The Weights Produced by Logistic Regression

Classification (testing) accuracy: 78.25%

The Weights Produced by Naïve Bayes

Classification (testing) accuracy: 67.30%

2-Layer NN for Classification

𝐻1 : recognize wheels

𝐻2 : recognize windows

𝐻3 : recognize handlebar

𝑍1 : recognize car

𝑍2: recognize bicycle

X1

X2

XM

…

𝐻1

𝐻𝐾

𝐻2

…

X3

𝑍1

𝑍2

Softmax

𝑊
in

𝑊
out

𝐻𝑖 = 𝑔 ෍

𝑗

𝑊𝑖𝑗
in

𝑋𝑗

g = nonlinear activation function

𝑍𝑖 = ෍

𝑗

𝑊𝑖𝑗
out

𝐻𝑗

𝐻 = 𝑔(𝑊 in 𝑋)

𝑍 = 𝑊 out 𝐻

Activation Functions

Rectified Linear Unit

Exercise: 2-Layer NN with Activation Function

X1

X2

𝐻1

𝐻2

0.4

−0.5

−0.6

0.1

If we use the ReLU activation function 𝑍1

𝑍2

0.9

0.7

−0.3

−0.2

What’s Z given input X = (1,2)?

Multi-Layer NN for Classification

𝐻𝑖
(ℓ)

= 𝑔 ෍

𝑗

𝑊𝑖𝑗
ℓ,ℓ−1 𝐻𝑗

(ℓ−1)
 ∀ℓ = 1, … , 𝐿

𝐻𝑖
(0)

≔ 𝑋𝑖

𝑍𝑖 = ෍

𝑗

𝑊𝑖𝑗
out

𝐻𝑗
(𝐿)

𝐻(ℓ) = 𝑔(𝑊 ℓ,ℓ−1 𝐻(ℓ−1))

𝑍 = 𝑊 out 𝐻(𝐿)

𝐻(0) ≔ 𝑋 Input layer

Hidden layer

Output layer

…

𝑋1

𝑋2

𝑋3

𝑋𝑀

… … … …

… Softmax

𝐻1
(1)

𝐻2
(1)

𝐻3
(1)

𝐻
𝐾(1)

(1)

𝐻1
(2)

𝐻2
(2)

𝐻3
(2)

𝐻
𝐾(2)

(2)

𝐻1
(𝐿)

𝐻2
(𝐿)

𝐻3
(𝐿)

𝐻
𝐾(𝐿)

(𝐿)

𝑍1

𝑍𝑁

𝑍2

𝑊
out𝑊

1,0 𝑊
2,1 𝑊

𝐿,𝐿−1

…

𝐻1
(3)

𝐻2
(3)

𝐻3
(3)

𝐻
𝐾(3)

(3)

𝑊
3,2

Multi-Layer NN for Classification

…

𝑋1

𝑋2

𝑋3

𝑋𝑀

… … … …

… Softmax

𝐻1
(1)

𝐻2
(1)

𝐻3
(1)

𝐻
𝐾(1)

(1)

𝐻1
(2)

𝐻2
(2)

𝐻3
(2)

𝐻
𝐾(2)

(2)

𝐻1
(𝐿)

𝐻2
(𝐿)

𝐻3
(𝐿)

𝐻
𝐾(𝐿)

(𝐿)

𝑍1

𝑍𝑁

𝑍2

𝑊
out𝑊

1,0 𝑊
2,1 𝑊

𝐿,𝐿−1

…

𝐻1
(3)

𝐻2
(3)

𝐻3
(3)

𝐻
𝐾(3)

(3)

𝑊
3,2

“Intermediate” feature

Intermediate filter

Feature vector used for logistic regressionOriginal feature

Multi-layer neural network enables successive feature transformations

(e.g., from low-level feature to high-level feature)

→ Representation learning

These transformations (through W) is learned automatically from data

Training Multi-Layer Neural Network

𝑃𝑊 𝑦𝑠 𝑥𝑠 = อ
exp 𝑍𝑦𝑠

σ𝑦 exp 𝑍𝑦

input = 𝑥𝑖

=
exp(𝑓𝑊(𝑥𝑠, 𝑦𝑠))

σ𝑦 exp(𝑓𝑊(𝑥𝑠, 𝑦))

We can expand 𝑓𝑊 𝑥, 𝑦 as

𝑓𝑊 𝑥, 𝑦 = 𝑒𝑦
⊤ 𝑊 out 𝐻(𝐿)

= 𝑒𝑦
⊤𝑊 out 𝑔 𝑊 𝐿,𝐿−1 𝐻 𝐿−1

= 𝑒𝑦
⊤𝑊 out 𝑔 𝑊 𝐿,𝐿−1 𝑔 𝑊 𝐿−1,𝐿−2 𝐻 𝐿−2

= 𝑒𝑦
⊤𝑊 out 𝑔 𝑊 𝐿,𝐿−1 𝑔 𝑊 𝐿−1,𝐿−2 𝑔 … . 𝑔 𝑊(1,0)𝑥

A quite complicated non-linear function of 𝑊 = (𝑊 out , 𝑊 𝐿,𝐿−1 , … , 𝑊(1,0))

Nevertheless, we use the same idea (Maximum Likelihood + Stochastic Gradient Descent) to find a good W

Training Multi-Layer Neural Network

𝑓𝑊 𝑥𝑠, 𝑦𝑠 = 𝑒𝑦𝑠
⊤ 𝑊 out 𝑔 𝑊 𝐿,𝐿−1 𝑔 𝑊 𝐿−1,𝐿−2 𝑔 … . 𝑔 𝑊(1,0)𝑥𝑠

𝑃𝑊 𝑦𝑠 𝑥𝑠 = อ
exp 𝑍𝑦𝑠

σ𝑦 exp 𝑍𝑦

input = 𝑥𝑖

=
exp(𝑓𝑊(𝑥𝑠, 𝑦𝑠))

σ𝑦 exp(𝑓𝑊(𝑥𝑠, 𝑦))

Parameters of the model

The process of calculating the gradient in NNs through chain rule is called Backpropagation.

Training Multi-Layer Neural Network

● Get dataset consisting of (X, Y) pairs:

● Define the objective function / loss function:

● Use stochastic gradient descent to minimize the loss

𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑆, 𝑦𝑆 ∈ ℝ𝑑 × {1, 2, … , 𝐶}

1

𝑆
෍

𝑠=1

𝑆

−log 𝑃𝑊(𝑦𝑠|𝑥𝑠) =
1

𝑆
෍

𝑠=1

𝑆

−log
exp(𝑓𝑊(𝑥𝑠, 𝑦𝑠))

σ𝑦 exp(𝑓𝑊(𝑥𝑠, 𝑦))

𝐿𝑠(𝑊)

For 𝑡 = 1, 2, …

𝑊𝑡 = 𝑊𝑡−1 − 𝜂 ⋅
1

𝑏
෍

𝑥𝑠,𝑦𝑠 ∈𝐵

∇ 𝐿𝑠(𝑊𝑡−1)

Randomly sample a minibatch 𝐵 ⊂ 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑆, 𝑦𝑆 of size 𝐵 = 𝑏

Multi-Layer Pattern Recognition

The machine can automatically

discover useful patterns through

maximum likelihood / loss

minimization training.

hidden in W

Neural Network for Regression Problems

● Neural network is a general tool to model the relation between two vectors.

Besides classification (where output is a distribution over classes), it can also

solve regression problems (where output is simply a real-valued vector).

● For example,

𝑋1

𝑋2

𝑋3

𝑋𝑀

… … …

𝑊
1,0 𝑊

2,1

……

…

𝑌1

𝑌𝑁

𝑌2

𝑊
out𝑊

𝐿,𝐿−1

Biases

● Besides weights, we usually include biases.

X1

X2

XM

…

𝐻1

𝐻𝐾

𝐻2

…

X3

𝑍1

𝑍2

𝑊
in

𝑊
out

𝐻 = 𝑔 𝑊(in)𝑋

𝑍 = 𝑊(in)𝐻

without bias

X1

X2

XM

…

𝐻1

𝐻𝐾

𝐻2

…

X3

𝑍1

𝑍2

𝑊
in

𝑊
out

𝐻 = 𝑔 𝑊(in)𝑋 + 𝑏(in)

𝑍 = 𝑊(in)𝐻 + 𝑏(out)

𝑏𝐾
in

𝑏2
in

𝑏2
out

𝑏1
in

𝑏1
out

with bias

Why Activation Function?

● To make the model more expressive

𝑦

𝑥1𝑥1

Linear models have severe limitation.

We need a more flexible model!

Different 𝑏

Different w

Model Bias

Linear models are too simple … we need more sophisticated modes.

Explanation by prof. Hung-Yi Lee

𝑦

𝑥1𝑥1

0

1

2

3

sum of a set ofconstant + red curve =
Explanation by prof. Hung-Yi Lee

All Piecewise Linear Curves

More pieces require more

sum of a set ofconstant + =

Explanation by prof. Hung-Yi Lee

Beyond Piecewise Linear?

𝑦

𝑥1

To have good approximation, we need sufficient pieces.

Approximate continuous curve
by a piecewise linear curve.

Explanation by prof. Hung-Yi Lee

𝑥1

𝑦 = 𝑐
1

1 + 𝑒− 𝑏+𝑤𝑥1

𝑥1

How to represent
this function?

sum of a set ofconstant + red curve =

Hard Sigmoid

Sigmoid Function

= 𝑐 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑏 + 𝑤𝑥1

Explanation by prof. Hung-Yi Lee

Different 𝑤

Change slopes

Different b

Shift

Different 𝑐

Change height

𝑦

𝑥1𝑥1

sum of a set of + constant

0

2

3

red curve =

1

𝑐1 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑏1 + 𝑤1𝑥1

𝑐2 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑏2 + 𝑤2𝑥1

𝑐3 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑏3 + 𝑤3𝑥1

𝑦 = 𝑏 + ෍

𝑖

𝑐𝑖 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑏𝑖 + 𝑤𝑖𝑥1

0 1 2 3+ +

Explanation by prof. Hung-Yi Lee

Recap: Neural Network for Classification (Discriminative Model)

𝑋 𝑌

𝑋1

𝑋2

𝑋3

𝑋𝑀

… … …

𝑊
1,0 𝑊

2,1

……

…

𝑍1

𝑍𝑁

𝑍2

𝑊
out𝑊

𝐿,𝐿−1

Softmax

𝑃 𝑌 = 𝑦1 𝑋

𝑃 𝑌 = 𝑦2 𝑋

𝑃 𝑌 = 𝑦𝑁 𝑋

Parameters in the most general case = 𝑁 ς𝑖=1
𝑀 |𝑋𝑖|

Parameters = 𝑀𝐾(1) + 𝐾(1)𝐾(2) + ⋯ + 𝐾 𝐿−1 𝐾 𝐿 + 𝐾(𝐿)𝑁

Transform the features layer by layer and perform logistic regression at the end

feature label

BN representation

NN modeling

Maximum-likelihood training finds the transformations automatically

Recap: Neural Network can also implement Generative Models

𝑋𝑌

featurelabel

BN representation

𝑋1

𝑋2

𝑋3

𝑋𝑀

………… …

…

𝑍1

𝑍𝑁

𝑍2

Let 𝑍 be the one-hot encoding of the label

NN modeling

We less use this structure to perform classification, except for Naïve Bayes (a single-layer version).

However, such structure is useful in generating new samples.

Generative Models lead to important applications in modern AI. For example, generating images or

natural languages (will see more examples in the next week).

Neural Networks with Special Structures

Convolutional Neural Network (CNN)

𝑋1

𝑋2

𝑋𝑀−2

…
…

𝑋3

𝑋5

𝑋4

𝑋𝑀−1

𝑋𝑀

Difference with the fully connected NN discussed previously:

● Each filter only covers a local region in the previous layer.

This allows the NN to recognize local patterns.

e.g., recognize wheels, windows in the image

● Filters of the same color shares the weights.

e.g., the red filters are able to recognize wheels everywhere

in the image, and the blue filters recognize windows.

Useful in image recognition

Convolutional Neural Network (CNN) for Computer Vision

https://www.linkedin.com/pulse/what-cnn-logesh-s-nxhfc/

Recurrent Neural Network (RNN)

𝑆1

𝑋1

𝑌1

𝑆2

𝑋2

𝑌2

𝑆3

𝑋3

𝑌3

𝑆4

𝑋4

𝑌4

… …

Useful in modeling
● Sequence-to-sequence mapping

● Translate English to French

● Convert speech to English

● Question and answering

● Language generation
● 𝑋𝑡 = 𝑌𝑡−1

The parameters (i.e., neural network

weights) for the mappings 𝑋𝑡 → 𝑆𝑡, 𝑆𝑡 → 𝑌𝑡,

and 𝑆𝑡 → 𝑆𝑡+1 are independent of 𝑡

Restrictions (Markov property):

𝑆𝑡

𝑋𝑡

𝑌𝑡

Recurrent Neural Network (RNN)

𝑆1

𝑋1

𝑆2

𝑋2

𝑆3

𝑋3

𝑆4

𝑋4

𝑌

Useful in modeling
● Sequence classification: language

detection, sentiment analysis

The parameters (i.e., neural network

weights) for the mappings 𝑋𝑡 → 𝑆𝑡, 𝑆𝑡 → 𝑌𝑡,

and 𝑆𝑡 → 𝑆𝑡+1 are independent of 𝑡

Restrictions (Markov property):

softmax

𝑋1
𝑡 𝑋2

𝑡 𝑋𝑀
𝑡…

…

…

𝑆1
𝑡 𝑆2

𝑡 𝑆𝐾
𝑡…

…

…

𝑍1
𝑡 𝑍2

𝑡 𝑍𝑁
𝑡…

𝑆1
𝑡−1 𝑆2

𝑡−1 𝑆𝐾
𝑡−1…

…… …

…… …

𝑃(𝑌𝑡 = 𝑦1) 𝑃(𝑌𝑡 = 𝑦2) 𝑃(𝑌𝑡 = 𝑦𝑁)

Hidden layers

Hidden layers

RNN for Language

One-hot encoding for input word

Scores for output word

RNN for Language

https://www.nbshare.io/notebook/313339236/English-to-German-Translation-using-Seq2Seq-Models-In-PyTorch/

Homework 5
Deadline: December 2

Homework 5

1. Choice Questions (10 points)
a. 10 questions.
b. Answer directly on Gradescope
c. The same requirements as the last time.

1. Program Questions (Machine Learning) (19 points)
● We skipped Question 1 (Perceptron). So we have q2, q3, q4
● We use the original (NumPy) version not PyTorch version.

○ Libraries needed:
■ Numpy
■ Matplotlib (for 2D plotting)

Introduction of Project 5: Q2 Non-linear Regression

Primary Task:

1. For this question, you will train a neural network
to approximate sin(x) over [-2pi, 2pi]

2. Backward and dataset loader already
implemented.

3. You need Implement model with:
a. Initialization
b. Run (model forward)
c. Get_loss (return a loss for a given input and target)
d. Train (train the model using gradient-based updates)

(Similar for the other questions)

1. Receive full points if it gets a loss of 0.02 or lower.

Introduction of Project 5: Q3 Digit Classification

Primary Task:

1. Train a network to classify handwritten
digits from the MNIST dataset.

2. Each digit is of size 28 by 28 pixels and
flat to 784 dimensional vector.

3. Achieve an accuracy of at least 97% to
get the full score.

Introduction of Project 5: Q4 Digit Classification

Primary Task:

1. Figure out, given a piece of text, what
language the text is written in.

For example:

● discussed → English
● eternidad → Spanish

1. Use RNN to handle variable-length
inputs.

2. Achieve an accuracy of at least 81% to
get the full score.

Lectures Next Week

● Tuesday: applying deep learning to computer vision by Prof. Zezhou Cheng

● Recognition: image classification, object detection, etc.

● Generation: image generation, video generation, etc.

● Reconstruction: 2D to 3D, VR/AR, etc.

● Thursday: applying deep learning to natural languages by Prof. Yu Meng

● Sequence-to-sequence learning: language translation, etc.

● Language generation: large language model (ChatGPT), etc.

	Slide 1: Neural Network
	Slide 2: Naïve Bayes and Logistic Regression
	Slide 3: Naïve Bayes and Logistic Regression
	Slide 4: Neural network (NN)
	Slide 5: Logistic Regression (1-Layer NN for Classification)
	Slide 6: Logistic Regression (1-Layer NN for Classification)
	Slide 7: The Weights Produced by Logistic Regression
	Slide 8: The Weights Produced by Naïve Bayes
	Slide 9: 2-Layer NN for Classification
	Slide 10: Activation Functions
	Slide 11: Exercise: 2-Layer NN with Activation Function
	Slide 12: Multi-Layer NN for Classification
	Slide 13: Multi-Layer NN for Classification
	Slide 14: Training Multi-Layer Neural Network
	Slide 15: Training Multi-Layer Neural Network
	Slide 16: Training Multi-Layer Neural Network
	Slide 17: Multi-Layer Pattern Recognition
	Slide 18: Neural Network for Regression Problems
	Slide 19: Biases
	Slide 20: Why Activation Function?
	Slide 21
	Slide 22
	Slide 23: All Piecewise Linear Curves
	Slide 24: Beyond Piecewise Linear?
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Recap: Neural Network for Classification (Discriminative Model)
	Slide 29: Recap: Neural Network can also implement Generative Models
	Slide 30: Neural Networks with Special Structures
	Slide 31: Convolutional Neural Network (CNN)
	Slide 32: Convolutional Neural Network (CNN) for Computer Vision
	Slide 33: Recurrent Neural Network (RNN)
	Slide 34: Recurrent Neural Network (RNN)
	Slide 35: RNN for Language
	Slide 36: RNN for Language
	Slide 37: Homework 5
	Slide 38: Homework 5
	Slide 39: Introduction of Project 5: Q2 Non-linear Regression
	Slide 40: Introduction of Project 5: Q3 Digit Classification
	Slide 41: Introduction of Project 5: Q4 Digit Classification
	Slide 42: Lectures Next Week

