Final Review

Chen-Yu Wei

Logistics

- Time: 2PM-4PM, December 17
- Location: Olsson Hall 009 (usual classroom)
- Open notes
 - Just paper-based notes/notebooks, no electronic devices
 - No textbook
- Let me know earlier if you need any accommodation

Topics

- Bayesian Network (focusing on the content after Page 28 in the BN slides, though it's unavoidable that it will be related to some previous content)
- (Hidden) Markov Model
- Machine Learning
- Deep Learning and Applications
- Reinforcement Learning

Like midterm, the final exam is not going to be "easy". But we'll try to include more basic questions.

Bayesian Network

• Formulate a problem as a Bayesian network

- Two teams A and B are competing in a baseball match.
- If the weather is **warm**, then
 - A is in a good condition with probability 0.6
 - B is in a good condition with probability 0.8
- If the weather is **cold**, then
 - A is in a good condition with probability 0.5
 - B is in a good condition with probability 0.3
- If both team are in the same condition, B wins with probability 0.6
- Otherwise, the good-conditioned team wins with probability 0.8
- The weather is warm with probability 0.4 and cold with probability 0.6

Т	P(T)
Warm	0.4
Cold	0.6

of temperature Т 2 good , {grod bad} В A W { A. B)

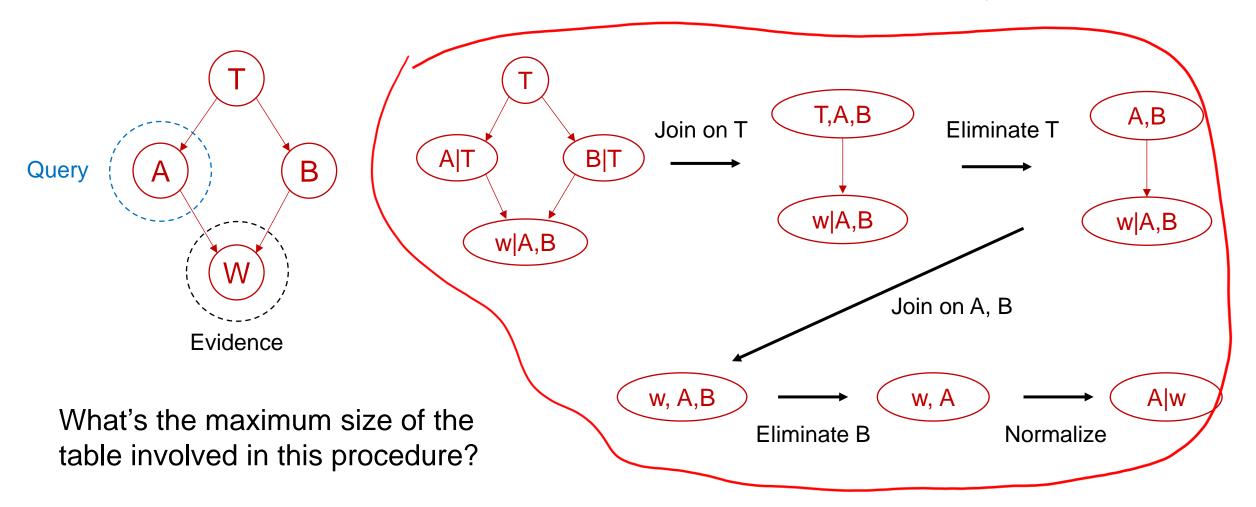
5	T ,	А	P(A T)
۴۲°	Warm	Good	0.6
	Warm	Bad	0.4
	Cold	Good	0.5
, bad	Cold	Bad	0.5

Т	В	P(B T)
Warm	Good	0.8
Warm	Bad	0.2
Cold	Good	0.3
Cold	Bad	0.7

А	В	W	P(W A,B)
Good	Good	А	0.4
Good	Good	В	0.6
Good	Bad	А	0.8
Good	Bad	В	0.2
Bad	Good	А	0.2
Bad	Good	В	0.8
Bad	Bad	А	0.4
Bad	Bad	В	0.6

- Inference: Given a Bayesian network, a query variable Q, and evidences $\{E_1 = e_1, \dots, E_k = e_k\}$, calculate $P(Q|E_1 = e_1, \dots, E_k = e_k)$
- Exact Inference in Bayesian networks
- Variable elimination
 - Only keep entries consistent with the evidence variable
 - Interleave Join and Marginalize (Eliminate) operations

In the previous example, how to calculate the conditional probability P(A=bad | w=A)?



Т	P(T)
Warm	0.4
Cold	0.6

Т	Α	P(A T)
Warm	Good	0.6
Warm	Bad	0.4
Cold	Good	0.5
Cold	Bad	0.5

Join	on T
------	------

Т

Α

Warm	Good	Good	0.4 * 0.6 * 0.8
Warm	Good	Bad	0.4 * 0.6 * 0.2
Warm	Bad	Good	0.4 * 0.4 * 0.8
Warm	Bad	Bad	0.4 * 0.4 * 0.2
Cold	Good	Good	0.6 * 0.5 * 0.3
Cold	Good	Bad	0.6 * 0.5 * 0.7
Cold	Bad	Good	0.6 * 0.5 * 0.3
Cold	Bad	Bad	0.6 * 0.5 * 0.7

В

Т	В	P(B T)
Warm	Good	0.8
Warm	Bad	0.2
Cold	Good	0.3
Cold	Bad	0.7

 $p(\tau) P(A|\tau) P(B(\tau))$

11

P(T,A,B)

Т	А	В	P(T,A,B)
Warm	Good	Good	0.4 * 0.6 * 0.8 -
Warm	Good	Bad	0.4 * 0.6 * 0.2
Warm	Bad	Good	0.4 * 0.4 * 0.8
Warm	Bad	Bad	0.4 * 0.4 * 0.2
Cold	Good	Good	0.6 * 0.5 * 0.3 -
Cold	Good	Bad	0.6 * 0.5 * 0.7
Cold	Bad	Good	0.6 * 0.5 * 0.3
Cold	Bad	Bad	0.6 * 0.5 * 0.7

Eliminate
(Marginalize) T

A	B	P(A,B)
Good	Good	0.282
Good	Bad	0.258
Bad	Good	0.218
Bad	Bad	0.242

А	В	P(A,B)
Good	Good	0.282
Good	Bad	0.258
Bad	Good	0.218
Bad	Bad	0.242

Join on A,B

А	В	W	P(W A,B)
Good	Good	А	0.4
Good	Good	Ð	0.0
Good	Bad	А	0.8
Good	Dad	D	0.2
Bad	Good	А	0.2
Bad	Good	D	0.0
Bad	Bad	А	0.4
Bad	Bad	B	0.0

А	В	P(A,B)
Good	Good	0.282
Good	Bad	0.258
Bad	Good	0.218
Bad	Bad	0.242

Join on A,B

А	В	W	P(A,B,W)
Good	Good	А	0.1128
Good	Bad	А	0.2064
Bad	Good	А	0.0436
Bad	Bad	А	0.0968

А	В	W	P(W A,B)
Good	Good	А	0.4
Good	Bad	А	0.8
Bad	Good	А	0.2
Bad	Bad	А	0.4

P(A, B) P(W|AB) //

А	В	W	P(A,B,W)
Good	Good	А	0.1128
Good	Bad	А	0.2064
Bad	Good	А	0.0436
Bad	Bad	А	0.0968

Eliminate B

Α	W	P(A,W)
Good	А	0.1128 + 0.2064
Bad	А	0.0436 + 0.0968

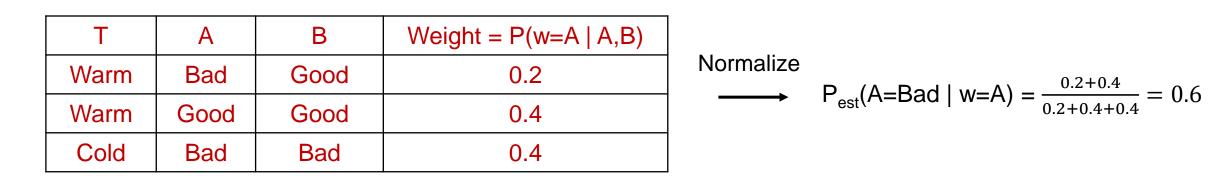
А	W	P(A,W)
Good	А	0.3192
Bad	А	0.1404

Normalize

А	P(A w=A)
Good	0.6945
Bad	0.3055

- Approximate inference in Bayesian network
 - Prior sampling
 - Rejection sampling
 - Likelihood weighting
 - Gibbs sampling

- In the previous example, suppose that we know A wins, and we have the following samples drawn from the Bayesian network:
 - (T=Warm, A=Bad, B=Good), (T=Warm, A=Good, B=Good), (T=Cold, A=Bad, B=Bad)
- Use Likelihood weighting to estimate P(A=bad | w=A)



Recall:

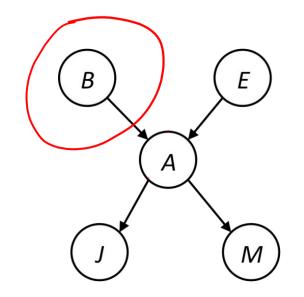
If both team are in the same condition, B wins with probability 0.6 Otherwise, the good-conditioned team wins with probability 0.8

Gibbs sampling algorithm

- Repeat many times: Sample a non-evidence variable X_i from
 - $P(X_i | x_1, ..., x_{i-1}, x_{i+1}, ..., x_n)$
 - = P(X_i | Markov_blanket(X_i))
 - = $\alpha P(X_i | Parents(X_i)) \prod_j P(y_j | Parents(Y_j))$
- Markov_blanket(X_i) includes
 - X_i's parents
 - X_i's children A
 - X_i's children's parent

$$P(B|\tilde{E},A,J,M) = P(B|\tilde{E},A)$$

Page 74 in BN slides has an example illustrating why we only need to consider Markov blanket of X_i

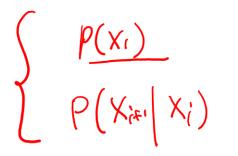


Markov_blanket(B) = ?

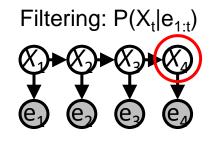
(Hidden) Markov Model

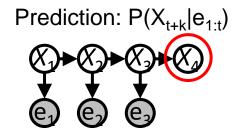
- Exact inference for Markov models
 - Forward algorithm (= repeatedly Join and Eliminate)

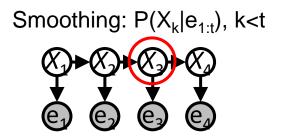
. (X))



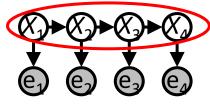
- Exact inference for Hidden Markov models
 - Filtering
 - Prediction
 - Smoothing (forward-backward algorithm)
 - Most-likely Sequence (Viterbi algorithm)







Most likely seq: argmax P(X_{1:t}|e_{1:t})



• Smoothing



T_1	$P(T_1)$
Warm	0.5
Cold	0.5

T _i	T_{i+1}	$P(T_{i+1} T_i)$
Warm	Warm	0.8
Warm	Cold	0.2
Cold	Warm	0.3
Cold	Cold	0.7

T _i	W_i	$P(W_i T_i)$
Warm	А	0.4
Warm	В	0.6
Cold	А	0.7
Cold	В	0.3

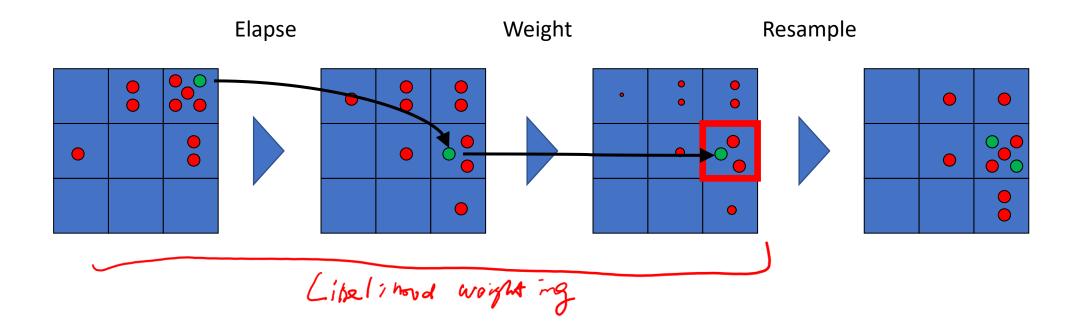
$$P(T_{2} | w_{1} = A, w_{2} = A, w_{3} = A) =?$$

$$P(T_{2} | w_{1} = A, w_{2} = A, w_{3} = A) \propto P(T_{2}, w_{3} = A | w_{1} = A, w_{2} = A)$$

$$= P(T_{2} | w_{1} = A, w_{2} = A) P(w_{3} = A | T_{2})$$
filtering
$$= \sum_{t} P(T_{3} = t | T_{2}) P(w_{3} = A | T_{3} = t)$$

See Page 33-34 in HMM slides for the more general case (i.e., longer sequence)

- Approximate inference for Hidden Markov models
 - Particle filtering (likelihood weighting + resampling)



Machine Learning

- Naïve Bayes
 - The modeling assumption: features are mutually independent
 - Maximum likelihood estimation simply counting the feature occurrence

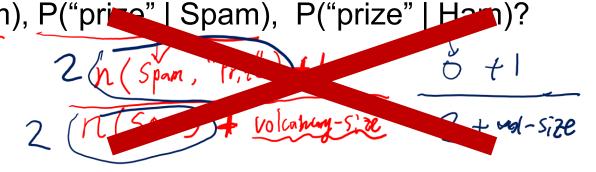
3)

(abe

• Regularization: Laplace smoothing

- Suppose that we use Naïve Bayes to conduct **spam filtering**. We use **Laplace smoothing** with k=1 for regularization (i.e., give every word a fake count of 1).
- Training data:
 - Spam, "Winner!! As a valued customer you have been selected to receive a \$900 prize reward!!!"
 - **Spam**, "We are trying to contact you. Last weekend's draw shows that you won a £1000 prize guaranteed!!!"
 - Ham, "Hey! Did you want to grab coffee before the team meeting on Friday?"
 - **Ham**, ""Thank you for attending the talk this morning. I've attached the presentation for you to share with your team."
- In the learned model, what are P(Spam), P("prize" | Spam), P("prize" | Harn)?

See the corrected answer in the next slide



P(w span) P(span han

- Suppose that we use Naïve Bayes to conduct **spam filtering**. We use **Laplace smoothing** with k=1 for regularization (i.e., give every word a fake count of 1).
- Training data:
 - Spam, "Winner!! As a valued customer you have been selected to receive a \$900 prize reward!!!"
 - **Spam**, "We are trying to contact you. Last weekend's draw shows that you won a £1000 prize guaranteed!!!"
 - Ham, "Hey! Did you want to grab coffee before the team meeting on Friday?"
 - Ham, ""Thank you for attending the talk this morning. I've attached the presentation for you to share with your team."
- In the learned model, what are P(Spam), P("prize" | Spam), P("prize" | Ham)?

$$\mathsf{P}(\mathsf{Spam}) = \frac{2}{4} \qquad \mathsf{P}(\mathsf{"price"}|\mathsf{Spam}) = \frac{2+k\cdot 1}{2+k\cdot 2} = \frac{3}{4} \qquad \mathsf{P}(\mathsf{"price"}|\mathsf{Ham}) = \frac{0+k\cdot 1}{2+k\cdot 2} = \frac{1}{4}$$

- Now we get a new email and want to classify it into spam or ham.
- Suppose for simplicity it only contains "hey customer".
- How should we classify it?

 $T \in \{spm, hon'\}$ P(T| "hey customer") \propto P(T) \times P("hey customer" | T)

 $= P(T) \times P("hey" | T) \times P("customer" | T)$

Let $\alpha = P(\text{Spam}) \times P(\text{``hey"} | \text{Spam}) \times P(\text{``customer"} | \text{Spam})$ $\beta = P(\text{Ham}) \times P(\text{``hey"} | \text{Ham}) \times P(\text{``customer"} | \text{Ham})$

Then P(Spam | "hey customer") = $\frac{\alpha}{\alpha + \beta}$

- Logistic regression
 - The modeling assumption
 - Stochastic gradient descent
 - Regularization

- Suppose that we use logistic regression for a classification problem
- Feature dimension = 2 and #Classes = 3
 - What's the number of parameters in the model? $3 \times 2 = 6$
- Suppose that the final model we get after training is
 - $w^{(1)} = [0.7, -0.1]$
 - $w^{(2)} = [0.3, -0.4] \checkmark$
 - $w^{(3)} = [-0.9, 0.6]$
 - Then for an input feature x = [0,1], what's the $P(Y \mid x)$ given by this model? Score $(chcs \mid , \chi) = W^{(1)} \cdot \chi = (0.7, -0.1) \cdot (0.1) = -0.1$ Score $(chcs \mid 2, \chi) = -0.4$ Score $(chcs \mid 3, \chi) = 0.6$ $P(closs \mid \chi) = \frac{1}{2} \exp(score(chcs \mid , \chi))$

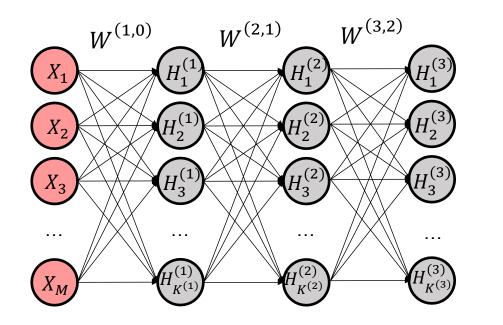
- General considerations in Machine Learning
 - Overfitting and regularization
 - Hyperparameter: quantities chosen in the training procedure
 - Hyperparameter tuning
- Hyperparameter tuning
 - Split the original dataset into training / held-out / test datasets
 - Run machine learning algorithm (e.g., SGD) on the training dataset with multiple hyperparameters, which gives multiple models
 - Choose the model that has the best performance on the held-out dataset
 - Report the performance of the model on the test dataset

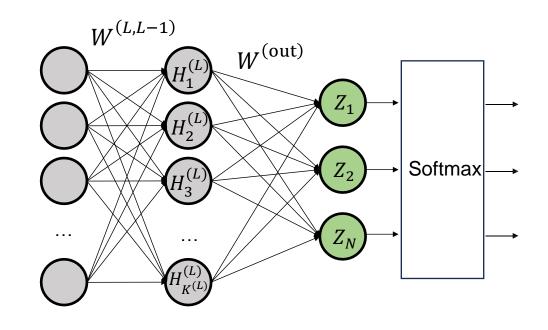
Deep Learning and Applications

- Components of neural networks
 - Hidden layers
 - Activation functions
 - Softmax layer (for classification problems)

. . .

$$\begin{aligned} H_i^{(0)} &\coloneqq X_i \\ H_i^{(\ell)} &= g\left(\sum_j W_{ij}^{(\ell,\ell-1)} H_j^{(\ell-1)}\right) \quad \forall \ell = 1, \dots, L \\ Z_i &= \sum_j W_{ij}^{(\text{out})} H_j^{(L)} \end{aligned}$$





- High-level understandings about the techniques mentioned in the guest lectures
- Computer vision applications
 - Object detection
 - R-CNN, Fast R-CNN, and Faster R-CNN
- Natural language processing applications
 - Word vector
 - Recurrent neural network
 - Transformer

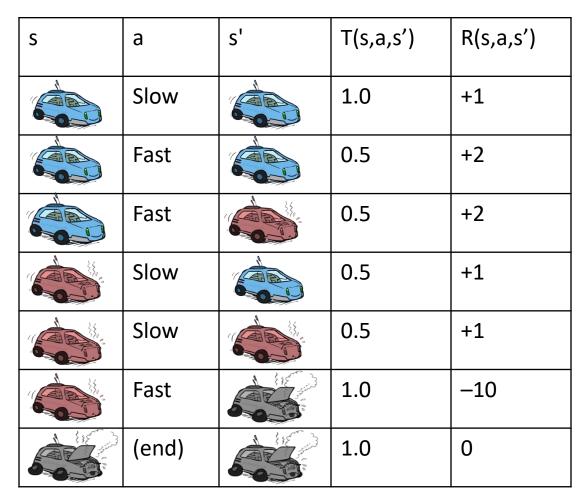
Reinforcement Learning

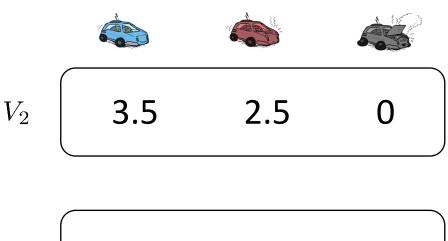
- Value iteration under known MDP model
- Q-Learning under unknown MDP model

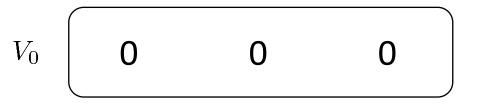
Value Iteration

 $V_0(s) \leftarrow 0 \quad \forall s$ For k = 1, 2, ... $Q_k(s,a) \leftarrow \sum_{i} T(s,a,s') [R(s,a,s') + \gamma V_{k-1}(s')] \quad \forall s,a$ =0 if s is terminal state $V_k(s) \leftarrow \max Q_k(s, a) \quad \forall s$ If $|V_k(s) - V_{k-1}(s)| \le \epsilon$ for all s: Let $\hat{Q}(s,a) = Q_k(s,a) \ \forall s,a$ break Return policy $\hat{\pi}(s) = \operatorname{argmax} \hat{Q}(s, a)$ а

Value Iteration – Example







Assume no discount ($\gamma = 1$)

Q-Learning

 $V_0(s) \leftarrow 0, \ Q_0(s,a) \leftarrow 0 \quad \forall s,a$ Let s_1 be the initial state. For k = 1, 2, ... Epsilon-Greedy strategy or Boltzmann exploration strategy Take action a_k . Observe next state s_{k+1} and reward $R_k = R(s_k, a_k, s_{k+1})$. // Slightly modify the values on the visited state-action pair (s_k, a_k) : $Q_k(s_k, a_k) \leftarrow (1 - \eta_k) Q_{k-1}(s_k, a_k) + \eta_k [R_k + \gamma V_{k-1}(s_{k+1})] \quad \eta_k \in (0,1)$: learning rate $V_k(s_k) \leftarrow \max_{a} Q_k(s_k, a)$ =0 if s_k is terminal // Keep other values unchanged: $Q_k(s,a) \leftarrow Q_{k-1}(s,a)$ and $V_k(s) \leftarrow V_{k-1}(s)$ for $(s,a) \neq (s_k,a_k)$ If s_k is a terminal state: Reset s_{k+1} to be the initial state. Continue

Q-Learning Example

• Page 59-61 in the RL lecture slides

Course Evaluation

- Ending on December 9 (4 days from now!)
- To encourage you to respond, we give 1.5 extra points to students finishing it
- The way to calculate the final score:
 - Calculate the raw scores
 - Set score thresholds (e.g., adjusting the percentage of students getting A, B, etc.)
 - Add the 1.5 extra points

Thank you

• Good luck for your finals!