# **Final Review**

Chen-Yu Wei

## Logistics

- Time: 2PM-4PM, December 17
- Location: Olsson Hall 009 (usual classroom)
- Open notes
  - Just paper-based notes/notebooks, no electronic devices
  - No textbook
- Let me know earlier if you need any accommodation

## Topics

- Bayesian Network (focusing on the content after Page 28 in the BN slides, though it's unavoidable that it will be related to some previous content)
- (Hidden) Markov Model
- Machine Learning
- Deep Learning and Applications
- Reinforcement Learning

Like midterm, the final exam is not going to be "easy". But we'll try to include more basic questions.

# **Bayesian Network**

• Formulate a problem as a Bayesian network

- Two teams A and B are competing in a baseball match.
- If the weather is **warm**, then
  - A is in a good condition with probability 0.6
  - B is in a good condition with probability 0.8
- If the weather is **cold**, then
  - A is in a good condition with probability 0.5
  - B is in a good condition with probability 0.3
- If both team are in the same condition, B wins with probability 0.6
- Otherwise, the good-conditioned team wins with probability 0.8
- The weather is warm with probability 0.4 and cold with probability 0.6

| Т    | P(T) |
|------|------|
| Warm | 0.4  |
| Cold | 0.6  |

of temperature Т 2 good , {grod bad} В A W { A. B)

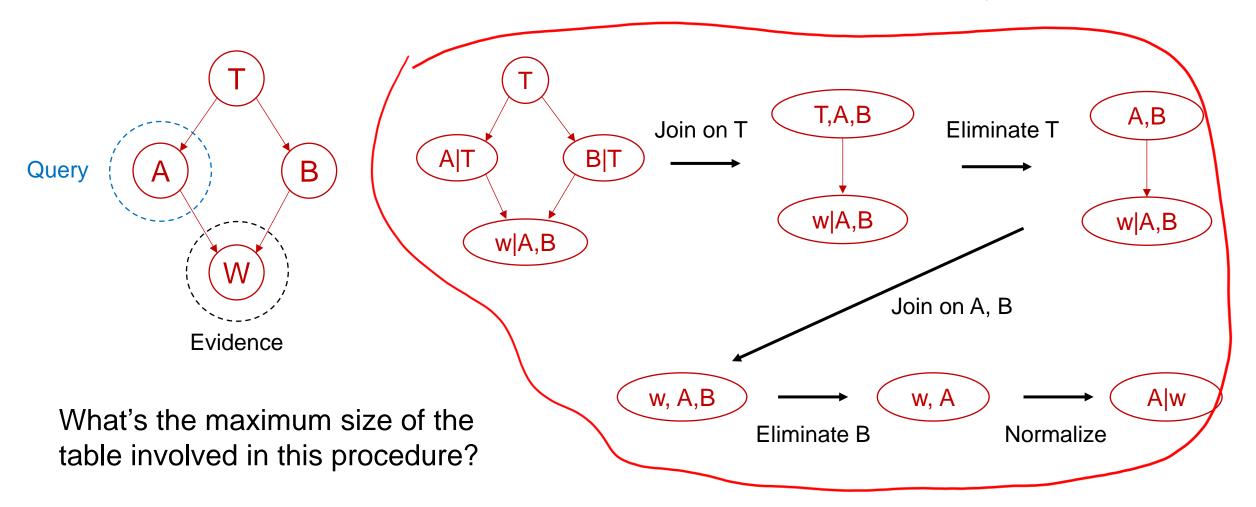
| 5     | T ,  | А    | P(A T) |
|-------|------|------|--------|
| ۴۲°   | Warm | Good | 0.6    |
|       | Warm | Bad  | 0.4    |
|       | Cold | Good | 0.5    |
| , bad | Cold | Bad  | 0.5    |

| Т    | В    | P(B T) |
|------|------|--------|
| Warm | Good | 0.8    |
| Warm | Bad  | 0.2    |
| Cold | Good | 0.3    |
| Cold | Bad  | 0.7    |

| А    | В    | W | P(W A,B) |
|------|------|---|----------|
| Good | Good | А | 0.4      |
| Good | Good | В | 0.6      |
| Good | Bad  | А | 0.8      |
| Good | Bad  | В | 0.2      |
| Bad  | Good | А | 0.2      |
| Bad  | Good | В | 0.8      |
| Bad  | Bad  | А | 0.4      |
| Bad  | Bad  | В | 0.6      |

- Inference: Given a Bayesian network, a query variable Q, and evidences  $\{E_1 = e_1, \dots, E_k = e_k\}$ , calculate  $P(Q|E_1 = e_1, \dots, E_k = e_k)$
- Exact Inference in Bayesian networks
- Variable elimination
  - Only keep entries consistent with the evidence variable
  - Interleave Join and Marginalize (Eliminate) operations

In the previous example, how to calculate the conditional probability P(A=bad | w=A)?



| Т    | P(T) |
|------|------|
| Warm | 0.4  |
| Cold | 0.6  |

| Т    | Α    | P(A T) |
|------|------|--------|
| Warm | Good | 0.6    |
| Warm | Bad  | 0.4    |
| Cold | Good | 0.5    |
| Cold | Bad  | 0.5    |

| Join | on T |
|------|------|
|------|------|

Т

Α

| Warm | Good | Good | 0.4 * 0.6 * 0.8 |
|------|------|------|-----------------|
| Warm | Good | Bad  | 0.4 * 0.6 * 0.2 |
| Warm | Bad  | Good | 0.4 * 0.4 * 0.8 |
| Warm | Bad  | Bad  | 0.4 * 0.4 * 0.2 |
| Cold | Good | Good | 0.6 * 0.5 * 0.3 |
| Cold | Good | Bad  | 0.6 * 0.5 * 0.7 |
| Cold | Bad  | Good | 0.6 * 0.5 * 0.3 |
| Cold | Bad  | Bad  | 0.6 * 0.5 * 0.7 |

В

| Т    | В    | P(B T) |
|------|------|--------|
| Warm | Good | 0.8    |
| Warm | Bad  | 0.2    |
| Cold | Good | 0.3    |
| Cold | Bad  | 0.7    |

 $p(\tau) P(A|\tau) P(B(\tau))$ 

11

P(T,A,B)

| Т    | А    | В    | P(T,A,B)          |
|------|------|------|-------------------|
| Warm | Good | Good | 0.4 * 0.6 * 0.8 - |
| Warm | Good | Bad  | 0.4 * 0.6 * 0.2   |
| Warm | Bad  | Good | 0.4 * 0.4 * 0.8   |
| Warm | Bad  | Bad  | 0.4 * 0.4 * 0.2   |
| Cold | Good | Good | 0.6 * 0.5 * 0.3 - |
| Cold | Good | Bad  | 0.6 * 0.5 * 0.7   |
| Cold | Bad  | Good | 0.6 * 0.5 * 0.3   |
| Cold | Bad  | Bad  | 0.6 * 0.5 * 0.7   |

| Eliminate       |
|-----------------|
| (Marginalize) T |

| A    | B    | P(A,B) |
|------|------|--------|
| Good | Good | 0.282  |
| Good | Bad  | 0.258  |
| Bad  | Good | 0.218  |
| Bad  | Bad  | 0.242  |

| А    | В    | P(A,B) |
|------|------|--------|
| Good | Good | 0.282  |
| Good | Bad  | 0.258  |
| Bad  | Good | 0.218  |
| Bad  | Bad  | 0.242  |

Join on A,B

| А    | В    | W | P(W A,B) |
|------|------|---|----------|
| Good | Good | А | 0.4      |
| Good | Good | Ð | 0.0      |
| Good | Bad  | А | 0.8      |
| Good | Dad  | D | 0.2      |
| Bad  | Good | А | 0.2      |
| Bad  | Good | D | 0.0      |
| Bad  | Bad  | А | 0.4      |
| Bad  | Bad  | B | 0.0      |

| А    | В    | P(A,B) |
|------|------|--------|
| Good | Good | 0.282  |
| Good | Bad  | 0.258  |
| Bad  | Good | 0.218  |
| Bad  | Bad  | 0.242  |

Join on A,B

| А    | В    | W | P(A,B,W) |
|------|------|---|----------|
| Good | Good | А | 0.1128   |
| Good | Bad  | А | 0.2064   |
| Bad  | Good | А | 0.0436   |
| Bad  | Bad  | А | 0.0968   |

| А    | В    | W | P(W A,B) |
|------|------|---|----------|
| Good | Good | А | 0.4      |
| Good | Bad  | А | 0.8      |
| Bad  | Good | А | 0.2      |
| Bad  | Bad  | А | 0.4      |

P(A, B) P(W|AB) //

| А    | В    | W | P(A,B,W) |
|------|------|---|----------|
| Good | Good | А | 0.1128   |
| Good | Bad  | А | 0.2064   |
| Bad  | Good | А | 0.0436   |
| Bad  | Bad  | А | 0.0968   |

Eliminate B

| Α    | W | P(A,W)          |
|------|---|-----------------|
| Good | А | 0.1128 + 0.2064 |
| Bad  | А | 0.0436 + 0.0968 |

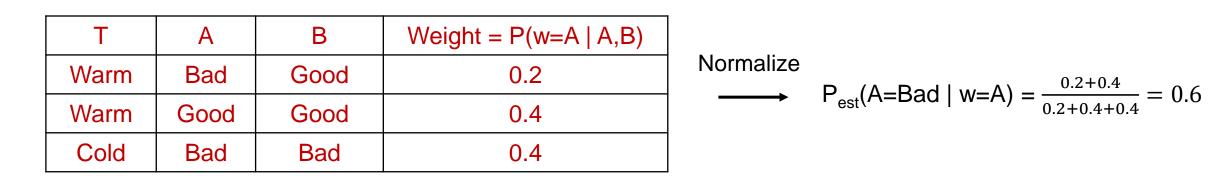
| А    | W | P(A,W) |
|------|---|--------|
| Good | А | 0.3192 |
| Bad  | А | 0.1404 |

Normalize

| А    | P(A   w=A) |
|------|------------|
| Good | 0.6945     |
| Bad  | 0.3055     |

- Approximate inference in Bayesian network
  - Prior sampling
  - Rejection sampling
  - Likelihood weighting
  - Gibbs sampling

- In the previous example, suppose that we know A wins, and we have the following samples drawn from the Bayesian network:
  - (T=Warm, A=Bad, B=Good), (T=Warm, A=Good, B=Good), (T=Cold, A=Bad, B=Bad)
- Use Likelihood weighting to estimate P(A=bad | w=A)



#### **Recall:**

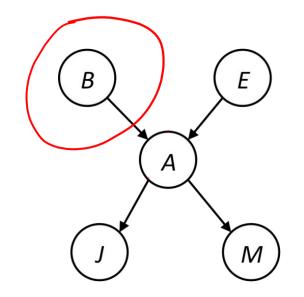
If both team are in the same condition, B wins with probability 0.6 Otherwise, the good-conditioned team wins with probability 0.8

## **Gibbs sampling algorithm**

- Repeat many times: Sample a non-evidence variable X<sub>i</sub> from
  - $P(X_i | x_1, ..., x_{i-1}, x_{i+1}, ..., x_n)$
  - = P(X<sub>i</sub> | Markov\_blanket(X<sub>i</sub>))
  - =  $\alpha P(X_i | Parents(X_i)) \prod_j P(y_j | Parents(Y_j))$
- Markov\_blanket(X<sub>i</sub>) includes
  - X<sub>i</sub>'s parents
  - X<sub>i</sub>'s children A
  - X<sub>i</sub>'s children's parent

$$P(B|\tilde{E},A,J,M) = P(B|\tilde{E},A)$$

Page 74 in BN slides has an example illustrating why we only need to consider Markov blanket of X<sub>i</sub>

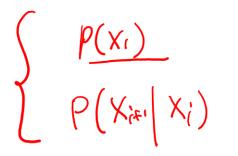


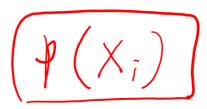
Markov\_blanket(B) = ?

# (Hidden) Markov Model

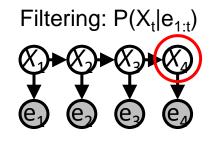
- Exact inference for Markov models
  - Forward algorithm (= repeatedly Join and Eliminate)

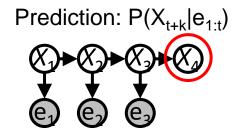
. . . . . (X))

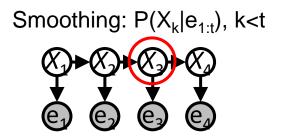




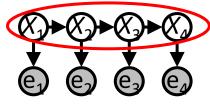
- Exact inference for Hidden Markov models
  - Filtering
  - Prediction
  - Smoothing (forward-backward algorithm)
  - Most-likely Sequence (Viterbi algorithm)







Most likely seq: argmax P(X<sub>1:t</sub>|e<sub>1:t</sub>)



#### • Smoothing



| $T_1$ | $P(T_1)$ |
|-------|----------|
| Warm  | 0.5      |
| Cold  | 0.5      |
|       |          |
|       |          |

| T <sub>i</sub> | $T_{i+1}$ | $P(T_{i+1} T_i)$ |
|----------------|-----------|------------------|
| Warm           | Warm      | 0.8              |
| Warm           | Cold      | 0.2              |
| Cold           | Warm      | 0.3              |
| Cold           | Cold      | 0.7              |

| T <sub>i</sub> | $W_i$ | $P(W_i T_i)$ |
|----------------|-------|--------------|
| Warm           | А     | 0.4          |
| Warm           | В     | 0.6          |
| Cold           | А     | 0.7          |
| Cold           | В     | 0.3          |

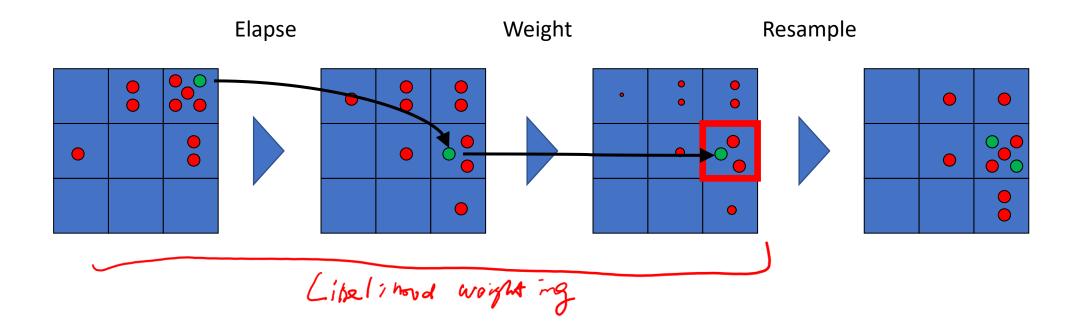
$$P(T_{2} | w_{1} = A, w_{2} = A, w_{3} = A) =?$$

$$P(T_{2} | w_{1} = A, w_{2} = A, w_{3} = A) \propto P(T_{2}, w_{3} = A | w_{1} = A, w_{2} = A)$$

$$= P(T_{2} | w_{1} = A, w_{2} = A) P(w_{3} = A | T_{2})$$
filtering
$$= \sum_{t} P(T_{3} = t | T_{2}) P(w_{3} = A | T_{3} = t)$$

See Page 33-34 in HMM slides for the more general case (i.e., longer sequence)

- Approximate inference for Hidden Markov models
  - Particle filtering (likelihood weighting + resampling)



# **Machine Learning**

- Naïve Bayes
  - The modeling assumption: features are mutually independent
  - Maximum likelihood estimation simply counting the feature occurrence

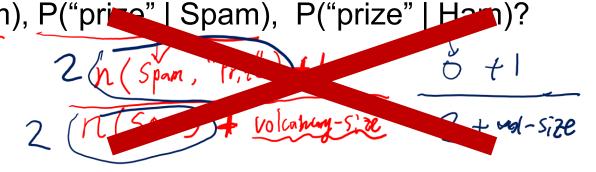
3)

(abe

• Regularization: Laplace smoothing

- Suppose that we use Naïve Bayes to conduct **spam filtering**. We use **Laplace smoothing** with k=1 for regularization (i.e., give every word a fake count of 1).
- Training data:
  - Spam, "Winner!! As a valued customer you have been selected to receive a \$900 prize reward!!!"
  - **Spam**, "We are trying to contact you. Last weekend's draw shows that you won a £1000 prize guaranteed!!!"
  - Ham, "Hey! Did you want to grab coffee before the team meeting on Friday?"
  - **Ham**, ""Thank you for attending the talk this morning. I've attached the presentation for you to share with your team."
- In the learned model, what are P(Spam), P("prize" | Spam), P("prize" | Harn)?

See the corrected answer in the next slide



P(w span) P(span han

- Suppose that we use Naïve Bayes to conduct **spam filtering**. We use **Laplace smoothing** with k=1 for regularization (i.e., give every word a fake count of 1).
- Training data:
  - Spam, "Winner!! As a valued customer you have been selected to receive a \$900 prize reward!!!"
  - **Spam**, "We are trying to contact you. Last weekend's draw shows that you won a £1000 prize guaranteed!!!"
  - Ham, "Hey! Did you want to grab coffee before the team meeting on Friday?"
  - Ham, ""Thank you for attending the talk this morning. I've attached the presentation for you to share with your team."
- In the learned model, what are P(Spam), P("prize" | Spam), P("prize" | Ham)?

$$\mathsf{P}(\mathsf{Spam}) = \frac{2}{4} \qquad \mathsf{P}(\mathsf{"price"}|\mathsf{Spam}) = \frac{2+k\cdot 1}{2+k\cdot 2} = \frac{3}{4} \qquad \mathsf{P}(\mathsf{"price"}|\mathsf{Ham}) = \frac{0+k\cdot 1}{2+k\cdot 2} = \frac{1}{4}$$

- Now we get a new email and want to classify it into spam or ham.
- Suppose for simplicity it only contains "hey customer".
- How should we classify it?

 $T \in \{spm, hon'\}$ P(T| "hey customer")  $\propto$  P(T)  $\times$  P("hey customer" | T)

 $= P(T) \times P("hey" | T) \times P("customer" | T)$ 

Let  $\alpha = P(\text{Spam}) \times P(\text{``hey"} | \text{Spam}) \times P(\text{``customer"} | \text{Spam})$  $\beta = P(\text{Ham}) \times P(\text{``hey"} | \text{Ham}) \times P(\text{``customer"} | \text{Ham})$ 

Then P(Spam | "hey customer") =  $\frac{\alpha}{\alpha + \beta}$ 

- Logistic regression
  - The modeling assumption
  - Stochastic gradient descent
  - Regularization

- Suppose that we use logistic regression for a classification problem
- Feature dimension = 2 and #Classes = 3
  - What's the number of parameters in the model?  $3 \times 2 = 6$
- Suppose that the final model we get after training is
  - $w^{(1)} = [0.7, -0.1]$
  - $w^{(2)} = [0.3, -0.4] \checkmark$
  - $w^{(3)} = [-0.9, 0.6]$
  - Then for an input feature x = [0,1], what's the  $P(Y \mid x)$  given by this model? Score  $(chcs \mid , \chi) = W^{(1)} \cdot \chi = (0.7, -0.1) \cdot (0.1) = -0.1$ Score  $(chcs \mid 2, \chi) = -0.4$ Score  $(chcs \mid 3, \chi) = 0.6$  $P(closs \mid \chi) = \frac{1}{2} \exp(score(chcs \mid , \chi))$

- General considerations in Machine Learning
  - Overfitting and regularization
  - Hyperparameter: quantities chosen in the training procedure
  - Hyperparameter tuning
- Hyperparameter tuning
  - Split the original dataset into training / held-out / test datasets
  - Run machine learning algorithm (e.g., SGD) on the training dataset with multiple hyperparameters, which gives multiple models
  - Choose the model that has the best performance on the held-out dataset
  - Report the performance of the model on the test dataset

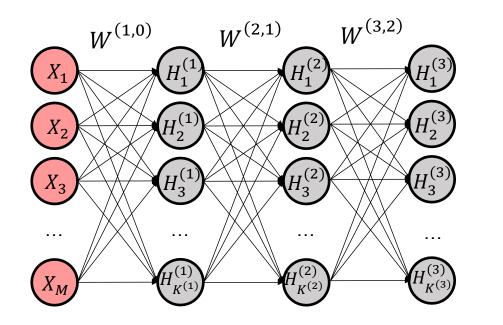


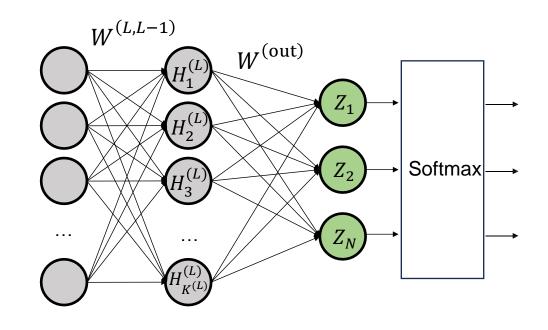
# **Deep Learning and Applications**

- Components of neural networks
  - Hidden layers
  - Activation functions
  - Softmax layer (for classification problems)

. . .

$$\begin{aligned} H_i^{(0)} &\coloneqq X_i \\ H_i^{(\ell)} &= g\left(\sum_j W_{ij}^{(\ell,\ell-1)} H_j^{(\ell-1)}\right) \quad \forall \ell = 1, \dots, L \\ Z_i &= \sum_j W_{ij}^{(\text{out})} H_j^{(L)} \end{aligned}$$





- High-level understandings about the techniques mentioned in the guest lectures
- Computer vision applications
  - Object detection
  - R-CNN, Fast R-CNN, and Faster R-CNN
- Natural language processing applications
  - Word vector
  - Recurrent neural network
  - Transformer

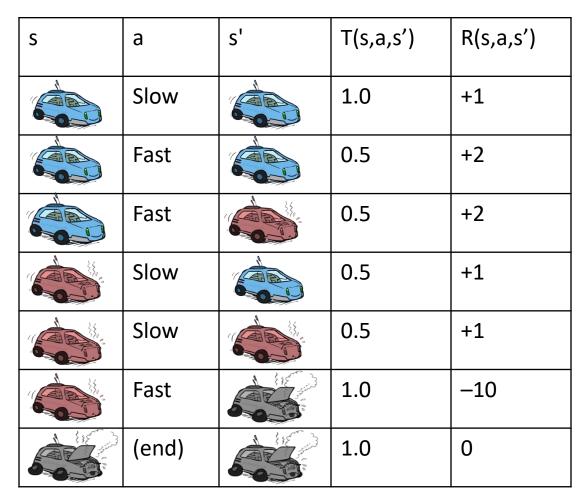
# **Reinforcement Learning**

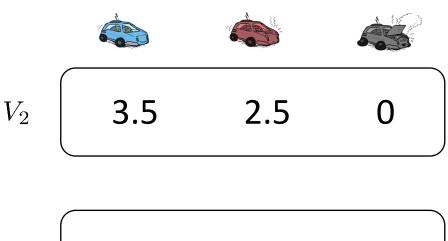
- Value iteration under known MDP model
- Q-Learning under unknown MDP model

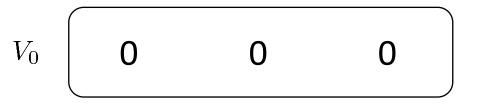
#### **Value Iteration**

 $V_0(s) \leftarrow 0 \quad \forall s$ For k = 1, 2, ... $Q_k(s,a) \leftarrow \sum_{i} T(s,a,s') [R(s,a,s') + \gamma V_{k-1}(s')] \quad \forall s,a$ =0 if s is terminal state  $V_k(s) \leftarrow \max Q_k(s, a) \quad \forall s$ If  $|V_k(s) - V_{k-1}(s)| \le \epsilon$  for all s: Let  $\hat{Q}(s,a) = Q_k(s,a) \ \forall s,a$ break Return policy  $\hat{\pi}(s) = \operatorname{argmax} \hat{Q}(s, a)$ а

## **Value Iteration – Example**







Assume no discount ( $\gamma = 1$ )

## **Q-Learning**

 $V_0(s) \leftarrow 0, \ Q_0(s,a) \leftarrow 0 \quad \forall s,a$ Let  $s_1$  be the initial state. For k = 1, 2, ... Epsilon-Greedy strategy or Boltzmann exploration strategy Take action  $a_k$ . Observe next state  $s_{k+1}$  and reward  $R_k = R(s_k, a_k, s_{k+1})$ . // Slightly modify the values on the visited state-action pair  $(s_k, a_k)$ :  $Q_k(s_k, a_k) \leftarrow (1 - \eta_k) Q_{k-1}(s_k, a_k) + \eta_k [R_k + \gamma V_{k-1}(s_{k+1})] \quad \eta_k \in (0,1)$ : learning rate  $V_k(s_k) \leftarrow \max_{a} Q_k(s_k, a)$ =0 if  $s_k$  is terminal // Keep other values unchanged:  $Q_k(s,a) \leftarrow Q_{k-1}(s,a)$  and  $V_k(s) \leftarrow V_{k-1}(s)$  for  $(s,a) \neq (s_k,a_k)$ If  $s_k$  is a terminal state: Reset  $s_{k+1}$  to be the initial state. Continue

## **Q-Learning Example**

• Page 59-61 in the RL lecture slides

## **Course Evaluation**

- Ending on December 9 (4 days from now!)
- To encourage you to respond, we give 1.5 extra points to students finishing it
- The way to calculate the final score:
  - Calculate the raw scores
  - Set score thresholds (e.g., adjusting the percentage of students getting A, B, etc.)
  - Add the 1.5 extra points

## Thank you

• Good luck for your finals!