
Markov Models

Uncertainty and Time

● Often, we want to reason about a sequence of observations
where the state of the underlying system is changing

● Speech recognition

● Robot localization

● User attention

● Medical monitoring

● Global climate

● Need to introduce time into our models

Markov Models (aka Markov chain/process)

● Value of X at a given time is called the state

● The transition model P(Xt | Xt-1) specifies how the state evolves over time

● Stationarity assumption: transition probabilities are the same at all times

● Markov assumption: “future is independent of the past given the present”

● Xt+1 is independent of X0,…, Xt-1 given Xt

X1X0 X2 X3

P(X0) P(Xt | Xt-1)

Example: Random walk in one dimension

● State: location on the unbounded integer line

● Initial probability: starts at 0

● Transition model: P(Xt = k| Xt-1= k±1) = 0.5

● Applications: particle motion in crystals, stock prices, etc.

-4 -3 -2 -1 0 1 2 3 4

Example: n-gram models

● State: word at position t in text (can also build letter n-grams)

● Transition model (probabilities come from empirical frequencies):

● Unigram (zero-order): P(Wordt = i)

● “logical are as are confusion a may right tries agent goal the was . . .”

● Bigram (first-order): P(Wordt = i | Wordt-1= j)

● “systems are very similar computational approach would be represented . . .”

● Trigram (second-order): P(Wordt = i | Wordt-1= j, Wordt-2= k)

● “planning and scheduling are integrated the success of naive bayes model is .

. .”

● Applications: text classification, spam detection, author identification, language

classification, speech recognition

Example: Web browsing

● State: URL visited at step t

● Transition model:

● With probability p, choose an outgoing link at random

● With probability (1-p), choose an arbitrary new page

● Question: What is the stationary distribution over pages?

● I.e., if the process runs forever, what fraction of time does it spend in any given page?

● Application: Google page rank

6

● States {rain, sun}

rain sun

0.9

0.7

0.3

0.1

Two ways to represent Markov chains

sun

rain

sun

rain

0.1

0.9

0.7

0.3

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

● Initial distribution P(X0)

● Transition model P(Xt | Xt-1)

P(X0)

sun rain

0.5 0.5

Example: Weather

Weather prediction

● Time 0: <0.5,0.5>

● What is the weather like at time 1?

P(X1) = x0
 P(X1,X0=x0)

 = x0
 P(X0=x0) P(X1| X0=x0)

 = 0.5<0.9,0.1> + 0.5<0.3,0.7> = <0.6,0.4>

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Weather prediction, contd.

● Time 1: <0.6,0.4>

● What is the weather like at time 2?

P(X2) = x1
 P(X2,X1=x1)

 = x1
 P(X1=x1) P(X2| X1=x1)

 = 0.6<0.9,0.1> + 0.4<0.3,0.7> = <0.66,0.34>

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Weather prediction, contd.

● Time 2: <0.66,0.34>

● What is the weather like at time 3?

P(X3) = x2
 P(X3,X2=x2)

 = x2
 P(X2=x2) P(X3| X2=x2)

 = 0.66<0.9,0.1> + 0.34<0.3,0.7> = <0.696,0.304>

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

X1X0 X2 X3

Forward algorithm (simple form)

What is the state at time t?

P(Xt) = xt-1
 P(Xt,Xt-1=xt-1)

 = xt-1
 P(Xt-1=xt-1) P(Xt| Xt-1=xt-1)

P(X0) P(Xt | Xt-1)

Forward algorithm in Matrices

● What is the weather like at time 2?

● P(X2) = 0.6<0.9,0.1> + 0.4<0.3,0.7> = <0.66,0.34>

● In matrix-vector form:

● P(X2) = () () = ()
Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

0.9 0.3
0.1 0.7

0.6
0.4

0.66
0.34

Stationary Distributions

● The limiting distribution is called the stationary distribution P of the chain

● It satisfies P = P+1 = TT P

Stationary distribution is <0.75,0.25> regardless of starting distribution

0.9 0.3
0.1 0.7

p
1-p

p
1-p() () = ()

Hidden Markov Models

Hidden Markov Models

● Usually the true state is not observed directly

● Hidden Markov models (HMMs)
● Underlying Markov chain over states X

● You observe evidence E at each time step

● Xt is a single discrete variable; Et may be continuous and may consist of several
variables

X5X1X0 X2 X3

E1 E2 E3 E5

Example: Weather HMM

Umbrellat-1 Umbrellat Umbrellat+1

Weathert-1 Weathert Weathert+1

● An HMM is defined by:
● Initial distribution: P(X0)

● Transition model: P(Xt| Xt-1)

● Sensor model: P(Et| Xt)

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1

HMM as probability model

● Joint distribution for Markov model: P(X0,…, XT) = P(X0) t=1:T P(Xt | Xt-1)

● Joint distribution for hidden Markov model:

P(X0,E0,X1,E1,…, XT,ET) = P(X0) t=1:T P(Xt | Xt-1) P(Et | Xt)

● Future states are independent of the past given the present

● Current evidence is independent of everything else given the current state

● Are evidence variables independent of each other?

X5X1X0 X2 X3

E1 E2 E3 E5

Real HMM Examples

● Speech recognition HMMs:
● Observations are acoustic signals (continuous valued)

● States are specific positions in specific words (so, tens of thousands)

● Machine translation HMMs:
● Observations are words (tens of thousands)

● States are translation options

● Robot tracking:
● Observations are range readings (continuous)

● States are positions on a map (continuous)

● Molecular biology:
● Observations are nucleotides ACGT

● States are coding/non-coding/start/stop/splice-site etc.

Conditional Independence in HMM

Base on D-separation algorithm (see the Bayesian Network slides). Since no

two nodes have common children, to test whether A ⫫ B | C, we only need to

check whether C blocks every path from A to B

For example,

Xj ⫫ Xk | Xi

Xj ⫫ Ek | Xi

Ej ⫫ Xk | Xi

Ej ⫫ Ek | Xi

X2

e1

X1 X3 X4

e2 e3 e4

∀ j < i < k

∀ j < i ≤ k

∀ j ≤ i < k

∀ j ≤ i ≤ k, j ≠ 𝑘

Inference tasks

● Filtering: P(Xt|e1:t)

● belief state—input to the decision process of a rational agent

● Prediction: P(Xt+k|e1:t) for k > 0

● evaluation of possible action sequences; like filtering without the evidence

● Smoothing: P(Xk|e1:t) for 0 ≤ k < t

● better estimate of past states, essential for learning

● Most likely explanation: arg maxx1:t
P(x1:t | e1:t)

● speech recognition, decoding with a noisy channel

Useful notation:

Xa:b = Xa , Xa+1, …, Xb

Inference tasks

Filtering: P(Xt|e1:t)

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3

Prediction: P(Xt+k|e1:t)

Smoothing: P(Xk|e1:t), k<t Explanation: P(X1:t|e1:t)

Filtering / Monitoring

● Filtering, or monitoring, or state estimation, is the task of maintaining the

distribution P(Xt|e1:t) over time

● The Kalman filter (continuous variables, linear dynamics, Gaussian noise)

was invented in 1960 and used for trajectory estimation in the Apollo

program.

Example: Robot Localization

t=0

Sensor model: four bits for wall/no-wall in each direction, never more than 1 mistake

Transition model: action may fail with small prob.

10Prob

Example from
Michael Pfeiffer

t=1

Lighter grey: was possible to get the reading,

but less likely (required 1 mistake)

10Prob

Example: Robot Localization

t=2

10Prob

Example: Robot Localization

t=3

10Prob

Example: Robot Localization

t=4

10Prob

Example: Robot Localization

t=5

10Prob

Example: Robot Localization

Exact Inference in HMM

Filtering
X2

e1

X1 X3 X4

e2 e3 e4

𝑃 𝑋1 𝑒1)

𝑃 𝑋𝑡 𝑒1:𝑡) =?

Base case:

𝑃 𝑋𝑡 𝑋𝑡−1)

𝑃 𝐸𝑡 𝑋𝑡)

𝑃(𝑋1)

∝ 𝑃 𝑋1, 𝑒1

=
𝑃(𝑋1, 𝑒1)

𝑃(𝑒1)

Passage of time:

Suppose we have 𝑃 𝑋𝑡 𝑒1:𝑡).

How to calculate 𝑃 𝑋𝑡+1 𝑒1:𝑡+1)?

Joining 𝑃 𝑋𝑡+1 𝑋𝑡)

𝑃 𝑋𝑡 𝑒1:𝑡) 𝑃 𝑋𝑡+1, 𝑒𝑡+1, 𝑋𝑡 𝑒1:𝑡) 𝑃 𝑋𝑡+1, 𝑒𝑡+1 𝑒1:𝑡) 𝑃 𝑋𝑡+1, 𝑋𝑡 𝑒1:𝑡) 𝑃 𝑋𝑡+1 𝑒1:𝑡+1)

Joining 𝑃 𝑒𝑡+1 𝑋𝑡+1) Marginalize out 𝑋𝑡 Normalize

𝑃 𝑋𝑡+1 𝑒1:𝑡+1) ∝ ෍

𝑥𝑡

𝑃 𝑥𝑡 𝑒1:𝑡)𝑃 𝑋𝑡+1 𝑥𝑡) 𝑃 𝑒𝑡+1 𝑋𝑡+1) Time complexity?

= 𝑃 𝑋1 𝑃(𝑒1|𝑋1)

Exercise

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

T F

sun 0.2 0.8

rain 0.9 0.1

W2

u1

W1 W3 W4

u2 u3 u4𝑃 𝑊2 𝑈1:2 = 𝑇, 𝐹) = ?

Prediction X2

e1

X1 X3 X4

e2 e3 e4

X5 X6 X7

E5 E6 E7𝑃 𝑋𝑡+𝑘 𝑒1:𝑡) =?

We already have 𝑃 𝑋𝑡 𝑒1:𝑡) by filtering

𝑃 𝑋𝑡+1 𝑒1:𝑡) = ෍

𝑥𝑡

𝑃 𝑥𝑡 𝑒1:𝑡)𝑃 𝑋𝑡+1 𝑥𝑡)

𝑃 𝑋𝑡+2 𝑒1:𝑡) = ෍

𝑥𝑡+1

𝑃 𝑥𝑡+1 𝑒1:𝑡)𝑃 𝑋𝑡+2 𝑥𝑡+1)

…

𝑃 𝑋𝑡+𝑘 𝑒1:𝑡) = ෍

𝑥𝑡+𝑘−1

𝑃 𝑥𝑡+𝑘 𝑒1:𝑡)𝑃 𝑋𝑡+𝑘 𝑥𝑡+𝑘−1)

Smoothing X2

e1

X1 X3 X4

e2 e3 e4

X5 X6 X7

e5 e6 e7𝑃 𝑋𝑘 𝑒1:𝑡) =? for some 𝑘 < 𝑡

Here we introduce an approach slightly different from variable elimination.

𝑃 𝑋𝑘 | 𝑒1:𝑡 ∝ 𝑃 𝑋𝑘 , 𝑒𝑘+1:𝑡 𝑒1:𝑘) = 𝑃(𝑋𝑘 𝑒1:𝑘 𝑃 𝑒𝑘+1:𝑡 𝑋𝑘)

Forward algorithm (filtering) Backward algorithm

Just with one forward pass and one backward pass, we can calculate 𝑃 𝑋𝑘 𝑒1:𝑡) for all k.

Most-Likely Sequence

argmax
𝑋1:𝑡

 𝑃 𝑋1:𝑡 𝑒1:𝑡) =? Find the sequence that maximizes the probability

(e.g., speech recognition, sequence decoding)

𝑃 𝑋1:𝑡 𝑒1:𝑡) ∝ 𝑃 𝑋1:𝑡, 𝑒1:𝑡 = 𝑃 𝑋1 𝑃(𝑒1|𝑋1) 𝑃 𝑋2 𝑋1)𝑃(𝑒2 𝑋2 ⋯ 𝑃 𝑋𝑡 𝑋𝑡−1)𝑃(𝑒𝑡 𝑋𝑡

Time 1 Time 2 Time t

a

b

z

Possible
states

a

b

z

a

b

z

… … …

Find a sequence, e.g. 𝑋1 = 𝑏, 𝑋2 = 𝑎, … , 𝑋𝑡 = 𝑧 that maximize 𝑃 𝑋1:𝑡, 𝑒1:𝑡

Most-Likely Sequence through Dynamic Programming

𝑃 𝑋1:𝑡 𝑒1:𝑡) ∝ 𝑃 𝑋1:𝑡, 𝑒1:𝑡 = 𝑃 𝑋1 𝑃(𝑒1|𝑋1) 𝑃 𝑋2 𝑋1)𝑃(𝑒2 𝑋2 ⋯ 𝑃 𝑋𝑡 𝑋𝑡−1)𝑃(𝑒𝑡 𝑋𝑡

Time 1 Time 2 Time t

a

b

z

Possible
states

a

b

z

a

b

z

… … …

For each state s, let Prob 1 𝑠 = 𝑃 𝑋1 = 𝑠 𝑃(𝑒1|𝑋1 = 𝑠)

For each states s, let Prob 𝑘 𝑠 = max
𝑠′

 Prob 𝑘 − 1 𝑠′ × 𝑃 𝑋𝑘 = 𝑠 𝑋𝑘−1 = 𝑠′) × 𝑃(𝑒𝑘|𝑋𝑘 = 𝑠)

For 𝑘 = 2, … , 𝑡:

Viterbi Algorithm

Approximate Inference in HMM

Particle Filtering

Particle Filtering

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5

● Filtering: approximate solution

● Sometimes |X| is too big to use exact inference
● |X| may be too big to even store P(X)

● E.g. X is continuous

● Solution: approximate inference
● Track samples of X, not all values

● Samples are called particles

● Time per step is linear in the number of samples

● But: number needed may be large

● In memory: list of particles, not states

● This is how robot localization works in practice

● Particle is just new name for sample

Representation: Particles

● Our representation of P(X) is now a list of N particles

(samples)

● Generally, N << |X|

● Storing map from X to counts would defeat the point

● P(x) approximated by number of particles with value x

● So, many x may have P(x) = 0

● More particles, more accuracy

● For now, all particles have a weight of 1

Particles:
 (3,3)
 (2,3)
 (3,3)
 (3,2)
 (3,3)
 (3,2)
 (1,2)
 (3,3)
 (3,3)
 (2,3)

Particle Filtering: Elapse Time

● Each particle is moved by sampling its next
position from the transition model

● This is like prior sampling – samples’ frequencies
reflect the transition probabilities

● This captures the passage of time

● If enough samples, close to exact values before
and after (consistent)

Particles:
 (3,3)
 (2,3)
 (3,3)
 (3,2)
 (3,3)
 (3,2)
 (1,2)
 (3,3)
 (3,3)
 (2,3)

Particles:
 (3,2)
 (2,3)
 (3,2)
 (3,1)
 (3,3)
 (3,2)
 (1,3)
 (2,3)
 (3,2)
 (2,2)

● Don’t sample observation, fix it

● Similar to likelihood weighting,
downweight samples based on the
evidence

● As before, the probabilities don’t sum to
one, since all have been downweighted

Particle Filtering: Observe

Particles:
 (3,2) w=.9
 (2,3) w=.2
 (3,2) w=.9
 (3,1) w=.4
 (3,3) w=.4
 (3,2) w=.9
 (1,3) w=.1
 (2,3) w=.2
 (3,2) w=.9
 (2,2) w=.4

Particles:
 (3,2)
 (2,3)
 (3,2)
 (3,1)
 (3,3)
 (3,2)
 (1,3)
 (2,3)
 (3,2)
 (2,2)

Particle Filtering: Resample

● Rather than tracking weighted samples, we
resample

● N times, we choose from our weighted sample
distribution (i.e. draw with replacement)

● This is similar to renormalizing the distribution

● Now the update is complete for this time step,
continue with the next one

Particles:
 (3,2) w=.9
 (2,3) w=.2
 (3,2) w=.9
 (3,1) w=.4
 (3,3) w=.4
 (3,2) w=.9
 (1,3) w=.1
 (2,3) w=.2
 (3,2) w=.9
 (2,2) w=.4

(New) Particles:
 (3,2)
 (2,2)
 (3,2)
 (2,3)
 (3,3)
 (3,2)
 (1,3)
 (2,3)
 (3,2)
 (3,2)

Recap: Particle Filtering

● Particles: track samples of states rather than an explicit distribution

Particles:
 (3,3)
 (2,3)
 (3,3)
 (3,2)
 (3,3)
 (3,2)
 (1,2)
 (3,3)
 (3,3)
 (2,3)

Elapse Weight Resample

Particles:
 (3,2)
 (2,3)
 (3,2)
 (3,1)
 (3,3)
 (3,2)
 (1,3)
 (2,3)
 (3,2)
 (2,2)

Particles:
 (3,2) w=.9
 (2,3) w=.2
 (3,2) w=.9
 (3,1) w=.4
 (3,3) w=.4
 (3,2) w=.9
 (1,3) w=.1
 (2,3) w=.2
 (3,2) w=.9
 (2,2) w=.4

(New) Particles:
 (3,2)
 (2,2)
 (3,2)
 (2,3)
 (3,3)
 (3,2)
 (1,3)
 (2,3)
 (3,2)
 (3,2)

Robot Localization

● In robot localization:

● We know the map, but not the robot’s position

● Observations may be vectors of range finder readings

● State space and readings are typically continuous

(works basically like a very fine grid) and so we

cannot store B(X)

● Particle filtering is a main technique

X2

e1

X1 X3 X4

e2 e3 e4

True location

Sensor signal

Particle Filter Localization (Sonar)

Particle Filter Localization (Laser)

Robot Mapping

● SLAM: Simultaneous Localization And Mapping

● We do not know the map or our location

● State consists of position AND map!

● Main techniques: Kalman filtering (Gaussian HMMs)

and particle methods

Particle Filter SLAM – Video 1

Particle Filter SLAM – Video 2

Particle Filtering

Localization: https://www.youtube.com/watch?v=NrzmH_yerBU&ab_channel=MATLAB

SLAM: https://www.youtube.com/watch?v=saVZtgPyyJQ&ab_channel=MATLAB

https://www.youtube.com/watch?v=NrzmH_yerBU&ab_channel=MATLAB
https://www.youtube.com/watch?v=saVZtgPyyJQ&ab_channel=MATLAB

Some Failure Modes of Particle Filtering

Too few particles

●

×

● Particle

× True location

→ The particle has to be dense enough

to cover the true state

Some Failure Modes of Particle Filtering

Moderate number of particles but very static state transition

●

●

● ●

● ●
×

●

● Particle

× True location

Suppose every state always transitions to itself.

→All particles and the true location will never move.

→After several rounds of re-sampling, particles will

accumulate to a single position.

Homework 4

Homework 4

1. Choice Questions (10 points)
a. 10 questions.
b. Answer directly on Gradescope
c. The same requirements as the last time.

2. Program Questions (25 points)

Ghostbusters and Bayes Nets

Introduction of Project 4: Ghostbusters and Bayes Nets

Color Blocks:

Indicate possible locations of each ghost
based on distance readings.

Primary Task:

1. Implement inference to track ghost
positions.

2. Improve on the default crude inference
(shaded areas show possible ghost
locations).

3. Use Bayes Nets for exact and
approximate inference.

Question 1 (2 points): Bayes Net Structure

Objective:

Implement constructBayesNet function in inference.py to create an empty
Bayes Net structure as described.

Tasks:

1. Add variables and edges based on the diagram.
2. Pacman and the two ghosts can be anywhere

in the grid
3. Observations here are non-negative, equal to Manhattan distances of

Pacman to ghosts ± noise.

Question 2: Join Factors

Objective:

1. Takes a list of Factors and returns a new Factor.
2. The new Factor's entries are the product of corresponding rows of input

Factors.

Assumptions:

joinFactors may operate on factors without probability tables (rows may not
sum to 1).

Examples:

Question 3: Eliminate (not ghosts yet)

Objective:

1. Takes a Factor and a variable to eliminate.
2. Returns a new Factor without that variable, by summing entries differing

in the eliminated variable’s value.

Question 4: Variable Elimination

Objective: Answers a probabilistic query represented using, A
BayesNet, A list of query variables and Evidence.

Hints and Observations:

1. Refer to inferenceByEnumeration function for guidance.
2. Sum of probabilities should equal 1 (to ensure it’s a true

conditional probability).
3. Enumeration joins all variables first and then eliminates all

hidden variables.
4. Variable Elimination interleaves join and eliminate,

processing one hidden variable at a time.
5. Handle cases where a factor has only one unconditioned

variable after joining.

Question 5a and 5b

5a objective:

Complete DiscreteDistribution to extends the Python dictionary, where keys
are elements of the distribution, and values are the associated weights.

5b objective:

Complete getObservationProb to Calculates the probability of a noisy
distance reading between Pacman and a ghost.

Question 6: Exact Inference Observation

Objective:

Implement observeUpdate to update the belief
distribution over ghost positions based on Pacman’s
sensor observations.

Display Behavior:

● High posterior beliefs are shown as bright colors; low
beliefs are dim.

● Beliefs should start broad and narrow down as more
evidence is collected.

Question 7: Exact Inference with Time Elapse

Objective:

Implement the elapseTime to update ghost position beliefs over time
based on movement patterns without observing them.

Question 7: Exact Inference with Time Elapse

Notes:

● If code is slow, reduce calls to
self.getPositionDistribution.

● Pacman’s belief distribution adjusts based on possible
ghost movements without direct observation.

● Beliefs will adapt to the board geometry and likely
ghost moves over time.

Special Ghost Behavior:

● GoSouthGhost: A ghost that tends to move south over
time.

● Pacman’s belief distribution should focus near the
board’s bottom as the GoSouthGhost moves south.

Question 8: Exact Inference Full Test

Objective:

1. The agent should select actions based on the
belief distribution to move towards the closest
ghost.

Tasks:

1. Identify the most likely position of each
uncaptured ghost.

2. Choose an action that minimizes the maze
distance to the closest ghost.

Question 9: Approximate Inference Initialization & Beliefs

Objective:

Implement initializeUniformly and getBeliefDistribution to set up a particle
filtering algorithm to track a single ghost.

Method Details:

1. initializeUniformly:

Distribute particles evenly across all legal ghost positions (ensures a uniform
prior).

Consider using the mod operator to achieve even distribution.

1. getBeliefDistribution:

Convert the list of particles into a DiscreteDistribution object representing the
belief distribution.

Question 10 & 11: Approximate Inference Observation

Q10: Approximate Inference Observation

Implement the observeUpdate for updating the weight distribution over
self.particles based on Pacman’s observation.

Q11: Approximate Inference with Time Elapse

Implement the elapseTime to update self.particles by constructing a new list
of particles that corresponds to each existing particle advancing a time step.

	Slide 1: Markov Models
	Slide 2: Uncertainty and Time
	Slide 3: Markov Models (aka Markov chain/process)
	Slide 4: Example: Random walk in one dimension
	Slide 5: Example: n-gram models
	Slide 6: Example: Web browsing
	Slide 7: Example: Weather
	Slide 8: Weather prediction
	Slide 9: Weather prediction, contd.
	Slide 10: Weather prediction, contd.
	Slide 11: Forward algorithm (simple form)
	Slide 12: Forward algorithm in Matrices
	Slide 13: Stationary Distributions
	Slide 14: Hidden Markov Models
	Slide 15: Hidden Markov Models
	Slide 16: Example: Weather HMM
	Slide 17: HMM as probability model
	Slide 18: Real HMM Examples
	Slide 19: Conditional Independence in HMM
	Slide 20: Inference tasks
	Slide 21: Inference tasks
	Slide 22: Filtering / Monitoring
	Slide 23: Example: Robot Localization
	Slide 24: Example: Robot Localization
	Slide 25: Example: Robot Localization
	Slide 26: Example: Robot Localization
	Slide 27: Example: Robot Localization
	Slide 28: Example: Robot Localization
	Slide 29: Exact Inference in HMM
	Slide 30: Filtering
	Slide 31: Exercise
	Slide 32: Prediction
	Slide 33: Smoothing
	Slide 34
	Slide 35: Most-Likely Sequence
	Slide 36: Most-Likely Sequence through Dynamic Programming
	Slide 37: Approximate Inference in HMM
	Slide 38: Particle Filtering
	Slide 39: Particle Filtering
	Slide 40: Representation: Particles
	Slide 41: Particle Filtering: Elapse Time
	Slide 42: Particle Filtering: Observe
	Slide 43: Particle Filtering: Resample
	Slide 44: Recap: Particle Filtering
	Slide 45: Robot Localization
	Slide 46: Particle Filter Localization (Sonar)
	Slide 47: Particle Filter Localization (Laser)
	Slide 48: Robot Mapping
	Slide 49: Particle Filter SLAM – Video 1
	Slide 50: Particle Filter SLAM – Video 2
	Slide 51: Particle Filtering
	Slide 52: Some Failure Modes of Particle Filtering
	Slide 53: Some Failure Modes of Particle Filtering
	Slide 54: Homework 4
	Slide 55: Homework 4
	Slide 56: Introduction of Project 4: Ghostbusters and Bayes Nets
	Slide 57: Question 1 (2 points): Bayes Net Structure
	Slide 58: Question 2: Join Factors
	Slide 59: Question 3: Eliminate (not ghosts yet)
	Slide 60: Question 4: Variable Elimination
	Slide 61: Question 5a and 5b
	Slide 62: Question 6: Exact Inference Observation
	Slide 63: Question 7: Exact Inference with Time Elapse
	Slide 64: Question 7: Exact Inference with Time Elapse
	Slide 65: Question 8: Exact Inference Full Test
	Slide 66: Question 9: Approximate Inference Initialization & Beliefs
	Slide 67: Question 10 & 11: Approximate Inference Observation

