
Markov Models



Uncertainty and Time

● Often, we want to reason about a sequence of observations 
where the state of the underlying system is changing

● Speech recognition

● Robot localization

● User attention

● Medical monitoring

● Global climate

● Need to introduce time into our models



Markov Models (aka Markov chain/process)

● Value of X at a given time is called the state

● The transition model P(Xt | Xt-1) specifies how the state evolves over time 

● Stationarity assumption: transition probabilities are the same at all times

● Markov assumption: “future is independent of the past given the present”

● Xt+1 is independent of X0,…, Xt-1 given Xt

X1X0 X2 X3

P(X0) P(Xt | Xt-1)



Example: Random walk in one dimension

● State: location on the unbounded integer line

● Initial probability: starts at 0

● Transition model: P(Xt = k| Xt-1= k±1) = 0.5 

● Applications: particle motion in crystals, stock prices, etc.
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Example: n-gram models

● State: word at position t in text (can also build letter n-grams)

● Transition model (probabilities come from empirical frequencies):

● Unigram (zero-order): P(Wordt = i) 

● “logical are as are confusion a may right tries agent goal the was . . .”

● Bigram (first-order): P(Wordt = i | Wordt-1= j)

●  “systems are very similar computational approach would be represented . . .”

● Trigram (second-order): P(Wordt = i | Wordt-1= j, Wordt-2= k) 

● “planning and scheduling are integrated the success of naive bayes model is . 

. .”

● Applications: text classification, spam detection, author identification, language 

classification, speech recognition



Example: Web browsing

● State: URL visited at step t

● Transition model:

● With probability p, choose an outgoing link at random

● With probability (1-p), choose an arbitrary new page

● Question: What is the stationary distribution over pages?

● I.e., if the process runs forever, what fraction of time does it spend in any given page?

● Application: Google page rank
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● States {rain, sun}

rain sun
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Two ways to represent Markov chains 

sun

rain

sun
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Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

● Initial distribution P(X0) 

● Transition model P(Xt | Xt-1)

P(X0)

sun rain

0.5 0.5

Example: Weather



Weather prediction

● Time 0: <0.5,0.5>

● What is the weather like at time 1?

P(X1) = x0
 P(X1,X0=x0)

          = x0
 P(X0=x0) P(X1| X0=x0)

          = 0.5<0.9,0.1> + 0.5<0.3,0.7> = <0.6,0.4>

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7



Weather prediction, contd.

● Time 1: <0.6,0.4>

● What is the weather like at time 2?

P(X2) = x1
 P(X2,X1=x1)

          = x1
 P(X1=x1) P(X2| X1=x1)

          = 0.6<0.9,0.1> + 0.4<0.3,0.7> = <0.66,0.34>

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7



Weather prediction, contd.

● Time 2: <0.66,0.34>

● What is the weather like at time 3?

P(X3) = x2
 P(X3,X2=x2)

          = x2
 P(X2=x2) P(X3| X2=x2)

          = 0.66<0.9,0.1> + 0.34<0.3,0.7> = <0.696,0.304>

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7



X1X0 X2 X3

Forward algorithm (simple form)

What is the state at time t?

P(Xt) = xt-1
 P(Xt,Xt-1=xt-1)

        = xt-1
 P(Xt-1=xt-1) P(Xt| Xt-1=xt-1)

P(X0) P(Xt | Xt-1)



Forward algorithm in Matrices

● What is the weather like at time 2?

● P(X2) = 0.6<0.9,0.1> + 0.4<0.3,0.7> = <0.66,0.34>

● In matrix-vector form:

● P(X2) = (         ) (    ) = (      )
Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

0.9 0.3
0.1 0.7

0.6
0.4

0.66
0.34



Stationary Distributions

● The limiting distribution is called the stationary distribution P  of the chain

● It satisfies P = P+1 = TT P

Stationary distribution is <0.75,0.25> regardless of starting distribution

0.9 0.3
0.1 0.7

p
1-p

p
1-p(           ) (  ) =  ( )



Hidden Markov Models



Hidden Markov Models

● Usually the true state is not observed directly

● Hidden Markov models (HMMs)
● Underlying Markov chain over states X

● You observe evidence E at each time step

● Xt is a single discrete variable; Et may be continuous and may consist of several 
variables

X5X1X0 X2 X3

E1 E2 E3 E5



Example: Weather HMM

Umbrellat-1 Umbrellat Umbrellat+1

Weathert-1 Weathert Weathert+1

● An HMM is defined by:
● Initial distribution:   P(X0)

● Transition model:    P(Xt| Xt-1)

● Sensor model:          P(Et| Xt)

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1



HMM as probability model

● Joint distribution for Markov model: P(X0,…, XT) = P(X0) t=1:T P(Xt | Xt-1)

● Joint distribution for hidden Markov model:                                                                 

P(X0,E0,X1,E1,…, XT,ET) = P(X0) t=1:T P(Xt | Xt-1) P(Et | Xt) 

● Future states are independent of the past given the present

● Current evidence is independent of everything else given the current state

● Are evidence variables independent of each other?

X5X1X0 X2 X3

E1 E2 E3 E5



Real HMM Examples

● Speech recognition HMMs:
● Observations are acoustic signals (continuous valued)

● States are specific positions in specific words (so, tens of thousands)

● Machine translation HMMs:
● Observations are words (tens of thousands)

● States are translation options

● Robot tracking:
● Observations are range readings (continuous)

● States are positions on a map (continuous)

● Molecular biology:
● Observations are nucleotides ACGT

● States are coding/non-coding/start/stop/splice-site etc.



Conditional Independence in HMM

Base on D-separation algorithm (see the Bayesian Network slides). Since no 

two nodes have common children, to test whether A ⫫ B | C,  we only need to 

check whether C blocks every path from A to B

For example, 

Xj ⫫ Xk | Xi

Xj ⫫ Ek | Xi

Ej ⫫ Xk | Xi

Ej ⫫ Ek | Xi

X2

e1

X1 X3 X4

e2 e3 e4

∀ j < i < k

∀ j < i ≤ k

∀ j ≤ i < k

∀ j ≤ i ≤ k,  j ≠ 𝑘



Inference tasks

● Filtering: P(Xt|e1:t)

● belief state—input to the decision process of a rational agent 

● Prediction: P(Xt+k|e1:t) for k > 0 

● evaluation of possible action sequences; like filtering without the evidence 

● Smoothing: P(Xk|e1:t) for 0 ≤ k < t

● better estimate of past states, essential for learning 

● Most likely explanation: arg maxx1:t 
P(x1:t | e1:t) 

● speech recognition, decoding with a noisy channel 

Useful notation: 

Xa:b = Xa , Xa+1, …, Xb



Inference tasks

Filtering: P(Xt|e1:t)

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3

Prediction: P(Xt+k|e1:t)

Smoothing: P(Xk|e1:t), k<t Explanation: P(X1:t|e1:t)



Filtering / Monitoring

● Filtering, or monitoring, or state estimation, is the task of maintaining the 

distribution P(Xt|e1:t) over time

● The Kalman filter (continuous variables, linear dynamics, Gaussian noise) 

was invented in 1960 and used for trajectory estimation in the Apollo 

program.



Example: Robot Localization

t=0

Sensor model: four bits for wall/no-wall in each direction, never more than 1 mistake

Transition model: action may fail with small prob.

10Prob

Example from 
Michael Pfeiffer



t=1

Lighter grey: was possible to get the reading, 

but less likely (required 1 mistake)

10Prob

Example: Robot Localization



t=2

10Prob

Example: Robot Localization



t=3

10Prob

Example: Robot Localization



t=4

10Prob

Example: Robot Localization



t=5

10Prob

Example: Robot Localization



Exact Inference in HMM



Filtering
X2

e1

X1 X3 X4

e2 e3 e4

𝑃 𝑋1 𝑒1)

𝑃 𝑋𝑡 𝑒1:𝑡) =?

Base case: 

𝑃 𝑋𝑡 𝑋𝑡−1)

𝑃 𝐸𝑡 𝑋𝑡)

𝑃(𝑋1)

∝ 𝑃 𝑋1, 𝑒1

=
𝑃(𝑋1, 𝑒1)

𝑃(𝑒1)

Passage of time:  

Suppose we have 𝑃 𝑋𝑡 𝑒1:𝑡).  

How to calculate 𝑃 𝑋𝑡+1 𝑒1:𝑡+1)? 

Joining 𝑃 𝑋𝑡+1 𝑋𝑡)

𝑃 𝑋𝑡 𝑒1:𝑡) 𝑃 𝑋𝑡+1, 𝑒𝑡+1, 𝑋𝑡 𝑒1:𝑡) 𝑃 𝑋𝑡+1, 𝑒𝑡+1 𝑒1:𝑡) 𝑃 𝑋𝑡+1, 𝑋𝑡 𝑒1:𝑡) 𝑃 𝑋𝑡+1  𝑒1:𝑡+1) 

Joining 𝑃 𝑒𝑡+1 𝑋𝑡+1) Marginalize out 𝑋𝑡 Normalize

𝑃 𝑋𝑡+1 𝑒1:𝑡+1) ∝ ෍

𝑥𝑡

𝑃 𝑥𝑡 𝑒1:𝑡)𝑃 𝑋𝑡+1 𝑥𝑡) 𝑃 𝑒𝑡+1 𝑋𝑡+1) Time complexity?

= 𝑃 𝑋1 𝑃(𝑒1|𝑋1)



Exercise

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

T F

sun 0.2 0.8

rain 0.9 0.1

W2

u1

W1 W3 W4

u2 u3 u4𝑃 𝑊2  𝑈1:2 = 𝑇, 𝐹  ) = ?



Prediction X2

e1

X1 X3 X4

e2 e3 e4

X5 X6 X7

E5 E6 E7𝑃 𝑋𝑡+𝑘 𝑒1:𝑡) =?

We already have  𝑃 𝑋𝑡 𝑒1:𝑡) by filtering

𝑃 𝑋𝑡+1 𝑒1:𝑡) = ෍

𝑥𝑡

𝑃 𝑥𝑡 𝑒1:𝑡)𝑃 𝑋𝑡+1 𝑥𝑡) 

𝑃 𝑋𝑡+2 𝑒1:𝑡) = ෍

𝑥𝑡+1

𝑃 𝑥𝑡+1 𝑒1:𝑡)𝑃 𝑋𝑡+2 𝑥𝑡+1) 

…

𝑃 𝑋𝑡+𝑘 𝑒1:𝑡) = ෍

𝑥𝑡+𝑘−1

𝑃 𝑥𝑡+𝑘 𝑒1:𝑡)𝑃 𝑋𝑡+𝑘 𝑥𝑡+𝑘−1) 



Smoothing X2

e1

X1 X3 X4

e2 e3 e4

X5 X6 X7

e5 e6 e7𝑃 𝑋𝑘 𝑒1:𝑡) =?    for some 𝑘 < 𝑡

Here we introduce an approach slightly different from variable elimination.   

𝑃 𝑋𝑘 | 𝑒1:𝑡 ∝ 𝑃 𝑋𝑘 , 𝑒𝑘+1:𝑡 𝑒1:𝑘) = 𝑃(𝑋𝑘  𝑒1:𝑘  𝑃 𝑒𝑘+1:𝑡 𝑋𝑘)

Forward algorithm (filtering) Backward algorithm

Just with one forward pass and one backward pass, we can calculate 𝑃 𝑋𝑘 𝑒1:𝑡) for all k.  





Most-Likely Sequence

argmax
𝑋1:𝑡

 𝑃 𝑋1:𝑡 𝑒1:𝑡) =? Find the sequence that maximizes the probability 

(e.g., speech recognition, sequence decoding)

𝑃 𝑋1:𝑡 𝑒1:𝑡) ∝ 𝑃 𝑋1:𝑡, 𝑒1:𝑡 = 𝑃 𝑋1 𝑃(𝑒1|𝑋1) 𝑃 𝑋2 𝑋1)𝑃(𝑒2 𝑋2 ⋯ 𝑃 𝑋𝑡 𝑋𝑡−1)𝑃(𝑒𝑡 𝑋𝑡

Time 1 Time 2 Time t

a

b

z

Possible 
states

a

b

z

a

b

z

… … …

Find a sequence, e.g.   𝑋1 = 𝑏, 𝑋2 = 𝑎,  … , 𝑋𝑡 = 𝑧  that maximize 𝑃 𝑋1:𝑡, 𝑒1:𝑡



Most-Likely Sequence through Dynamic Programming

𝑃 𝑋1:𝑡 𝑒1:𝑡) ∝ 𝑃 𝑋1:𝑡, 𝑒1:𝑡 = 𝑃 𝑋1 𝑃(𝑒1|𝑋1) 𝑃 𝑋2 𝑋1)𝑃(𝑒2 𝑋2 ⋯ 𝑃 𝑋𝑡 𝑋𝑡−1)𝑃(𝑒𝑡 𝑋𝑡

Time 1 Time 2 Time t

a

b

z

Possible 
states

a

b

z

a

b

z

… … …

For each state s,  let Prob 1 𝑠 = 𝑃 𝑋1 = 𝑠  𝑃(𝑒1|𝑋1 = 𝑠)

For each states s,  let Prob 𝑘 𝑠 = max
𝑠′

 Prob 𝑘 − 1 𝑠′ × 𝑃 𝑋𝑘 = 𝑠 𝑋𝑘−1 = 𝑠′) × 𝑃(𝑒𝑘|𝑋𝑘 = 𝑠)

For 𝑘 = 2, … , 𝑡: 

Viterbi Algorithm



Approximate Inference in HMM



Particle Filtering



Particle Filtering

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5

● Filtering: approximate solution

● Sometimes |X| is too big to use exact inference
● |X| may be too big to even store P(X)

● E.g. X is continuous

● Solution: approximate inference
● Track samples of X, not all values

● Samples are called particles

● Time per step is linear in the number of samples

● But: number needed may be large

● In memory: list of particles, not states

● This is how robot localization works in practice

● Particle is just new name for sample



Representation: Particles

● Our representation of P(X) is now a list of N particles 

(samples)

● Generally, N << |X|

● Storing map from X to counts would defeat the point

● P(x) approximated by number of particles with value x

● So, many x may have P(x) = 0 

● More particles, more accuracy

● For now, all particles have a weight of 1

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)



Particle Filtering: Elapse Time

● Each particle is moved by sampling its next 
position from the transition model

● This is like prior sampling – samples’ frequencies 
reflect the transition probabilities

● This captures the passage of time

● If enough samples, close to exact values before 
and after (consistent)

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)



● Don’t sample observation, fix it

● Similar to likelihood weighting, 
downweight samples based on the 
evidence

● As before, the probabilities don’t sum to 
one, since all have been downweighted

Particle Filtering: Observe

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)



Particle Filtering: Resample

● Rather than tracking weighted samples, we 
resample

● N times, we choose from our weighted sample 
distribution (i.e. draw with replacement)

● This is similar to renormalizing the distribution

● Now the update is complete for this time step, 
continue with the next one

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

(New) Particles:
    (3,2)
    (2,2)
    (3,2)   
    (2,3)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (3,2)



Recap: Particle Filtering

● Particles: track samples of states rather than an explicit distribution

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

Elapse Weight Resample

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

(New) Particles:
    (3,2)
    (2,2)
    (3,2)   
    (2,3)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (3,2)



Robot Localization

● In robot localization:

● We know the map, but not the robot’s position

● Observations may be vectors of range finder readings

● State space and readings are typically continuous 

(works basically like a very fine grid) and so we 

cannot store B(X)

● Particle filtering is a main technique

X2

e1

X1 X3 X4

e2 e3 e4

True location

Sensor signal



Particle Filter Localization (Sonar)



Particle Filter Localization (Laser)



Robot Mapping

● SLAM: Simultaneous Localization And Mapping

● We do not know the map or our location

● State consists of position AND map!

● Main techniques: Kalman filtering (Gaussian HMMs) 

and particle methods



Particle Filter SLAM – Video 1



Particle Filter SLAM – Video 2



Particle Filtering

Localization:  https://www.youtube.com/watch?v=NrzmH_yerBU&ab_channel=MATLAB 

SLAM:  https://www.youtube.com/watch?v=saVZtgPyyJQ&ab_channel=MATLAB 

https://www.youtube.com/watch?v=NrzmH_yerBU&ab_channel=MATLAB
https://www.youtube.com/watch?v=saVZtgPyyJQ&ab_channel=MATLAB


Some Failure Modes of Particle Filtering

Too few particles

●

×

● Particle

× True location

→ The particle has to be dense enough 

to cover the true state



Some Failure Modes of Particle Filtering

Moderate number of particles but very static state transition

●

●

● ●

● ●
×

●

● Particle

× True location

Suppose every state always transitions to itself. 

→All particles and the true location will never move.

→After several rounds of re-sampling, particles will 

accumulate to a single position. 



Homework 4



Homework 4

1.  Choice Questions (10 points)
a. 10 questions. 
b. Answer directly on Gradescope
c. The same requirements as the last time.

2.  Program Questions (25 points)

Ghostbusters and Bayes Nets



Introduction of Project 4: Ghostbusters and Bayes Nets

Color Blocks:

Indicate possible locations of each ghost 
based on distance readings.

Primary Task:

1. Implement inference to track ghost 
positions.

2. Improve on the default crude inference 
(shaded areas show possible ghost 
locations).

3. Use Bayes Nets for exact and 
approximate inference.



Question 1 (2 points): Bayes Net Structure

Objective: 

Implement constructBayesNet function in inference.py to create an empty 
Bayes Net structure as described.

Tasks:

1. Add variables and edges based on the diagram.
2. Pacman and the two ghosts can be anywhere 

in the grid
3. Observations here are non-negative, equal to Manhattan distances of 

Pacman to ghosts ± noise.



Question 2: Join Factors

Objective:

1. Takes a list of Factors and returns a new Factor.
2. The new Factor's entries are the product of corresponding rows of input 

Factors.

Assumptions:

joinFactors may operate on factors without probability tables (rows may not 
sum to 1).

Examples:



Question 3: Eliminate (not ghosts yet)

Objective:

1. Takes a Factor and a variable to eliminate.
2. Returns a new Factor without that variable, by summing entries differing 

in the eliminated variable’s value.



Question 4: Variable Elimination

Objective: Answers a probabilistic query represented using, A 
BayesNet, A list of query variables and Evidence.

Hints and Observations:

1. Refer to inferenceByEnumeration function for guidance.
2. Sum of probabilities should equal 1 (to ensure it’s a true 

conditional probability).
3. Enumeration joins all variables first and then eliminates all 

hidden variables.
4. Variable Elimination interleaves join and eliminate, 

processing one hidden variable at a time.
5. Handle cases where a factor has only one unconditioned 

variable after joining.



Question 5a and 5b

5a objective:

Complete DiscreteDistribution to extends the Python dictionary, where keys 
are elements of the distribution, and values are the associated weights.

5b objective:

Complete getObservationProb to Calculates the probability of a noisy 
distance reading between Pacman and a ghost.



Question 6: Exact Inference Observation

Objective:

Implement observeUpdate to update the belief 
distribution over ghost positions based on Pacman’s 
sensor observations.

Display Behavior:

● High posterior beliefs are shown as bright colors; low 
beliefs are dim.

● Beliefs should start broad and narrow down as more 
evidence is collected.



Question 7: Exact Inference with Time Elapse

Objective:

Implement the elapseTime to update ghost position beliefs over time 
based on movement patterns without observing them.



Question 7: Exact Inference with Time Elapse

Notes:

● If code is slow, reduce calls to 
self.getPositionDistribution.

● Pacman’s belief distribution adjusts based on possible 
ghost movements without direct observation.

● Beliefs will adapt to the board geometry and likely 
ghost moves over time.

Special Ghost Behavior:

● GoSouthGhost: A ghost that tends to move south over 
time.

● Pacman’s belief distribution should focus near the 
board’s bottom as the GoSouthGhost moves south.



Question 8: Exact Inference Full Test

Objective:

1. The agent should select actions based on the 
belief distribution to move towards the closest 
ghost.

Tasks:

1. Identify the most likely position of each 
uncaptured ghost.

2. Choose an action that minimizes the maze 
distance to the closest ghost.



Question 9: Approximate Inference Initialization & Beliefs

Objective:

Implement initializeUniformly and getBeliefDistribution to set up a particle 
filtering algorithm to track a single ghost.

Method Details:

1. initializeUniformly:

Distribute particles evenly across all legal ghost positions (ensures a uniform 
prior).

Consider using the mod operator to achieve even distribution.

1. getBeliefDistribution:

Convert the list of particles into a DiscreteDistribution object representing the 
belief distribution.



Question 10 & 11: Approximate Inference Observation

Q10: Approximate Inference Observation

Implement the observeUpdate for updating the weight distribution over 
self.particles based on Pacman’s observation.

Q11: Approximate Inference with Time Elapse

Implement the elapseTime to update self.particles by constructing a new list 
of particles that corresponds to each existing particle advancing a time step.
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