Markov Models



Uncertainty and Time

e Often, we want to reason about a sequence of observations
where the state of the underlying system is changing

e Speech recognition
e Robot localization
e User attention

e Medical monitoring
e Global climate

e Need to introduce time into our models



Markov Models (aka Markov chain/process)
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e Value of X at a given time is called the state

e The transition model P(X, | X, ;) specifies how the state evolves over time
e Stationarity assumption: transition probabilities are the same at all times
e Markov assumption: “future is independent of the past given the present”

e Xi41 Isindependent of Xg,..., X; 1 given X,



Example: Random walk in one dimension

e State: location on the unbounded integer line

e Initial probability: starts at O

e Transition model: P(X, = k| X_;= k+1) = 0.5

e Applications: particle motion in crystals, stock prices, etc.



T N s
Example: n-gram models O—)Q-ﬁ\@_}@ —Q
ﬁarelf_, Lo}k
e State: word at position t in text (can also build letter n-grams)

e Transition model (probabilities come from empirical frequencies):
e Unigram (zero-order): P(Word, = 1)
e “logical are as are confusion a may right tries agent goal the was . . .”
e Bigram (first-order): P(Word, =i | Word, ;=)
e “systems are very similar computational approach would be represented . . .”
e Trigram (second-order): P(Word, =i | Word, ;= |, Word, ,= k)
e “planning and scheduling are integrated the success of naive bayes model is .

e Applications: text classification, spam detection, author identification, language
classification, speech recognition



Example: Web browsing

State: URL visited at step t

Transition model:
e With probability p, choose an outgoing link at random
e With probability (1-p), choose an arbitrary new page

Question: What is the stationary distribution over pages?
e |.e., if the process runs forever, what fraction of time does it spend in any given page?

Application: Google page rank



Example: Weather
e States {rain, sun}

e [nitial distribution P(X;)
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e Transition model P(X, | X, ;)
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Weather prediction

e Time 0: <0.5,0.5>
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e \What is the weather like at time 1?

P(Xl) - ZXO P(X1,Xo=Xo)

= ZXO P(Xy=Xg) P(X;| Xg=Xg)

= 0.5<0.9,0.1> + 0.5<0.3,0.7> =
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Weather prediction, contd.

e Time 1: <0.6,0.4> X:.1 P(X;1X,.,)
sun rain
sun 0.9 0.1
rain 0.3 0.7

e \What is the weather like at time 2?
P(Xz) = le P(X5X1=Xy)
= le P(X;=x;) P(X,| X;=X,)
= 0.6<0.9,0.1> + 0.4<0.3,0.7> =<0.66,0.34>



Weather prediction, contd.

e Time 2: <0.66,0.34> X1 | POX]Xes)
sun rain
sun 0.9 0.1
rain 0.3 0.7

e \What is the weather like at time 3?
P(X3) = ZXZ P(X3,X,=X,)
= ZXZ P(X;=xy) P(X;| X;=X,)
= 0.66<0.9,0.1> + 0.34<0.3,0.7> =<0.696,0.304>



Forward algorithm (simple form)

s O e O

P(Xp) P(X; | X;1)

What is the state at time t?
P(Xy) = 2 Xi.1 P(XuXe1=Xe1)
=2y Xi.1 P(X¢1=X¢1) PO X1 =X,0)



Forward algorithm in Matrices

® What is the weather like at time 2?
® P(X,) =0.6<0.9,0.1> + 0.4<0.3,0.7> = <0.66,0.34>

® |n matrix-vector form:

X P(X | X
(0903 ) ( ) (o 66 ) t1 (X | t-1).
.'D(XZ)_ 0.10.7 0.34 i sun rain
sun <> 0.9 0.1
P(X‘) rain { 0.3 0.7




Stationary Distributions

e The limiting distribution is called the stationary distribution P_, of the chain
o |tsatisfiesP =P ., =TP,
Stationary distribution is <0.75,0.25> regardless of starting distribution
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Hidden Markov Models



Hidden Markov Models

e Usually the true state is not observed directly

e Hidden Markov models (HMMSs)

e Underlying Markov chain over states X
e You observe evidence E at each time step

e X, Is asingle discrete variable; E; may be continuous and may consist of several

® & ©®



Example: Weather HMM

Wt-l P(Wt I wt-l)
sun rain
sun 0.9 0.1
rain 0.3 0.7
Weather, ,
Umbrella, ,

Weather,

Umbrella,

e An HMM is defined by:
e Initial distribution: P(X,)

e Transition model: P(X| X.,)

e Sensor model: P(E{ X))
Weather,,,
W, P(U,|W,)
true false
sun 0.2 0.8
rain 0.9 0.1

Umbrella,,,




HMM as probability model

e Joint distribution for Markov model: P(X,..., X1) = P(Xp) thl:T P(X | Xi1)
e Joint distribution for hidden Markov model:
P(Xg,EqiX1:Eqs-- -y XT1,ET) = P(Xp) thl:T P(X; | Xi.1) P(E¢ | Xp)
e Future states are independent of the past given the present
e Current evidence is independent of everything else given the current state
e Are evidence variables independent of each other?
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Real HMM Examples .
e Speech recognition HMMs:
e Observations are acoustic signals (continuous valued)

e States are specific positions in specific words (so, tens of thousands)

e Machine translation HMMs:
e Observations are words (tens of thousands)
e States are translation options

e Robot tracking:
e Observations are range readings (continuous)
e States are positions on a map (continuous)

e Molecular biology:
e Observations are nucleotides ACGT
e States are coding/non-coding/start/stop/splice-site etc.



Conditional Independence in HMM

Base on D-separation algorithm (see the Bayesian Network slides). Since no
two nodes have common children, to test whether A IL B | C, we only need to
check whether C blocks every path from Ato B

For example,

X L Xy | X Vi<i<k

X LE | X Vi<i<k

E; L Xy [ X Vi<i<k

E LE|X Vi<i<k  j#k




Inference tas kS Useful notation:

a

o Filtering: P(X{eq-1)
e belief state—input to the decision process of a rational agent
e Prediction: P(X;i4il€q-4) fork >0
e evaluation of possible action sequences; like filtering without the evidence
e Smoothing: P(Xyleq.) for 0 sk <t
e better estimate of past states, essential for learning
e Most likely explanation: arg maxy. . P(X1-tl€1-p)
e speech recognition, decoding with a noisy channel

X=Xy, Xgups o



Inference tasks

Filtering: P(Xe,.) Prediction: P(X,..Je.)
D@ D@D
© ® ® @ @ @ ©
Smoothing: P(X,|e,.), k<t Explanationﬂ:?;(gxl:del:t)
D EHEPE ()
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Filtering / Monitoring

e Filtering, or monitoring, or state estimation, is the task of maintaining the

distribution P(X|e;.;) over time
' (frmnsition) (emisiiom)

F(Y{,—{Ye-n) P(ef‘ X"-)
e The Kalman filter (continuous variables, linear dynamics,/Gaussian noise)
was invented in 1960 and used for trajectory estimation in the Apollo

program.




Example: Robot Localization %90_32__9%/
e e ‘& RES
T Sensey
*

N
Prob 0 1

t=0
Sensor model: four bits for wall/no-wall in each direction, never more than 1 mistake

Transition model: action may fail with small prob.



Example: Robot Localization

S
Prob 0 1

t=1
Lighter grey: was possible to get the reading,

but less likely (required 1 mistake)



Example: Robot Localization

Prob 0 1

t=2



Example: Robot Localization

Prob 0 1

t=3



Example: Robot Localization

Prob 0 1



Example: Robot Localization

Prob 0 1

t=5



Exact Inference in HMM



Filtering P(X1) P(X:|Xe-1)

P(X, | e1y) =7 PLE I X0)

Base case: P(X;|e) o« P(Xy,e1) =P(X)P(eq|Xy)

Passage of time:
Suppose we have P(X; | e1.+). \X\ \‘E\,

——

How to calculate P(X;;1 | €1.441)7?

P(X:|eps) — P(X¢r1, Xt | €1.¢) — P(X¢t1, €41, Xe | €1:0) — P(X¢t1,€e41 | €1:t) — P(Xes1l €1:641)

Joining P(X¢41 | X¢) Joining P(e;4+q | Xe41) Marginalize out X; Normalize
P(Xe+1/l €1:041) Z P(x¢ | e1.0)P(Xev1 | x¢) P(ersq | Xeva) Time complexity?
T O(Ixl1¥ +)



Exercise
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Prediction

P(X¢ix | e1.t) =7

We already have P(X; | e;.;) by filtering

P(X¢iq | ey.t) = z P(x, | el:t)P(Xt+1 | x¢)

Xt

P(Xt+2 | ey.t) = z P(xt+1 | el:t)P(Xt+2 |xt+1)

Xt+1

P(Xevr le1t) = z P(xesr | e1.6)P(Xpar | Xpsr—1)

Xt+k—1



Smoothing

P(X, |ey;) =? forsomek <t

Here we introduce an approach slightly different from variable elimination.

%P(C%_ | e, «)
P(Xy | e1.t) < P(Xy,€p+1:t | €1:) = P(Xp | 91;}_) P(eki_l:t | X&)
/ \

Forward algorithm (filtering) Backward algorithm

Just with one forward pass and one backward pass, we can calculate P(X;, | e;.;) for all k.
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Most-Likely Sequence

argmax P(X,. | ey,) =?| FInd the sequence that maximizes the probability
Xt (e.g., speech recognition, sequence decoding)

P(X1.t | e1.r) < P(Xy.p,e1.¢) = P(X1)P(eq1]|Xy) P(X2|X1)P (e X2) -+ P(Xe|Xe—1)P(ee| Xe)

\ J \ J \ J
Y Y Y

Time 1 Time 2 Time t

O “
a a
ONE b

Possible

: " states
y

Find a sequence, e.g. X, =b, X,=a, .., X; =z that maximize P(X;.;, e;1.+)




Most-Likely Sequence through Dynamic Programming

P(X1.t | e.r) < P(Xy.p,€1.¢) = P(X1)P(eq]Xy) P(X2|X1)P(€2|X2ﬂ” P(X¢|Xi—1)P(eclXe)

-~ )\ \ J
Y . Y
Time 1 Time 2, . votue Time t
=&
d uw)ﬁ:’/ a A

ONEN b

> Possible
. : : states
I O

W

Viterbi Algorithm

For each state s, let Prob[1][s] = P(X; =s) P(e{|X; = 5)
Fork =2,..,t:

For each states s, let Prob[k][s] = max Problk — 1][s'] X P(Xy = s | Xj—1 = 5") X P(ex|X) = s)

S




Approximate Inference in HMM



Particle Filtering




Particle Filtering

Filtering: approximate solution

Sometimes |X| is too big to use exact inference
e |X| may be too big to even store P(X)
e E.g. Xis continuous

Solution: approximate inference

Track samples of X, not all values

Samples are called particles

Time per step is linear in the number of samples
But: number needed may be large

In memory: list of particles, not states

This is how robot localization works in practice

Particle is just new name for sample




Representation: Particles

e Our representation of P(X) is now a list of N particles
(samples)
e Generally, N << |X]
e Storing map from X to counts would defeat the point

e P(x) approximated by number of particles with value x
Particles:

e S0, many x may have P(x) =0 (3.3)

e More particles, more accuracy gii

3,2)

3.3)

| | 3,2)

e For now, all particles have a weight of 1 5
33)

(23)



Particle Filtering: Elapse Time

e Each particle is moved by sampling its next .
position from the transition model 33)

(23)
(33)

¢’ = sample(P(X'|z)) 32

3.2)

_ (1,2)

e This is like prior sampling — samples’ frequencies >
reflect the transition probabilities (2,3)

e This captures the passage of time Particles:

(3,2)

e If enough samples, close to exact values before 23)
and after (consistent) o
33)

3,2)

(13)

(23)

3,2)

(2,2)




Particle Filtering: Observe

e Don’t sample observation, fix it

e Similar to likelihood weighting,
downweight samples based on the
evidence

w(xz) = P(e|x)

e As before, the probabilities don’t sum to
one, since all have been downweighted

Particles:
(3,2)
(2,3)
(3,2)
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Particles:
(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=.4
(3,3) w=.4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9
(2,2) w=.4




Particle Filtering: Resample

e Rather than tracking weighted samples, we
resample

e N times, we choose from our weighted sample
distribution (i.e. draw with replacement)

e This is similar to renormalizing the distribution

e Now the update is complete for this time step,
continue with the next one

Particles:
(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=.4
(3,3) w=4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9
(2,2) w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)




( F(\(f.—( e“@

e Particles: track samples of states rather than an explicit distribution

Recap: Particle Filtering

Elapse Weight Resample
Particles: Particles: Particles: (New) Particles:
(3,3) (3,2) (3,2) w=.9 (3,2)
(2,3) (2,3) (2,3) w=.2 (2,2)
(3,3) (3,2) (3,2) w=.9 (3,2)
(3,2) (3,1) (3,1) w=.4 (2,3)
(3,3) (3,3) (3,3) w=.4 (3,3)
(3,2) (3,2) (3,2) w=.9 (3,2)
(1,2) (1,3) (1,3) w=.1 (1,3)
(3,3) (2,3) (2,3) w=.2 (2,3)
(3,3) (3,2) (3,2) w=.9 (3,2)

(2,3) (2,2) (2,2) w=4 (3,2)



Robot Localization

e In robot |localization:
e \We know the map, but not the robot’s position
e Observations may be vectors of range finder readings

e State space and readings are typically continuous
(works basically like a very fine grid) and so we
cannot store B(X)

e Particle filtering is a main technique

() Tre focaton
® © © @ sersorsiona

DIRECTORY




Particle Filter Localization (Sonar)
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Particle Filter Localization (Laser)




Robot Mapping

e SLAM: Simultaneous Localization And Mapping
e \We do not know the map or our location
e State consists of position AND map!

e Main techniques: Kalman filtering (Gaussian HMMs)
and particle methods




Particle Filter SLAM = Video 1



Particle Filter SLAM - Video 2




Particle Filtering

Localization: https://www.youtube.com/watch?v=NrzmH yerBU&ab channel=MATLAB
SLAM: https://www.youtube.com/watch?v=saVVZtgPyyJO&ab channel=MATLAB



https://www.youtube.com/watch?v=NrzmH_yerBU&ab_channel=MATLAB
https://www.youtube.com/watch?v=saVZtgPyyJQ&ab_channel=MATLAB

Some Failure Modes of Particle Filtering

Too few particles

e Particle

X True location

-> The particle has to be dense enough
to cover the true state




Some Failure Modes of Particle Filtering

Moderate number of particles but very static state transition

e Particle

X True location

® ® Suppose every state always transitions to itself.

- All particles and the true location will never move.

—> After several rounds of re-sampling, particles will

accumulate to a single position.



Homework 4



Homework 4

1. Choice Questions (10 points)
a. 10 questions.
. Answer directly on Gradescope
¢. The same requirements as the last time.

2. Program Questions (25 points)
Ghostbusters and Bayes Nets



Introduction of Project 4: Ghostbusters and Bayes Nets

Color Blocks:

Indicate possible locations of each ghost
based on distance readings.

Primary Task:

1. Implement inference to track ghost
positions.

2. Improve on the default crude inference
(shaded areas show possible ghost
locations).

3. Use Bayes Nets for exact and
approximate inference.




Question 1 (2 points): Bayes Net Structure

Objective:

Implement constructBayesNet function in inference.py to create an empty
Bayes Net structure as described.

TaSkS: <-th]h‘t [}-\/} '/-I’: llllllllll \;' <l‘. host 1 |
1. Add variables and edges based on the diagram. -x/iagxiﬂsff\#'
2. Pacman and the two ghosts can be anywhere Lo ) < om1 )

in the grid — —

3. Observations here are non-negative, equal to Manhattan distances of
Pacman to ghosts * noise.



Question 2: Join Factors

Objective:

1. Takes a list of Factors and returns a new Factor.
2. The new Factor's entries are the product of corresponding rows of input

Factors.

Assumptions:

joinFactors may operate on factors without probability tables (rows may not
sum to 1).

joinFactors (P(X Y), P(Y)) — P(X, Y]
joinFactors (P(V, %4 ‘ X5 Y, Z), P(X: Y ‘ Z)) — P(V: uf: X: Y ‘ Z)



Question 3: Eliminate (not ghosts yet)

Objective:

1. Takes a Factor and a variable to eliminate.
2. Returns a new Factor without that variable, by summing entries differing
in the eliminated variable’s value.

e Examples:
e eliminate(P(X,Y|Z),Y)=P(X|Z)
e eliminate(P(X,Y|Z),X)=P(Y|Z)




Question 4: Variable Elimination

Objective: Answers a probabilistic query represented using, A
BayesNet, A list of query variables and Evidence.

Hints and Observations:

1. Refer to inferenceByEnumeration function for guidance.

2. Sum of probabilities should equal 1 (to ensure it’s a true
conditional probability).

3. Enumeration joins all variables first and then eliminates all
hidden variables.

4. Variable Elimination interleaves join and eliminate,
processing one hidden variable at a time.

5. Handle cases where a factor has only one unconditioned
variable after joining.




Question 5a and 5b

5a objective:

Complete DiscreteDistribution to extends the Python dictionary, where keys
are elements of the distribution, and values are the associated weights.

5b objective:

Complete getObservationProb to Calculates the probability of a noisy
distance reading between Pacman and a ghost.



Question 6: Exact Inference Observation

Objective:

Implement observeUpdate to update the belief
distribution over ghost positions based on Pacman’s

sensor observations.
Display Behavior:

o High posterior beliefs are shown as bright colors; lo

beliefs are dim.
e Beliefs should start broad and narrow down as mor:

evidence is collected.

| SCORE: -27



Question 7: Exact Inference with Time Elapse

Objective:

Implement the elapseTime to update ghost position beliefs over time
based on movement patterns without observing them.

Pacman t=0 @

Ghost 0 t=0 -

Ghost 1 t=0

Obs 0 t=0

b
B0




Question 7: Exact Inference with Time Elapse

Notes:

e If code is slow, reduce calls to

self.getPositionDistribution.
o Pacman’s belief distribution adjusts based on possible

ghost movements without direct observation.
o Beliefs will adapt to the board geometry and likely
ghost moves over time.

Special Ghost Behavior:

e GoSouthGhost: A ghost that tends to move south over

time.
e Pacman’s belief distribution should focus near the

board’s bottom as the GoSouthGhost moves south.

# CS188 Pacm...




Question 8: Exact Inference Full Test

Objective:

1. The agent should select actions based on the
belief distribution to move towards the closest
ghost.

Tasks:

1. ldentify the most likely position of each
uncaptured ghost.

2. Choose an action that minimizes the maze
distance to the closest ghost.




Question 9: Approximate Inference Initialization & Beliefs

Objective:

Implement initializeUniformly and getBeliefDistribution to set up a particle
filtering algorithm to track a single ghost.

Method Details:
1. initializeUniformly:

Di'_stri)bute particles evenly across all legal ghost positions (ensures a uniform
prior).

Consider using the mod operator to achieve even distribution.

SCORE: -56 8.0

1. getBeliefDistribution:

Convert the list of particles into a DiscreteDistribution object representing the
belief distribution.



Question 10 & 11: Approximate Inference Observation

Q10: Approximate Inference Observation

Implement the observeUpdate for updating the weight distribution over
self.particles based on Pacman’s observation.

Q11: Approximate Inference with Time Elapse

Implement the elapseTime to update self.particles by constructing a new list
of particles that corresponds to each existing particle advancing a time step.
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