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Wumpus World

Performance

Gold +1000, death -1000, -1 per step, -10 for 
using the arrow

Environment

Perceive stench if adjacent to wumpus

Perceive breeze if adjacent to pit

Perceive glitter if in the square of gold

Can grab gold if in the square of gold

Can shoot and kill wumpus if you’re facing it

(shooting uses up the only arrow)

Die if entering a square with pit or living wumpus

Actions

Left turn, right turn, forward, grab, shoot  

Sensors

Breeze, glitter, smell



Exploring a wumpus world
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Exploring a wumpus world



Systems with Logical Reasoning

● Knowledge base

● Consists of some prior knowledge

● Inference engine

● Derive new knowledge or make some claims

● User Interaction

● Tell information

● Ask question



Example: Expert System
If has_hair, then mammal.

If mammal and has_hooves, then ungulate. 
If has_feathers, then bird.

If mammal and carnivore and has_dark_spots, then cheetah.
If mammal and carnivore and has_black_stripes, then tiger.
If bird and does_not_fly and has_long_neck, then ostrich.
……

Knowledge base

User interaction



Example: wumpus world

Knowledge base

Perceive stench if adjacent to wumpus

Perceive breeze if adjacent to pit

Perceive glitter if in the square of gold

…

User interaction

Tell the logic system whether stench, breeze, glitter is perceived

Ask for the next action

Inference Engine



Ingredients of Propositional Logic



Sentence

Knowledge base consists of “sentences”

Inference algorithm derives new “sentences” and add them to the knowledge base

Example:  

KB = { “Rain→Wet”,  “Rain” }

Inference algorithm derives a new sentence “Wet” based on KB

Now KB becomes  

KB = {“Rain→Wet”,  “Rain”, “Wet” }



Ingredients of Logic – Syntax 

Define what are valid sentences. 

E.g.,  syntax in python: 

   “ for x in range(10): ”        Valid 

   “ for x range(10): ”            Invalid    (the python interpreter cannot understand)   

E.g.   syntax in math: 

        “ x + y = 5”                       Valid 

        “ x 5 = y + ”                      Invalid

   



Ingredients of Logic – Syntax 

Syntax in propositional logic: 

● A proposition symbols X is a sentence 

(a propositional symbol is a Boolean variable)

● If  is a sentence then  is a sentence

● If  and  are sentences then    is a sentence

● If  and  are sentences then    is a sentence

● If  and  are sentences then    is a sentence

● If  and  are sentences then    is a sentence

The , , , ,  symbols have no meaning here.  Their meanings are 

specified by the “semantics” of logic (discussed next).   



Ingredients of Logic – Semantics 

Let’s first define “models”.  A model is a configuration of the world. 

In propositional logic,  a model is an assignment of truth values to propositional 

symbols.

E.g.,  There are four possible models in the raining example:  

0 1

0

1R
a
in

Wet



Ingredients of Logic – Semantics 

models where the sentence 𝑓 is true 

models where the sentence 𝑓 is false



Ingredients of Logic – Semantics 



Ingredients of Logic – Semantics 

𝑓:  (Rain ∨ Wet)  ⇒ Unhappy

00

01

10

11

0 1

Rain, Wet

Unhappy

ℳ 𝑓 :  the set of models where sentence 𝑓 is true. 



Ingredients of Logic – Knowledge Base 

Knowledge base = a collection of sentences



Ingredients of Logic – Knowledge Base 



Recap:  Propositional Logic

● Sentence:  propositional symbols, or their negations (), or their 

combinations through , , , . 

● Models:  An assignment of truth values to propositional symbols.

● Knowledge base: a set of sentences

● ℳ 𝑓 :  the set of models where sentence 𝑓 is true. 



Entailment

● Sentence 𝛼 entails sentence 𝛽 means that (in high level) sentence 𝛽 follows 

logically from sentence 𝛼 

● Denoted as 𝛼 ⊨ 𝛽

● 𝛼 ⊨ 𝛽 if and only if ℳ 𝛼 ⊂ ℳ 𝛽

● Example:  Rain ∧ Snow ⊨ Snow

𝓜 𝜶

𝓜 𝜷



Inference Algorithms

● Given KB and 𝛼, the algorithm tries to derive sentence 𝛼. 

● If an algorithm 𝒜 is able to derive 𝛼 from KB, we write KB ⊢𝒜 𝛼 

● This is different from KB ⊨ 𝛼,  

● Soundness (correctness)

● The algorithm can only derive 𝛼 when 𝛼 is entailed by KB. 

● In other words: If KB ⊢𝒜 𝛼, then KB ⊨ 𝛼

● Completeness 

● For any 𝛼 that KB entails, the algorithm is able to derive 𝛼.    

● If other words:  If KB ⊨ 𝛼, then if KB ⊢𝒜 𝛼



A (Simple) Inference Algorithm:  Model Checking



A (Simple) Inference Algorithm:  Model Checking

Model Checking (KB, 𝛼):  

Let ℳ be the set of all possible models 

( ℳ = 2𝑁 if there are 𝑁 propositional symbols in KB ∪ 𝛼 ) 

For 𝑚 ∈ ℳ: 

If KB is True in 𝑚 and 𝛼 is False in 𝑚 :   return False 

return True 



Theorem Proving

Idea:  Instead of checking all models, will just perform manipulations on the 

sentence level. 



Inference Rules

● Modus Ponens (Latin for mode the affirms)

𝛼1, 𝛼2, … , 𝛼𝑘 ,  (𝛼1 ∧ 𝛼2 ∧ ⋯ ∧ 𝛼𝑘) ⇒ 𝛽

𝛽

● And Eliminations

𝛼1 ∧ 𝛼2 ∧ ⋯ ∧ 𝛼𝑘

𝛼𝑖

premises

conclusion

𝛼1, 𝛼2, … , 𝛼𝑘 , (𝛼1 ∨ 𝛼2 ∨ ⋯ ∨ 𝛼𝑘 ∨ 𝛽)

𝛽
or



Standard Logical Equivalence

(can be applied in any steps in the inference algorithm)



Inference Rules

Example: KB = {Rain ⇒ Wet,  Wet ⇒ Unhappy,  Rain},  𝛼 = Unhappy.   

Applying Modus Ponens on KB

(i.e.,  try to match sentences in KB with premises 𝛼 and 𝛽)  Modus Ponens: 
𝛼1, … , 𝛼𝑘 ,  (𝛼1 ∧ ⋯ ∧ 𝛼𝑘) ⇒ 𝛽

𝛽
Rain, Rain ⇒ Wet

Wet

KB = {Rain ⇒ Wet,  Wet ⇒ Unhappy,  Rain, Wet}

Applying Modus Ponens on KB

Wet,  Wet ⇒ Unhappy

Unhappy



Forward Inference

Input:  KB, 𝛼,   𝔗 = a set of inference rule

Repeat: 

Choose a set of sentences  𝛼1, … , 𝛼𝑘 ∈ KB such that

𝛼1, 𝛼2, … , 𝛼𝑘

𝛽

matches a rule in 𝔗, and 𝛽 ∉ KB.  

Add 𝛽 to KB. 

If 𝛽 = 𝛼:  return True 

If such (𝛼1, 𝛼2, … , 𝛼𝑘 , 𝛽) does not exist:  return False

If 𝛼 ∈ KB:  return True



Forward Inference

● Forward inference is a search problem

● What are the states, actions, successor function, and goal test? 

● Algorithms introduced for search problems can be applied here. 

● Is the forward inference algorithm sound? 

● Yes, as long as all inference rules you use are sound

● Is forward inference complete? 



Forward Inference

KB = {Rain ⇒ Wet,   Rain ∨ Shine,    Wet ∨ Shine ⇒ Happy}

𝛼 = Happy

Use Forward Inference algorithm with 𝔗 =  {Modus Ponens}

Example: 

● Can KB entail 𝛼? 

● Can the algorithm derive 𝛼 from KB? 

Forward Inference with Modus Ponens is sound but not complete



A Sound and Complete Algorithm? 

Fact 2.  In general, Forward Inference with Resolution is sound and complete. 

Fact 1.  If KB only consists of Horn clauses, 

then Forward Inference with Modus Ponens is sound and complete. 



Horn Clauses + Modus Ponens is Complete

Horn clause:  sentence that have the following forms

𝑋1 ∧ 𝑋2 ∧ ⋯ ∧ 𝑋𝑘−1  ⇒ 𝑋𝑘 𝑋1 ∧ 𝑋2 ∧ ⋯ ∧ 𝑋𝑘  ⇒ Falseor

𝑋1 ∨ 𝑋2 ∨ ⋯ ∨ 𝑋𝑘𝑋1 ∨ 𝑋2 ∨ ⋯ ∨ 𝑋𝑘−1 ∨ 𝑋𝑘

≡ ≡

Disjunction with only one positive symbol Disjunction with no positive symbol

(Definite clause) (Goal clause)



Horn Clauses + Modus Ponens is Complete

Intuition: The inference procedure of horn clauses is direct, in the sense that 

there is no branching. 

 Horn clause:   Rain ∧ Snow  →  Dark ∧ Traffic  

 Non- horn clause:   Wet  →  Rain ∨ Snow

 Has to branch into the cases Rain, Snow etc. 



A pseudocode for Forward 

Inference with Modus Ponens 

(this algorithm is also called 

Forward Chaining).  This 

pseudocode assumes that all 

sentences are definite clauses 

(but it’s easy to extend it to 

handle goal clauses as well). 

The time complexity is linear in 

the “size of KB”, i.e., the sum of 

the lengths of all sentences in KB. 



General Case:  Resolution is Complete

Resolution

𝛼1 ∨ 𝛼2 ∨ ⋯ ∨ 𝛼𝑘 ∨ 𝑝,  𝑝 ∨ 𝛽1 ∨ 𝛽2 ∨ ⋯ ∨ 𝛽𝑚

𝛼1 ∨ 𝛼2 ∨ ⋯ ∨ 𝛼𝑘 ∨ 𝛽1 ∨ 𝛽2 ∨ ⋯ ∨ 𝛽𝑚

Example

Rain ∨ Shine, Rain ∨ Wet

Shine ∨ Wet



Converting Sentences to CNF Before Applying Resolution

Conjunctive Normal Form (CNF)

Example:  (A ∨ B ∨ ¬C) ∧ (¬B ∨ D)



Converting Sentences to CNF:  Example



Converting Sentences to CNF:  General Rules



Resolution-Based Inference Algorithm

Note that  KB ⊨ 𝛼 is equivalent to  ℳ(KB ∧  𝛼) = empty set  

KB’ ← KB ⋃ { 𝛼}

Convert all sentences in KB’ to CNF

Repeatedly apply Resolution Rule until 

1)  False is derived   →  return KB ⊨ 𝛼 

2)  No new sentence can be derived →  return KB ⊭ 𝛼 



Resolution-Based Inference Algorithm



Resolution-Based Inference Algorithm



Time Complexity

● Modus Ponens
𝛼1, 𝛼2, … , 𝛼𝑘 ,  (𝛼1 ∧ 𝛼2 ∧ ⋯ ∧ 𝛼𝑘) ⇒ 𝛽

𝛽

    Each rule application adds sentence with one propositional symbol 

    → linear time

● Resolution
𝛼1 ∨ 𝛼2 ∨ ⋯ ∨ 𝛼𝑘 ∨ 𝑝,  𝑝 ∨ 𝛽1 ∨ 𝛽2 ∨ ⋯ ∨ 𝛽𝑚

𝛼1 ∨ 𝛼2 ∨ ⋯ ∨ 𝛼𝑘 ∨ 𝛽1 ∨ 𝛽2 ∨ ⋯ ∨ 𝛽𝑚

    Each rule application adds sentence with many propositional symbol 

    → exponential time



Recap

Modus Ponens Resolution

Sound? Yes Yes

Complete? No Yes

Complete for horn clauses? Yes Yes

Time complexity linear exponential



Homework 3
Choice problems deadline: 11:59PM, Oct. 9 (No late submission!) 

Programming problems deadline:  11:59PM,  Oct. 23



Question 1:  Logic Warmup

● Practice working with the class Expr which will be used to represent 

propositional sentences in the later questions.

● Example.  Create an Expr instance that represents the conjunction of the 

following four expressions. 



Question 2:  Logic Workout 

● Express sentences using Conjunctive Normal Form (CNF)

● Example.  Express the function ExactOne([A, B, C, …]) as a CNF



Question 3: PAC Physics and Satisfiability

● Express the physics of PACMAN using propositional logics. The rules include 

● PAC must be at exactly one position that is not a wall

● PAC takes exactly one of the four actions in every round

● If PAC is at (x,y) and takes WEST actions at time t-1 and there is no wall at (x-1, y), 

then PAC is at (x-1,y) at time t

● …  

axioms



Question 4: Path Planning with Logic

For t = 1, 2, …

● Check if there exists there is a feasible assignment for 

(x1, y1, a1, x2, y2, a2, …, xt, yt) where (xt, yt) is goal.  

● If so, return the path

● KB ← KB ⋃ {at is one of NSEW}

● KB ← KB ⋃ {if at is N and (xt, yt+1) is not wall, then (xt+1, yt+1)=(xt, yt+1), … }

(All symbols represent “binary” variables, so the pseudocode above only 

provides rough ideas but not exactly how you implement it)



Question 5: Eating All Food

● Similar to previous question, but now with additional 

symbols representing whether there is food in a location

● Sentences related to the PACMAN position (x,y) and 

whether there is food at (x,y) should be added to KB. 



Question 6: Localization

● PACMAN does not know its own position 

● But it has a sensor that tells whether there is wall on NSEW

● Given a sequence of actions and sensor signals, can you tell 

the position of the PACMAN? 



Question 7: Mapping

● PACMAN knows its initial position

● It has a sensor that tells whether there is wall on NSEW

● Given a sequence of actions and sensor signals, reconstruct 

the positions of the walls



Question 8: Simultaneous Localization and Mapping

● PACMAN knows its initial position

● The sensor only tells how many walls (0 to 3) are around it

● Given a sequence of actions and sensor signals, reconstruct the positions of 

the walls and the position of the PACMAN



Midterm Exam



Types of Questions

● Multiple choice questions (like in the homework)

● Questions where you may need to provide steps.  For example,  

● Which nodes are pruned under alpha-beta pruning in a specific game tree

● Argue why a particular heuristic function is consistent

● Resources from other universities: 

● https://inst.eecs.berkeley.edu/~cs188/sp24/resources/

● https://inst.eecs.berkeley.edu/~cs188/su24/resources/ 

● https://stanford.edu/~cpiech/cs221/handouts/practiceMidterms.html 

https://inst.eecs.berkeley.edu/~cs188/sp24/resources/
https://inst.eecs.berkeley.edu/~cs188/su24/resources/
https://stanford.edu/~cpiech/cs221/handouts/practiceMidterms.html


Midterm Review

● Next Thursday (Oct 10)



First-Order Logic



Limitations of Propositional Logic

Alice and Bob both know logic. 

AliceKnowsLogic ∧ BobKnowsLogic  

Every student knows logic. 

AliceIsStudent → AliceKnowsLogic 

BobIsStudent → BobKnowsLogic  

Every student knows some algorithm. 

…

AliceIsStudent → AliceKnowsBFS ∨ AliceKnowsDFS ∨ … 

BobIsStudent → BobKnowsBFS ∨ BobKnowsDFS ∨ …

…

∀x   Student(x) → ∃y Algorithm y ∧  Knows(x,y)First-order logic: 



Limitations of Propositional Logic

If you’re adjacent to a pit, then you can feel breeze. 

Propositional logic:  

𝑃1,1 ⇒ 𝐵1,2 ∧ 𝐵2,1

𝑃1,2 ⇒ 𝐵1,1 ∧ 𝐵2,2 ∧ 𝐵1,3

…
…

First-order logic:  

∀w,x,y,z Adjacent(Grid(w,x), Grid(y,z))   ∧   Pit(Grid(w,x))   ⇒ Breeze(Grid(y,z)) 



Limitations of Propositional Logic

Propositional logic is sometimes clunky.  What is missing?  

● Objects and predicates: propositions (e.g.,  AliceKnowsLogic) have more 

internal structure (Alice, Knows, Logic)

● Quantifiers and variables: all is a quantifier which applies to each person, 

don't want to enumerate them all.



First-Order Logic

Alice and Bob both know logic. 

Knows(Alice, Logic) ∧ Knows(Bob, Logic)  

Every student knows logic. 

∀x,  Student(x) ⇒ Knows(x, Logic)  



Syntax and Semantics of First-Order Logic

● Terms (refer to object)

● Constant:  Alice, Logic

● Variable:  x 

● Function of terms:  Father(.) 

● Predicate:   Knows, Student, HasBloodType

● Atomic sentence: Predicate(Terms, …)

● Complex sentence:  

Knows(Alice, Logic) ∧ Knows(Bob, Logic)  

∀x,  Student(x) ⇒ Knows(x, Logic)  

∀x,  HasBloodType(x, ‘AB’) ⇒ HasBloodType(Father(x), ‘O’) ∧ HasBloodType(Mother(x), ‘O’)   

 sentence

sentence  sentence

sentence  sentence

sentence   sentence

sentence  sentence

Quantifier variable,  sentence



Syntax and Semantics First-Order Logic

● Quantifiers

● Universal quantifier ∀  (think conjunction):     ∀x  P(x) is like P(A) ∧ P(B) ∧ …

● Existential quantifier ∃  (think disjunction):     ∃x  P(x) is like P(A) ∨ P(B) ∨…

● Properties of quantifiers

● ∀x  P(x) is equivalent to ∃x P(x)

● ∀x∃y Know(x,y) and  ∃y∀x Know(x,y)  are different   



Translation from Natural Language to FOL

Some student knows logic. 

Every student knows logic. 

∀𝑥 Student 𝑥  ⇒  Knows(𝑥, Logic)

∃𝑥 Student 𝑥  ∧  Knows(𝑥, Logic)

∃𝑥 Student 𝑥 ⇒ Knows(𝑥, Logic)  ?What about



Translation from Natural Language to FOL

There is some course that every student has taken. 

Every even integer greater than 2 is the sum of two primes. 

If a student takes a course and the course covers a concept, then the 

student knows that concept.



Inference in First-Order Logic

● Convert everything to propositional logic

● Modus ponens 

● Sound 

● Complete for Horn clauses

● Resolution

● Sound and complete

Recall:  Horn clause in PL

𝛼1 ∧ 𝛼2 ∧ ⋯ ∧ 𝛼𝑘  ⇒ 𝛽

𝛼1 ∧ 𝛼2 ∧ ⋯ ∧ 𝛼𝑘  ⇒ False

Each 𝛼𝑖 is a propositional symbol

Horn clause in FOL

𝛼1 ∧ 𝛼2 ∧ ⋯ ∧ 𝛼𝑘  ⇒ 𝛽

𝛼1 ∧ 𝛼2 ∧ ⋯ ∧ 𝛼𝑘  ⇒ False

Each 𝛼𝑖 is an atomic sentence

(which may involve universal quantifier)

∀𝑥1, … , ∀𝑥𝑛

∀𝑥1, … , ∀𝑥𝑛



Forward Inference with Modus Ponens

𝛼1
′ , 𝛼2

′ , … , 𝛼𝑘
′ ,  ∀𝑥1, … , ∀𝑥𝑛, (𝛼1 ∧ 𝛼2 ∧ ⋯ ∧ 𝛼𝑘) ⇒ 𝛽

𝛽′

𝛼1, 𝛼2, … , 𝛼𝑘 , 𝛽  and 𝛼1
′ , 𝛼2

′ , … , 𝛼𝑘
′ , 𝛽′  can be unified through a substitution from 

variable to terms. 

where 𝛼1
′ , 𝛼2

′ , … , 𝛼𝑘
′ , 𝛽′, 𝛼1, … , 𝛼𝑘 , 𝛽 are atomic sentences, and 

make them look the same



Forward Inference with Modus Ponens

𝛼1
′ , 𝛼2

′ , … , 𝛼𝑘
′ ,  ∀𝑥1, … , ∀𝑥𝑛, (𝛼1 ∧ 𝛼2 ∧ ⋯ ∧ 𝛼𝑘) ⇒ 𝛽

𝛽′

Take(Alice, CS4710), Covers(CS4710, Logic), ∀x,y,z Take(x,y) ∧ Covers(y,z) ⇒ Knows(x,z)

?

Substitution: 

x / Alice

y / CS4710

z / Logic

? = Knows(x,z) applying the substitution

= Knows(Alice,Logic)

Take(Alice,  CS4710)  

Covers(CS4710, Logic)  

∀x,y,z   Take(x,y) ∧ Covers(y,z) ⇒  Knows(x,z)     

Knowledge Base



Forward Inference with Modus Ponens

𝛼1
′ , 𝛼2

′ , … , 𝛼𝑘
′ ,  ∀𝑥1, … , ∀𝑥𝑛, (𝛼1 ∧ 𝛼2 ∧ ⋯ ∧ 𝛼𝑘) ⇒ 𝛽

𝛽′

∀w Take(Alice, w), Covers(CS4710, Logic), ∀x,y,z Take(x,y) ∧ Covers(y,z) ⇒ Knows(x,z)

?

? = Knows(x,z) applying the substitution

= Knows(Alice,Logic)

∀w  Take(Alice,  w)  

Covers(CS4710, Logic)  

∀x,y,z   Take(x,y) ∧ Covers(y,z) ⇒  Knows(x,z)     

Knowledge Base

Substitution: 

x / Alice

y / CS4710

z / Logic

w / CS4710



Forward Inference with Modus Ponens

Take(Alice,  CS4710)  

∀v  Covers(CS4710, v)  

∀x,y,z   Take(x,y) ∧ Covers(y,z) ⇒  Knows(x,z)     

𝛼1
′ , 𝛼2

′ , … , 𝛼𝑘
′ ,  ∀𝑥1, … , ∀𝑥𝑛, (𝛼1 ∧ 𝛼2 ∧ ⋯ ∧ 𝛼𝑘) ⇒ 𝛽

𝛽′

Take(Alice, CS4710), ∀v Covers(CS4710, v), ∀x,y,z Take(x,y) ∧ Covers(y,z) ⇒ Knows(x,z)

?

Substitution: 

x / Alice

y / CS4710

z / v

? = Knows(x,z) applying the substitution

= ∀v Knows(Alice,v)

Knowledge Base

Substitute variable with 

another variable



Forward Inference with Modus Ponens 

Input:  KB, 𝛼

Repeat: 

Choose a set of atomic sentences 𝛼1
′ , … , 𝛼𝑘

′  and rule ∀𝑥1, … , ∀𝑥𝑛, (𝛼1 ∧
𝛼2 ∧ ⋯ ∧ 𝛼𝑘) ⇒ 𝛽  in KB such that

𝛼1
′ , 𝛼2

′ , … , 𝛼𝑘
′ , 𝛽′ matches 𝛼1, 𝛼2, … , 𝛼𝑘 , 𝛽 

Add 𝛽′ to KB. 

If 𝛽′ = 𝛼:  return True 

If such matching does not exist:  return False

If 𝛼 ∈ KB:  return True

under variable substitution, and 𝛽′ cannot be subsumed by any 

sentence in KB. 



Forward Inference with Modus Ponens 

Take(Alice,  CS4710)  

Covers(DSA,  Search)  

∀x,y,z   Take(x,y) ∧ Covers(y,z) ⇒  Knows(x,z)     

Take(Alice,  CS1234)  

Take(Alice,  MU4321)  

Take(Bob,  CS4710)  

Covers(LinearAlgebra, matrix)  

We can view of this problem as finding x,y,z that satisfies constraints 

Take(x,y) and Covers(y,z) 

→ Constraint Satisfaction Problem (CSP)

→ The heuristics we discussed before can be used 

How to find a matching between x,y,z and terms? 



CSP is a Single Horn Clause



Inference with Resolution

● High-level Ideas

● Convert everything to CNF

● Repeatedly apply the resolution rule from KB ∪ {𝛼}



Conversion to CNF



Conversion to CNF (1/2)



Conversion to CNF (2/2)



Resolution



Recap:  FOL and PL

● First-order logic provides internal structures for propositions

● First-order logic uses quantifiers ∀, ∃ to generalize an idea across different objects   

Knows(Alice, Logic) 

Knows(Bob, DFS)

Takes(Boyfriend(Alice), CS4710)

AliceKnowsLogic 

BobKnowsDFS

AliceBoyfriendTakesCS4710

ConstantFunctionPredicate Propositional symbol



Knowledge Representation using (first-order or other) logic

● Chapter 12 in  

https://people.engr.tamu.edu/guni/csce421/files/AI_Russell_Norvig.pdf

● Give some ideas how to create knowledge representations on general concepts such 

as events, time, physical objects etc, using first-order logic. 

● Knowledge base and inference algorithms are important elements of expert 

systems

● DENDRAL (1968): Predict molecular structure based on spectrographic data 

● MYCIN (1975): Diagnose blood infections

● XCON (1978): Select computer system components based on customer’s 

need

● Many companies built expert systems and software/hardware specialized for 

their purpose. 

https://people.engr.tamu.edu/guni/csce421/files/AI_Russell_Norvig.pdf
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