Logic

Chen-Yu Wel

Wumpus World

Performance
Gold +1000, death -1000, -1 per step, -10 for
using the arrow
Environment
Perceive stench if adjacent to wumpus
Perceive breeze if adjacent to pit
Perceive glitter if in the square of gold
Can grab gold if in the square of gold
Can shoot and kill wumpus if you’re facing it
(shooting uses up the only arrow)
Die if entering a square with pit or living wumpus
Actions
Left turn, right turn, forward, grab, shoot

Sensors
Breeze, glitter, smell

S SSSS
Stench >

-
~ Breeze —
/ —_—

PIT

PIT

-
~ Breeze —
—_—

S SSSS
Stench >

-
~ Breeze —
o —

i

START

PIT

-
~ Breeze —
—_—

1

Exploring a wumpus world

OK

OK OK

Exploring a wumpus world

OK OK

Exploring a wumpus world

B OK P?

| OK OK

Exploring a wumpus world

P?

Exploring a wumpus world

Exploring a wumpus world

Exploring a wumpus world

OK

Exploring a wumpus world

A A|—t—= A
A| A
II |

S K
VOK |o
A|——> A

Systems with Logical Reasoning

e Knowledge base
e Consists of some prior knowledge

e Inference engine
e Derive new knowledge or make some claims

e User Interaction
e Tell information
e Ask guestion

Example: Expert System

Non-expert |

user
Query
O 4—|'
- Advice |

User
Interface

Inference Engine

Expert System

Knowledge
Base

Knowledge
rom an expert Y- go.

Expert user

Knowledge base

If has_hair, then mammal.

If mammal and has_hooves, then ungulate.

If has_feathers, then bird.

If mammal and carnivore and has_dark_spots, then cheetah.
If mammal and carnivore and has_black_stripes,then tiger.
If bird and does_not_fly and has_long_neck, then ostrich.

User interaction

File Edit Settings Run Debug Help
Welcome to SWI-Frolog {(threaded, 64 bits, wversion 9.2 6)

SWI-Frolog comes with ABSOLUTELY HO WARRAWTY. This i= frese =oftware.
Flease run 7- license. for legal details.

For online help and background., wisit https. ~swwy svi-prolog.org
For built—in help., use ?- help(Topic). or 7- apropos(Word).

Doe=s the animal have hair? yes.

Does the animal eat meat? |: no.

Does the animal have pointed teeth? | no.

Doe=s the animal have hooves? | ves.

Does the animal have a long neck? | wves.

Doe=s the animal have long legs? | ves.

I gue=s= that the animal i=: giraffe
true.

-1

Example: wumpus world

Knowledge base

Perceive stench if adjacent to wumpus
Perceive breeze if adjacent to pit

Perceive glitter if in the square of gold

User Iinteraction

Tell the logic system whether stench, breeze, glitter is perceived
Ask for the next action

Inference Engine

S SSS S

< /-\ -
Stench > Bfffzb/ PIT
/‘—_ -
~~ Breeze —
“ScTes Zhreeze—
éStench > PlT -
N
~/ Gold < \"
S SSSS e
Stench > Brfize._//
< Breeze — <~ Breeze —
Sl PIT i
START

1

P? P?
P
B EIOK P > B FOK :ﬁ
iIOK S OK i!OK S OK
ey m—t-m | W

Ingredients of Propositional Logic

Sentence

Knowledge base consists of “sentences”
Inference algorithm derives new “sentences” and add them to the knowledge base

Example:
KB = { “Rain>Wet", “Rain”}
Inference algorithm derives a new sentence “\Wet” based on KB

Now KB becomes
KB = {"Rain=>Wet", “Rain”, “Wet" }

Ingredients of Logic — Syntax

Define what are valid sentences.

E.g., syntax in python:
“for x in range(10): ” Valid
“ for x range(10). ” Invalid (the python interpreter cannot understand)

E.g. syntax in math:
“X+y=9% Valid
“X9=y+"’ Invalid

Ingredients of Logic — Syntax

Syntax in propositional logic:

e A proposition symbols X is a sentence
(a propositional symbol is a Boolean variable)

e If o IS a sentence then —a IS a sentence

e If o and 3 are sentences then o A [is a sentence
e If o and [3 are sentences then o v 3 Is a sentence
e If o and 3 are sentences then o = [3 is a sentence

e If o and [3 are sentences then o < 3 Is a sentence

The —, A, v, =, < symbols have no meaning here. Their meanings are
specified by the “semantics” of logic (discussed next).

Ingredients of Logic — Semantics

Let’s first define “models”. A model is a configuration of the world.

In propositional logic, a model is an assignment of truth values to propositional
symbols.

E.g., There are four possible models in the raining example:

Wet
0o 1

o

Rain
[N

Ingredients of Logic — Semantics

f = Rain VvV Wet
models where the sentence f is false
Wet
0// PlQ|(PvQ)
_0~ S T IF|
&E il [l T
LA FIT T
F |F F

models where the sentence f is true

Ingredients of Logic — Semantics

P| ~P P|lQ|(PrQ) PlQ (PvQ) P|Ql|(P=>Q) P | Q| (PeQ)

T| F T | T Tlr| = T|T| 7 A i T

F | T T |F F T |B| 7 T|F| F T|F Z
FIT = FIr| = FIT] T Fl T 3
F|F F F|F - FIF| T F|F T

Ingredients of Logic — Semantics

f: (Rain v Wet) = Unhappy

Rain, Wet

00

01

10

11

Unhappy

0

1

M (f): the set of models where sentence f is true.

Ingredients of Logic — Knowledge Base

Knowledge base = a collection of sentences

Let KB = {Rain V Snow, Traffic}.

M (Rain V Snow) - M (Traffic)

Ingredients of Logic — Knowledge Base

M (Rain) M (Rain — Wet)

Wet Wet
0 1 0 1

Rain
 — o
Rain
— o

K13
M({Rain, Rain — Wet})
T Wet

0
w

Rain

= O

(

Adding more formulas to the knowledge base:

KB

Shrinks the set of models:

A = Wet

Wit
§ (

]

M(KB)

el KBU{f}

—- M(KB) N M(f)

Recap: Propositional Logic

e Sentence: propositional symbols, or their negations (=), or their
combinations through A, v, =, <.

e Models: An assignment of truth values to propositional symbols.
e Knowledge base: a set of sentences
e M (f): the set of models where sentence f is true.

Entaillment

e Sentence a entails sentence f means that (in high level) sentence g follows
logically from sentence «

e Denotedas a = ¢
e a L ifandonly if M(a) € M(B)
e Example: Rain A Snow = Show

Inference Algorithms

e Given KB and «a, the algorithm tries to derive sentence «.

e |f an algorithm A is able to derive a from KB, we write KB - ; «
e This is different from KB E «a,

e Soundness (correctness)
e The algorithm can only derive « when « is entailed by KB.
e In other words: If KB 4 a, then KB = «

e Completeness
e For any a that KB entalls, the algorithm is able to derive a.
e If other words: If KB k= «a, thenif KB 4 «a

A (Simple) Inference Algorithm: Model Checking

function TT-ENTAILS?(KB,) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic

«, the query, a sentence in propositional logic

symbols < a list of the proposition symbols in KB and «
return TT-CHECK-ALL(KB, a, symbols, { })

function TT-CHECK-ALL(KB, a, symbols, model) returns true or false
if EMPTY ?(symbols) then
if PL-TRUE?(KB, model) then return PL-TRUE?(«, model)
else return {rue // when KB is false, always return true

else
P < FIRST(symbols)

rest <— REST(symbols)
return (TT-CHECK-ALL(KB, a, rest, model U {P = true})

and
TT-CHECK-ALL(KB, a, rest, model U {P false }))

A (Simple) Inference Algorithm: Model Checking

Model Checking (KB, «a):

Let M be the set of all possible models
(|JM| = 2 if there are N propositional symbols in KB U {a})

Form € M

If KBis True in m and «a Is False iIn m : return False
return True

Theorem Proving

ldea: Instead of checking all models, will just perform manipulations on the
sentence level.

Inference Rules of—-v(? = - D/r/(s

e Modus Ponens (Latin for mode the affirms) (tip o) o)
=(- 0/.> v()v(-wvie)

(@1 &), ---{“@@“2 ANag) = f «—— premises
R

«—— conclusion

C(l, 6{2, ...,ak, @_Iaz VeV —|C(k VvV
or

e And Eliminations

al/\az/\'“/\ak

a;

Standard Logical Equivalence

(can be applied in any steps in the inference algorithm)

(anpB) = (fAa) commutativity of A
(aVv @) = (fVa) commutativity of v
(aAB)AYy) = (aA(BA7y)) associativity of A
(aVvB)Vy) = (aV(BVy)) associativity of V
(-1a) = « double-negation elimination
(@ = B) = (038 = —a) contraposition
(a = B) = (~aVp) implication elimination
(a & B) = ((a = B)A (B = a)) biconditional elimination
(AB) = (—haV-3) de Mowan
-(aV @) = (~aA-3) deMorgan
(an(BVY) = (aAB)V(aAy)) dstributivity of A over V
(aV (BAY) = (aVvpB)A(aVy)) dstributivity of VvV over A

Inference Rules

Example: KB ={Rain = Wet, Wet = Unhappy, Rain}, a = Unhappy.

Applying Modus Ponens on KB
(i.e., try to match sentences in KB with premises a and f3) Modus Ponens:
A1y 0y A, (A AANag) =0
Rain, Rain = Wet B

Wet

KB = {Rain = Wet, Wet = Unhappy, Rain, Wet}
Applying Modus Ponens on KB

Wet, Wet = Unhappy
Unhappy

Forward Inference

Input: KB, a, T = a set of inference rule
If « € KB: return True
Repeat:

Choose a set of sentences «ay, ..., ay € KB such that

aq, Ay, ..., A

matches arule in ¥, and f & KB.
If 8 = a: return True

If such (aq, ay, ..., ax,) does not exist. return False
Add f to KB.

Forward Inference

e Forward inference is a search problem
e \What are the states, actions, successor function, and goal test?
e Algorithms introduced for search problems can be applied here.

e |s the forward inference algorithm sound?
e Yes, as long as all inference rules you use are sound

e |s forward inference complete?

Forward Inference

Example:
KB = {Rain = Wet, Rainv Shine, Wet v Shine = Happy}

a = Happy
Use Forward Inference algorithm with ¥ = {Modus Ponens}

e Can KB entall a? P P g
e Can the algorithm derive a from KB? — Z; i
ro-FL]

Forward Inference with Modus Ponens is sound but not complete

A Sound and Complete Algorithm?

Fact 1. If KB only consists of Horn clauses,
then Forward Inference with Modus Ponens is sound and complete.

Fact 2. In general, Forward Inference with Resolution is sound and complete.

Horn Clauses + Modus Ponens is Complete

Horn clause: sentence that have the following forms

Xl /\Xz/\"'/\Xk_l :Xk or Xl AXZAAXR :>False
1] Il
— X1 V=X,V VX1 VX — X7 VX,V VX,
Disjunction with only one positive symbol Disjunction with no positive symbol

(Definite clause) (Goal clause)

Horn Clauses + Modus Ponens is Complete

KB

Rain

Weekday

Rain — Wet Weekday} ‘Wet A Weekday — Traffic
Wet A Weekday — Traffic

Traffic A Careless — Accident M ‘Rain — WetJ

Intuition: The inference procedure of horn clauses is direct, in the sense that

there is no branching.
- kA s — (@

Horn clause: Rain A Snow > Dark A Traffic <5 R AS— T
Non- horn clause: Wet - Rain v Snow

- J
h'd

Has to branch into the cases —Rain, —=Snhow etc.

A pseudocode for Forward
Inference with Modus Ponens
(this algorithm is also called
Forward Chaining). This
pseudocode assumes that all
sentences are definite clauses
(but it's easy to extend it to
handle goal clauses as well).

The time complexity is linear in
the “size of KB”, i.e., the sum of
the lengths of all sentences in KB.

function PL-FC-ENTAILS?(K B, q) returns true or false
inputs: KB, the knowledge base, a set of propositional definite clauses
g, the query, a proposition symbol
count «— a table, where count|c] is the number of symbols in ¢’s premise
inferred «— a table, where inferred|s] is initially false for all symbols
agenda «— a queue of symbols, initially symbols known to be true in KB

while agenda is not empty do
p «— POP(agenda)
if p = ¢ then return true
if inferred[p] = false then
inferred[p] «+ true
for each clause ¢ in KB where p is in ¢.PREMISE do
decrement count|c]
if count[c] = 0 then add ¢.CONCLUSION to agenda
return false

Figure 7.15 The forward-chaining algorithm for propositional logic. The agenda keeps
track of symbols known to be true but not yet “processed.” The count table keeps track of
how many premises of each implication are as yet unknown. Whenever a new symbol p from
the agenda is processed, the count is reduced by one for each implication in whose premise
p appears (easily identified in constant time with appropriate indexing.) If a count reaches
zero, all the premises of the implication are known, so its conclusion can be added to the
agenda. Finally, we need to keep track of which symbols have been processed; a symbol that
is already in the set of inferred symbols need not be added to the agenda again. This avoids
redundant work and prevents loops caused by implications such as P = () and (Q = P.

General Case: Resolution is Complete

Resolution

CZ1VCZ2V°--VakVp, —lpVﬁ1Vﬁ2VVﬁm
a1Va2VVakV,31V,32VV,Bm

Example

Rain v Shine, —RainVv Wet
Shine v Wet

Converting Sentences to CNF Before Applying Resolution

Conjunctive Normal Form (CNF)
Example: (AvBv-C)A(—-BvD)

Converting Sentences to CNF: Example

Initial formula:
(Summer — Snow) — Bizzare
Remove implication (—):
—(—=Summer V Snow) V Bizzare
Push negation (—) inwards (de Morgan):
(=—=Summer A =Snow) V Bizzare
Remove double negation:
(Summer A =Snow) V Bizzare
Distribute V over A:

(Summer V Bizzare) A (=Snow V Bizzare)

Converting Sentences to CNF: General Rules

Conversion rules:

e Eliminate «: (f_};)‘:(%_}f)

e Eliminate —: {22

e Move — inwards: :S“{JA—?;

e Move — inwards: :(f{\\/_g'];

e Eliminate double negation: ﬁTﬁf

o . fV(gAh)
e Distribute V over A: (FVOATVR)

Resolution-Based Inference Algorithm

Note that KB E «a is equivalentto M (KB A — a) = empty set

KB’ < KB U {— a}
Convert all sentences in KB’ to CNF
Repeatedly apply Resolution Rule until
1) Falseis derived - returnKB = «
2) No new sentence can be derived = return KB ¥ «

Resolution-Based Inference Algorithm

function PL-RESOLUTION(KB,) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
«, the query, a sentence in propositional logic

clauses < the set of clauses in the CNF representation of KB A -«
new<«—{ }
loop do
for each C};, C; In clauses do
resolvents «+— PL-RESOLVE(C}, C})
if resolvents contains the empty clause then return true
new<— new U resolvents
if new C clauses then return false
clauses <« clauses U new

Resolution-Based Inference Algorithm

KB’ = {A— (BVvC(C),A,—-B,-C}
Convert to CNF:
KB = {—IA VBVC A -B, —lC}

Repeatedly apply resolution rule:

—IA\/B\/CJ

Conclusion: KB entails f

Time Complexity

e Modus Ponens
al,az,...,ak, (al/\az/\”’/\ak) :>ﬁ

p

Each rule application adds sentence with one propositional symbol
- linear time

e Resolution
C(1V0(2V--°VakVp, —lpVﬁ1Vﬁ2VVﬁm

a{1Va{2VVC¥kV,81V,BZVV,Bm

Each rule application adds sentence with many propositional symbol
- exponential time

Recap

| ModusPonens | Resolution __

Sound? Yes Yes
Complete? No Yes
Complete for horn clauses? Yes Yes

Time complexity linear exponential

Homework 3

Choice problems deadline: 11:59PM, Oct. 9 (No late submission!)
Programming problems deadline: 11:59PM, Oct. 23

Question 1: Logic Warmup

e Practice working with the class Expr which will be used to represent
propositional sentences in the later questions.

e Example. Create an Expr instance that represents the conjunction of the
following four expressions.

C« (BvD)
A—-(-Ba-D)
-(BA-C)— A

-D-—-C

Question 2: Logic Workout

e EXpress sentences using Conjunctive Normal Form (CNF)
e Example. Express the function ExactOne([A, B, C, ...]) as a CNF

Question 3: PAC Physics and Satisfiability

e EXxpress the physics of PACMAN using propositional logics. The rules include
e PAC must be at exactly one position that is not a wall \
e PAC takes exactly one of the four actions in every round

e If PAC is at (x,y) and takes WEST actions at time t-1 and there is no wall at (x-1, y), 8xioms
then PAC is at (x-1,y) at time t

Question 4: Path Planning with Logic

Fort=1, 2, ...

e Check if there exists there is a feasible assignment for
(X1, Y1, 815 X5, Yo, Qo ..., Xi, Yy) Where (X, Y,) Is goal.

e If so, return the path
e KB <« KB U {a, iIs one of NSEW}
e KB « KB U {if a,i1s N and (x,, y;+1) is not wall, then (X.,1, Y.1)=(X;, Y1), ... }

(All symbols represent “binary” variables, so the pseudocode above only
provides rough ideas but not exactly how you implement it)

Question 5: Eating All Food

e Similar to previous guestion, but now with additional
symbols representing whether there is food in a location

e Sentences related to the PACMAN position (X,y) and
whether there is food at (x,y) should be added to KB.

Question 6: Localization

e PACMAN does not know its own position
e But It has a sensor that tells whether there is wall on NSEW

e Given a sequence of actions and sensor signals, can you tell
the position of the PACMAN?

Question 7: Mapping

e PACMAN knows its initial position
e |t has a sensor that tells whether there is wall on NSEW

e Given a sequence of actions and sensor signals, reconstruct
the positions of the walls

Question 8: Simultaneous Localization and Mapping

e PACMAN knows its initial position
e The sensor only tells how many walls (0 to 3) are around it

e Given a sequence of actions and sensor signals, reconstruct the positions of
the walls and the position of the PACMAN

Midterm Exam

Types of Questions

e Multiple choice guestions (like in the homework)

e Questions where you may need to provide steps. For example,

e Which nodes are pruned under alpha-beta pruning in a specific game tree
e Argue why a particular heuristic function is consistent

e Resources from other universities:

e https://inst.eecs.berkeley.edu/~cs188/sp24/resources/
e https://inst.eecs.berkeley.edu/~cs188/su24/resources/
e https://stanford.edu/~cpiech/cs221/handouts/practiceMidterms.html

https://inst.eecs.berkeley.edu/~cs188/sp24/resources/
https://inst.eecs.berkeley.edu/~cs188/su24/resources/
https://stanford.edu/~cpiech/cs221/handouts/practiceMidterms.html

Midterm Review

e Next Thursday (Oct 10)

First-Order Logic

Limitations of Propositional Logic

Alice and Bob both know logic.
AliceKnowsLogic A BobKnowsLogic

Every student knows logic.

AlicelsStudent — AliceKnowsLogic
BoblsStudent - BobKnowsLogic

Every student knows some algorithm.

AlicelsStudent —» AliceKnowsBFS Vv AliceKnowsDFS v ...
BoblsStudent - BobKnowsBFS v BobKnowsDFS v ...

First-order logic: VX 1'SStudent(x) — (Elyl?klgorithm(y) A Knows(x,y))

Limitations of Propositional Logic

b) - . 5. SSSS ;‘?e‘éze//
If you're adjacent to a pit, then you can feel breeze 4 |58 el o7
Propositional logic: 3 Ssecrs | ML | T T
~/Gold \ \~
P11 = B1,ABy, s ssss e~
2 Stench > P
P12 = Bi1AByy AByj3
p@? CBrere s CBreeze s
1 Sl PIT
START
1 2 3 4

First-order logic:

Vw,X,y,Zz Adjacent(Grid(w,x), Grid(y,z)) A Pit(Grid(w,x)) = Breeze(Grid(y,z))

Limitations of Propositional Logic

Propositional logic is sometimes clunky. What is missing?

e Objects and predicates: propositions (e.g., AliceKnowsLogic) have more
Internal structure (Alice, Knows, Logic)

e Quantifiers and variables: all is a quantifier which applies to each person,
don't want to enumerate them all.

First-Order Logic

Alice and Bob both know logic.
Knows(Alice, Logic) A Knows(Bob, Logic)

Every student knows logic.
vx, Student(x) = Knows(x, Logic)

Syntax and Semantics of First-Order Logic

e Terms (refer to object)
e Constant: Alice, Logic Knows(Alice, Logic) A Knows(Bob, Logic)
e Variable: x vX, Student(x) = Knows(x, Logic)
e Function of terms: Father(.)
vx, HasBloodType(x, ‘AB’) = —HasBloodType(Father(x), ‘O’) A —HasBloodType(Mother(x), ‘O’)

e Predicate: Knows, Student, HasBloodType
e Atomic sentence: Predicate(Terms, ...)

e Complex sentence: — sentence
sentence A sentence
sentence v sentence
sentence = sentence
sentence < sentence

Quantifier variable, sentence

Syntax and Semantics First-Order Logic

e Quantifiers
e Universal quantifier v (think conjunction): Vvx P(x) is like P(A) A P(B) A ...
e Existential quantifier 3 (think disjunction): 3Ix P(x) is like P(A) v P(B) v...

e Properties of quantifiers
e —VX P(x) Is equivalent to Ix —P(X)
e Yx3y Know(x,y) and 3Iyvx Know(x,y) are different

Translation from Natural Language to FOL
Every student knows logic.

Vx Student(x)@ Knows(x, Logic)

Some student knows logic.

Jdx Student(x) @(nows (x, Logic)

What about 3Jx Student(x) = Knows(x, Logic) ?

Translation from Natural Language to FOL

There is some course that every student has taken.

Jy Course(y) A [Va Student(x) — Takes(z, y)]

Every even integer greater than 2 is the sum of two primes.

Va Evenlnt(z) A Greater(x,2) — dy dz Equals(xz, Sum(y, 2)) A Prime(y) A Prime(z2)

If a student takes a course and the course covers a concept, then the
student knows that concept.

VaVyVz (Student(z) A Takes(x,y) A Course(y) A Covers(y, z)) — Knows(z, 2)

Inference in First-Order Logic

e Convert everything to propositional logic

e Modus ponens
e Sound
e Complete for Horn clauses

e Resolution
e Sound and complete

Recall: Horn clause in PL

al/\az/\"‘/\ak :>ﬁ

a+ Na> A\ -\ a;, = False
s 2 k

Each «; is a propositional symbol

Horn clause in FOL

vxl;---;vxn al/\az/\"‘/\ak :>ﬁ
Vxy, .., VX, ag ANay A Aay = False
Pt

Each a; is an atomic sentence
(which may involve universal quantifier)

Forward Inference with Modus Ponens

!/ !/ !/
A1, An, e, A, VXq, 0, VX, (@ Ay A ANay) =

ﬁl

where ay, a3, ..., a;, B', a4, ..., ai, B are atomic sentences, and

(aq,ay, ..., ag, B) and (aq, as, ..., ap, ') can be unified through a substitution from
variable to terms. ‘\

make them look the same

Forward Inference with Modus Ponens

Take(Alice, CS4710)
Covers(CS4710, Logic) Knowledge Base
vx,y,z Take(x,y) A Covers(y,z) = Knows(x,z)

A1, Ay ey Ag, VX, o, VX, (g Ay A Aatg) = B
ﬁl

Take(Alice, CS4710), Covers(CS4710, Logic), vx,y,z Take(x,y) A Covers(y,z) = Knows(x,z)

?

Substitution:

x [Alice 9 — : N
y | CS4710 ? = Knows(x,z) applying the substitution

z | Logic = Knows(Alice,Logic)

Forward Inference with Modus Ponens

vw Take(Alice, w)
Covers(CS4710, Logic) Knowledge Base
vx,y,z Take(x,y) A Covers(y,z) = Knows(x,z)

!/ !/ !/
a, xy, ..., Ay, Vxl,...,‘v’xn, (al/\az/\“‘/\ak) =>’B

ﬁl
vw Take(Alice, w), Covers(CS4710, Logic), vx,y,z Take(x,y) A Covers(y,z) = Knows(x,z)
?
Substitution:
x [Alice 7 — i AT
v CSa710 ? = Knows(x,z) applying the substitution
z | Logic = Knows(Alice,Logic)
w/ CS4710

Forward Inference with Modus Ponens

Take(Alice, CS4710)
vv Covers(CS4710, v) Knowledge Base
vx,y,z Take(x,y) A Covers(y,z) = Knows(x,z)

A1, Ay ey Ag, VX, o, VX, (g Ay A Aatg) = B
ﬁl

Take(Alice, CS4710), vv Covers(CS4710,v), Vxy,z Take(x,y) A Covers(y,z) = Knows(x,z)

?

Substitution:
x [Alice 9 — : N
y | CS4710 ? = Knows(x,z) applying the substitution
GIvD = VV Knows(Alice,v)

Substitute variable with
another variable

Forward Inference with Modus Ponens

Input: KB, a
If « € KB: return True
Repeat:

Choose a set of atomic sentences a4, ..., a;, and rule Vx4, ..., Vx,, (a; A
a, N Aay) = in KB such that

ay, dy, ..., Ay, B’ matches a,, ay, ..., ay, B

under variable substitution, and g’ cannot be subsumed by any
sentence in KB.
If ' = a: return True

If such matching does not exist: return False
Add B’ to KB.

Forward Inference with Modus Ponens

Take(Alice, CS4710)

Take(Alice, CS1234)

Take(Alice, MU4321)

Take(Bob, CS4710)

Covers(DSA, Search)
Covers(LinearAlgebra, matrix)

vx,y,z Take(x,y) A Covers(y,z) = Knows(x,z)

How to find a matching between x,y,z and terms?

We can view of this problem as finding x,y,z that satisfies constraints
Take(x,y) and Covers(y,z)

- Constraint Satisfaction Problem (CSP)
- The heuristics we discussed before can be used

CSP iIs a Single Horn Clause

@ Diff (wa, nt) A\ Diff (wa, sa) A
g Diff (nt, q) A Diff (nt, sa) A
@ Diff (q, nsw) A Diff (q, sa) A
Diff (nsw,v) A Diff (nsw, sa) A
Diff (v, sa) = Colorable()

Diff (Red, Blue) Diff (Red, Green)
Diff (Green, Red) Diff (Green, Blue)

@ Diff (Blue, Red) Diff (Blue, Green)

(a) (b)

Figure 9.5 (a) Constraint graph for coloring the map of Australia. (b) The map-coloring
CSP expressed as a single definite clause. Each map region is represented as a variable whose
value can be one of the constants Red, Green or Blue.

Inference with Resolution

e High-level Ideas
e Convert everything to CNF
e Repeatedly apply the resolution rule from KB U {—a}

Conversion to CNF

Anyone who likes all animals is liked by someone.
Input:

Va (Vy Animal(y) — Loves(x,y)) — Jy Loves(y,)
Output:

(Animal(Y (z)) V Loves(Z(x),z)) A (—Loves(z, Y (x)) V Loves(Z(z), z))

New to first-order logic:
e All variables (e.g., x) have universal quantifiers by default

e Introduce Skolem functions (e.g., Y (x)) to represent existential quantified variables

Conversion to CNF (1/2)

Input:

Va (Vy Animal(y) — Loves(x,y)) — Jy Loves(y, x)
Eliminate implications (old):

Va —(Vy ~Animal(y) V Loves(z,y)) V Jy Loves(y, x)
Push — inwards, eliminate double negation (old):
Va (Jy Animal(y) A —Loves(z,y)) V Jy Loves(y, x)
Standardize variables (new):

Va (Jy Animal(y) A —Loves(z,y)) V dz Loves(z, x)

Conversion to CNF (2/2)

Vx (Jy Animal(y) A —Loves(x,y)) V 3z Loves(z, x)

Replace existentially quantified variables with Skolem functions (new):
Vz [Animal(Y (z)) A —Loves(x,Y (x))] V Loves(Z(z), x)

Distribute V over A (old):

Va [Animal(Y (z)) V Loves(Z(x), z)] A [~Loves(z, Y (z)) V Loves(Z(z), z)]

Remove universal quantifiers (new):

[Animal(Y (x)) V Loves(Z(x),z)] A [-Loves(z, Y (x)) V Loves(Z(z), x)]

Resolution

—% Definition: resolution rule (first-order logic) -

iV VipVp, —qVagV--Vgnm
Subst]f, f1 V-V [Vg1 V-V gnl
where 6 = Unify|p, q].

=
Animal(Y (x)) V Loves(Z(x),x), —Loves(u,v)V Feeds(u,v)
Animal(Y (x)) V Feeds(Z(x), x)
Substitution: 0 = {u/Z(x),v/x}.

Recap: FOL and PL

e First-order logic provides internal structures for propositions

Knows(Alice, Logic) AliceKnowsLogic

Knows(Bob, DFS) BobKnowsDFS

Takes(Boyfriend(Alice), CS4710) AliceBoyfriendTakesCS4710
Predicate Function Constant Propositional symbol

e First-order logic uses quantifiers Vv, 3 to generalize an idea across different objects

Knowledge Representation using (first-order or other) logic

e Chapter 121in
https://people.engr.tamu.edu/guni/csce421/files/Al Russell Norviq.pdf

e Give some ideas how to create knowledge representations on general concepts such
as events, time, physical objects etc, using first-order logic.

e Knowledge base and inference algorithms are important elements of expert
systems

e DENDRAL (1968): Predict molecular structure based on spectrographic data
e MYCIN (1975): Diagnose blood infections

e XCON (1978): Select computer system components based on customer’s
need

e Many companies built expert systems and software/hardware specialized for
their purpose.

https://people.engr.tamu.edu/guni/csce421/files/AI_Russell_Norvig.pdf

	Slide 1: Logic
	Slide 2: Wumpus World
	Slide 3: Exploring a wumpus world
	Slide 4: Exploring a wumpus world
	Slide 5: Exploring a wumpus world
	Slide 6: Exploring a wumpus world
	Slide 7: Exploring a wumpus world
	Slide 8: Exploring a wumpus world
	Slide 9: Exploring a wumpus world
	Slide 10: Exploring a wumpus world
	Slide 11: Systems with Logical Reasoning
	Slide 12: Example: Expert System
	Slide 13: Example: wumpus world
	Slide 14: Ingredients of Propositional Logic
	Slide 15: Sentence
	Slide 16: Ingredients of Logic – Syntax
	Slide 17: Ingredients of Logic – Syntax
	Slide 18: Ingredients of Logic – Semantics
	Slide 19: Ingredients of Logic – Semantics
	Slide 20: Ingredients of Logic – Semantics
	Slide 21: Ingredients of Logic – Semantics
	Slide 22: Ingredients of Logic – Knowledge Base
	Slide 23: Ingredients of Logic – Knowledge Base
	Slide 24: Recap: Propositional Logic
	Slide 25: Entailment
	Slide 26: Inference Algorithms
	Slide 27: A (Simple) Inference Algorithm: Model Checking
	Slide 28: A (Simple) Inference Algorithm: Model Checking
	Slide 29: Theorem Proving
	Slide 30: Inference Rules
	Slide 31: Standard Logical Equivalence
	Slide 32: Inference Rules
	Slide 33: Forward Inference
	Slide 34: Forward Inference
	Slide 35: Forward Inference
	Slide 36: A Sound and Complete Algorithm?
	Slide 37: Horn Clauses + Modus Ponens is Complete
	Slide 38: Horn Clauses + Modus Ponens is Complete
	Slide 39
	Slide 40: General Case: Resolution is Complete
	Slide 41: Converting Sentences to CNF Before Applying Resolution
	Slide 42: Converting Sentences to CNF: Example
	Slide 43: Converting Sentences to CNF: General Rules
	Slide 44: Resolution-Based Inference Algorithm
	Slide 45: Resolution-Based Inference Algorithm
	Slide 46: Resolution-Based Inference Algorithm
	Slide 47: Time Complexity
	Slide 48: Recap
	Slide 49: Homework 3
	Slide 50: Question 1: Logic Warmup
	Slide 51: Question 2: Logic Workout
	Slide 52: Question 3: PAC Physics and Satisfiability
	Slide 53: Question 4: Path Planning with Logic
	Slide 54: Question 5: Eating All Food
	Slide 55: Question 6: Localization
	Slide 56: Question 7: Mapping
	Slide 57: Question 8: Simultaneous Localization and Mapping
	Slide 58: Midterm Exam
	Slide 59: Types of Questions
	Slide 60: Midterm Review
	Slide 61: First-Order Logic
	Slide 62: Limitations of Propositional Logic
	Slide 63: Limitations of Propositional Logic
	Slide 64: Limitations of Propositional Logic
	Slide 65: First-Order Logic
	Slide 66: Syntax and Semantics of First-Order Logic
	Slide 67: Syntax and Semantics First-Order Logic
	Slide 68: Translation from Natural Language to FOL
	Slide 69: Translation from Natural Language to FOL
	Slide 70: Inference in First-Order Logic
	Slide 71: Forward Inference with Modus Ponens
	Slide 72: Forward Inference with Modus Ponens
	Slide 73: Forward Inference with Modus Ponens
	Slide 74: Forward Inference with Modus Ponens
	Slide 75: Forward Inference with Modus Ponens
	Slide 76: Forward Inference with Modus Ponens
	Slide 77: CSP is a Single Horn Clause
	Slide 78: Inference with Resolution
	Slide 79: Conversion to CNF
	Slide 80: Conversion to CNF (1/2)
	Slide 81: Conversion to CNF (2/2)
	Slide 82: Resolution
	Slide 83: Recap: FOL and PL
	Slide 84: Knowledge Representation using (first-order or other) logic

