
Logic
Chen-Yu Wei

Wumpus World

Performance

Gold +1000, death -1000, -1 per step, -10 for
using the arrow

Environment

Perceive stench if adjacent to wumpus

Perceive breeze if adjacent to pit

Perceive glitter if in the square of gold

Can grab gold if in the square of gold

Can shoot and kill wumpus if you’re facing it

(shooting uses up the only arrow)

Die if entering a square with pit or living wumpus

Actions

Left turn, right turn, forward, grab, shoot

Sensors

Breeze, glitter, smell

Exploring a wumpus world

Exploring a wumpus world

Exploring a wumpus world

Exploring a wumpus world

Exploring a wumpus world

Exploring a wumpus world

Exploring a wumpus world

Exploring a wumpus world

Systems with Logical Reasoning

● Knowledge base

● Consists of some prior knowledge

● Inference engine

● Derive new knowledge or make some claims

● User Interaction

● Tell information

● Ask question

Example: Expert System
If has_hair, then mammal.

If mammal and has_hooves, then ungulate.
If has_feathers, then bird.

If mammal and carnivore and has_dark_spots, then cheetah.
If mammal and carnivore and has_black_stripes, then tiger.
If bird and does_not_fly and has_long_neck, then ostrich.
……

Knowledge base

User interaction

Example: wumpus world

Knowledge base

Perceive stench if adjacent to wumpus

Perceive breeze if adjacent to pit

Perceive glitter if in the square of gold

…

User interaction

Tell the logic system whether stench, breeze, glitter is perceived

Ask for the next action

Inference Engine

Ingredients of Propositional Logic

Sentence

Knowledge base consists of “sentences”

Inference algorithm derives new “sentences” and add them to the knowledge base

Example:

KB = { “Rain→Wet”, “Rain” }

Inference algorithm derives a new sentence “Wet” based on KB

Now KB becomes

KB = {“Rain→Wet”, “Rain”, “Wet” }

Ingredients of Logic – Syntax

Define what are valid sentences.

E.g., syntax in python:

 “ for x in range(10): ” Valid

 “ for x range(10): ” Invalid (the python interpreter cannot understand)

E.g. syntax in math:

 “ x + y = 5” Valid

 “ x 5 = y + ” Invalid

Ingredients of Logic – Syntax

Syntax in propositional logic:

● A proposition symbols X is a sentence

(a propositional symbol is a Boolean variable)

● If  is a sentence then  is a sentence

● If  and  are sentences then    is a sentence

● If  and  are sentences then    is a sentence

● If  and  are sentences then    is a sentence

● If  and  are sentences then    is a sentence

The , , , ,  symbols have no meaning here. Their meanings are

specified by the “semantics” of logic (discussed next).

Ingredients of Logic – Semantics

Let’s first define “models”. A model is a configuration of the world.

In propositional logic, a model is an assignment of truth values to propositional

symbols.

E.g., There are four possible models in the raining example:

0 1

0

1R
a
in

Wet

Ingredients of Logic – Semantics

models where the sentence 𝑓 is true

models where the sentence 𝑓 is false

Ingredients of Logic – Semantics

Ingredients of Logic – Semantics

𝑓: (Rain ∨ Wet) ⇒ Unhappy

00

01

10

11

0 1

Rain, Wet

Unhappy

ℳ 𝑓 : the set of models where sentence 𝑓 is true.

Ingredients of Logic – Knowledge Base

Knowledge base = a collection of sentences

Ingredients of Logic – Knowledge Base

Recap: Propositional Logic

● Sentence: propositional symbols, or their negations (), or their

combinations through , , , .

● Models: An assignment of truth values to propositional symbols.

● Knowledge base: a set of sentences

● ℳ 𝑓 : the set of models where sentence 𝑓 is true.

Entailment

● Sentence 𝛼 entails sentence 𝛽 means that (in high level) sentence 𝛽 follows

logically from sentence 𝛼

● Denoted as 𝛼 ⊨ 𝛽

● 𝛼 ⊨ 𝛽 if and only if ℳ 𝛼 ⊂ ℳ 𝛽

● Example: Rain ∧ Snow ⊨ Snow

𝓜 𝜶

𝓜 𝜷

Inference Algorithms

● Given KB and 𝛼, the algorithm tries to derive sentence 𝛼.

● If an algorithm 𝒜 is able to derive 𝛼 from KB, we write KB ⊢𝒜 𝛼

● This is different from KB ⊨ 𝛼,

● Soundness (correctness)

● The algorithm can only derive 𝛼 when 𝛼 is entailed by KB.

● In other words: If KB ⊢𝒜 𝛼, then KB ⊨ 𝛼

● Completeness

● For any 𝛼 that KB entails, the algorithm is able to derive 𝛼.

● If other words: If KB ⊨ 𝛼, then if KB ⊢𝒜 𝛼

A (Simple) Inference Algorithm: Model Checking

A (Simple) Inference Algorithm: Model Checking

Model Checking (KB, 𝛼):

Let ℳ be the set of all possible models

(ℳ = 2𝑁 if there are 𝑁 propositional symbols in KB ∪ 𝛼)

For 𝑚 ∈ ℳ:

If KB is True in 𝑚 and 𝛼 is False in 𝑚 : return False

return True

Theorem Proving

Idea: Instead of checking all models, will just perform manipulations on the

sentence level.

Inference Rules

● Modus Ponens (Latin for mode the affirms)

𝛼1, 𝛼2, … , 𝛼𝑘 , (𝛼1 ∧ 𝛼2 ∧ ⋯ ∧ 𝛼𝑘) ⇒ 𝛽

𝛽

● And Eliminations

𝛼1 ∧ 𝛼2 ∧ ⋯ ∧ 𝛼𝑘

𝛼𝑖

premises

conclusion

𝛼1, 𝛼2, … , 𝛼𝑘 , (𝛼1 ∨ 𝛼2 ∨ ⋯ ∨ 𝛼𝑘 ∨ 𝛽)

𝛽
or

Standard Logical Equivalence

(can be applied in any steps in the inference algorithm)

Inference Rules

Example: KB = {Rain ⇒ Wet, Wet ⇒ Unhappy, Rain}, 𝛼 = Unhappy.

Applying Modus Ponens on KB

(i.e., try to match sentences in KB with premises 𝛼 and 𝛽) Modus Ponens:
𝛼1, … , 𝛼𝑘 , (𝛼1 ∧ ⋯ ∧ 𝛼𝑘) ⇒ 𝛽

𝛽
Rain, Rain ⇒ Wet

Wet

KB = {Rain ⇒ Wet, Wet ⇒ Unhappy, Rain, Wet}

Applying Modus Ponens on KB

Wet, Wet ⇒ Unhappy

Unhappy

Forward Inference

Input: KB, 𝛼, 𝔗 = a set of inference rule

Repeat:

Choose a set of sentences 𝛼1, … , 𝛼𝑘 ∈ KB such that

𝛼1, 𝛼2, … , 𝛼𝑘

𝛽

matches a rule in 𝔗, and 𝛽 ∉ KB.

Add 𝛽 to KB.

If 𝛽 = 𝛼: return True

If such (𝛼1, 𝛼2, … , 𝛼𝑘 , 𝛽) does not exist: return False

If 𝛼 ∈ KB: return True

Forward Inference

● Forward inference is a search problem

● What are the states, actions, successor function, and goal test?

● Algorithms introduced for search problems can be applied here.

● Is the forward inference algorithm sound?

● Yes, as long as all inference rules you use are sound

● Is forward inference complete?

Forward Inference

KB = {Rain ⇒ Wet, Rain ∨ Shine, Wet ∨ Shine ⇒ Happy}

𝛼 = Happy

Use Forward Inference algorithm with 𝔗 = {Modus Ponens}

Example:

● Can KB entail 𝛼?

● Can the algorithm derive 𝛼 from KB?

Forward Inference with Modus Ponens is sound but not complete

A Sound and Complete Algorithm?

Fact 2. In general, Forward Inference with Resolution is sound and complete.

Fact 1. If KB only consists of Horn clauses,

then Forward Inference with Modus Ponens is sound and complete.

Horn Clauses + Modus Ponens is Complete

Horn clause: sentence that have the following forms

𝑋1 ∧ 𝑋2 ∧ ⋯ ∧ 𝑋𝑘−1 ⇒ 𝑋𝑘 𝑋1 ∧ 𝑋2 ∧ ⋯ ∧ 𝑋𝑘 ⇒ Falseor

𝑋1 ∨ 𝑋2 ∨ ⋯ ∨ 𝑋𝑘𝑋1 ∨ 𝑋2 ∨ ⋯ ∨ 𝑋𝑘−1 ∨ 𝑋𝑘

≡ ≡

Disjunction with only one positive symbol Disjunction with no positive symbol

(Definite clause) (Goal clause)

Horn Clauses + Modus Ponens is Complete

Intuition: The inference procedure of horn clauses is direct, in the sense that

there is no branching.

 Horn clause: Rain ∧ Snow → Dark ∧ Traffic

 Non- horn clause: Wet → Rain ∨ Snow

 Has to branch into the cases Rain, Snow etc.

A pseudocode for Forward

Inference with Modus Ponens

(this algorithm is also called

Forward Chaining). This

pseudocode assumes that all

sentences are definite clauses

(but it’s easy to extend it to

handle goal clauses as well).

The time complexity is linear in

the “size of KB”, i.e., the sum of

the lengths of all sentences in KB.

General Case: Resolution is Complete

Resolution

𝛼1 ∨ 𝛼2 ∨ ⋯ ∨ 𝛼𝑘 ∨ 𝑝, 𝑝 ∨ 𝛽1 ∨ 𝛽2 ∨ ⋯ ∨ 𝛽𝑚

𝛼1 ∨ 𝛼2 ∨ ⋯ ∨ 𝛼𝑘 ∨ 𝛽1 ∨ 𝛽2 ∨ ⋯ ∨ 𝛽𝑚

Example

Rain ∨ Shine, Rain ∨ Wet

Shine ∨ Wet

Converting Sentences to CNF Before Applying Resolution

Conjunctive Normal Form (CNF)

Example: (A ∨ B ∨ ¬C) ∧ (¬B ∨ D)

Converting Sentences to CNF: Example

Converting Sentences to CNF: General Rules

Resolution-Based Inference Algorithm

Note that KB ⊨ 𝛼 is equivalent to ℳ(KB ∧  𝛼) = empty set

KB’ ← KB ⋃ { 𝛼}

Convert all sentences in KB’ to CNF

Repeatedly apply Resolution Rule until

1) False is derived → return KB ⊨ 𝛼

2) No new sentence can be derived → return KB ⊭ 𝛼

Resolution-Based Inference Algorithm

Resolution-Based Inference Algorithm

Time Complexity

● Modus Ponens
𝛼1, 𝛼2, … , 𝛼𝑘 , (𝛼1 ∧ 𝛼2 ∧ ⋯ ∧ 𝛼𝑘) ⇒ 𝛽

𝛽

 Each rule application adds sentence with one propositional symbol

 → linear time

● Resolution
𝛼1 ∨ 𝛼2 ∨ ⋯ ∨ 𝛼𝑘 ∨ 𝑝, 𝑝 ∨ 𝛽1 ∨ 𝛽2 ∨ ⋯ ∨ 𝛽𝑚

𝛼1 ∨ 𝛼2 ∨ ⋯ ∨ 𝛼𝑘 ∨ 𝛽1 ∨ 𝛽2 ∨ ⋯ ∨ 𝛽𝑚

 Each rule application adds sentence with many propositional symbol

 → exponential time

Recap

Modus Ponens Resolution

Sound? Yes Yes

Complete? No Yes

Complete for horn clauses? Yes Yes

Time complexity linear exponential

Homework 3
Choice problems deadline: 11:59PM, Oct. 9 (No late submission!)

Programming problems deadline: 11:59PM, Oct. 23

Question 1: Logic Warmup

● Practice working with the class Expr which will be used to represent

propositional sentences in the later questions.

● Example. Create an Expr instance that represents the conjunction of the

following four expressions.

Question 2: Logic Workout

● Express sentences using Conjunctive Normal Form (CNF)

● Example. Express the function ExactOne([A, B, C, …]) as a CNF

Question 3: PAC Physics and Satisfiability

● Express the physics of PACMAN using propositional logics. The rules include

● PAC must be at exactly one position that is not a wall

● PAC takes exactly one of the four actions in every round

● If PAC is at (x,y) and takes WEST actions at time t-1 and there is no wall at (x-1, y),

then PAC is at (x-1,y) at time t

● …

axioms

Question 4: Path Planning with Logic

For t = 1, 2, …

● Check if there exists there is a feasible assignment for

(x1, y1, a1, x2, y2, a2, …, xt, yt) where (xt, yt) is goal.

● If so, return the path

● KB ← KB ⋃ {at is one of NSEW}

● KB ← KB ⋃ {if at is N and (xt, yt+1) is not wall, then (xt+1, yt+1)=(xt, yt+1), … }

(All symbols represent “binary” variables, so the pseudocode above only

provides rough ideas but not exactly how you implement it)

Question 5: Eating All Food

● Similar to previous question, but now with additional

symbols representing whether there is food in a location

● Sentences related to the PACMAN position (x,y) and

whether there is food at (x,y) should be added to KB.

Question 6: Localization

● PACMAN does not know its own position

● But it has a sensor that tells whether there is wall on NSEW

● Given a sequence of actions and sensor signals, can you tell

the position of the PACMAN?

Question 7: Mapping

● PACMAN knows its initial position

● It has a sensor that tells whether there is wall on NSEW

● Given a sequence of actions and sensor signals, reconstruct

the positions of the walls

Question 8: Simultaneous Localization and Mapping

● PACMAN knows its initial position

● The sensor only tells how many walls (0 to 3) are around it

● Given a sequence of actions and sensor signals, reconstruct the positions of

the walls and the position of the PACMAN

Midterm Exam

Types of Questions

● Multiple choice questions (like in the homework)

● Questions where you may need to provide steps. For example,

● Which nodes are pruned under alpha-beta pruning in a specific game tree

● Argue why a particular heuristic function is consistent

● Resources from other universities:

● https://inst.eecs.berkeley.edu/~cs188/sp24/resources/

● https://inst.eecs.berkeley.edu/~cs188/su24/resources/

● https://stanford.edu/~cpiech/cs221/handouts/practiceMidterms.html

https://inst.eecs.berkeley.edu/~cs188/sp24/resources/
https://inst.eecs.berkeley.edu/~cs188/su24/resources/
https://stanford.edu/~cpiech/cs221/handouts/practiceMidterms.html

Midterm Review

● Next Thursday (Oct 10)

First-Order Logic

Limitations of Propositional Logic

Alice and Bob both know logic.

AliceKnowsLogic ∧ BobKnowsLogic

Every student knows logic.

AliceIsStudent → AliceKnowsLogic

BobIsStudent → BobKnowsLogic

Every student knows some algorithm.

…

AliceIsStudent → AliceKnowsBFS ∨ AliceKnowsDFS ∨ …

BobIsStudent → BobKnowsBFS ∨ BobKnowsDFS ∨ …

…

∀x Student(x) → ∃y Algorithm y ∧ Knows(x,y)First-order logic:

Limitations of Propositional Logic

If you’re adjacent to a pit, then you can feel breeze.

Propositional logic:

𝑃1,1 ⇒ 𝐵1,2 ∧ 𝐵2,1

𝑃1,2 ⇒ 𝐵1,1 ∧ 𝐵2,2 ∧ 𝐵1,3

…
…

First-order logic:

∀w,x,y,z Adjacent(Grid(w,x), Grid(y,z)) ∧ Pit(Grid(w,x)) ⇒ Breeze(Grid(y,z))

Limitations of Propositional Logic

Propositional logic is sometimes clunky. What is missing?

● Objects and predicates: propositions (e.g., AliceKnowsLogic) have more

internal structure (Alice, Knows, Logic)

● Quantifiers and variables: all is a quantifier which applies to each person,

don't want to enumerate them all.

First-Order Logic

Alice and Bob both know logic.

Knows(Alice, Logic) ∧ Knows(Bob, Logic)

Every student knows logic.

∀x, Student(x) ⇒ Knows(x, Logic)

Syntax and Semantics of First-Order Logic

● Terms (refer to object)

● Constant: Alice, Logic

● Variable: x

● Function of terms: Father(.)

● Predicate: Knows, Student, HasBloodType

● Atomic sentence: Predicate(Terms, …)

● Complex sentence:

Knows(Alice, Logic) ∧ Knows(Bob, Logic)

∀x, Student(x) ⇒ Knows(x, Logic)

∀x, HasBloodType(x, ‘AB’) ⇒ HasBloodType(Father(x), ‘O’) ∧ HasBloodType(Mother(x), ‘O’)

 sentence

sentence  sentence

sentence  sentence

sentence  sentence

sentence  sentence

Quantifier variable, sentence

Syntax and Semantics First-Order Logic

● Quantifiers

● Universal quantifier ∀ (think conjunction): ∀x P(x) is like P(A) ∧ P(B) ∧ …

● Existential quantifier ∃ (think disjunction): ∃x P(x) is like P(A) ∨ P(B) ∨…

● Properties of quantifiers

● ∀x P(x) is equivalent to ∃x P(x)

● ∀x∃y Know(x,y) and ∃y∀x Know(x,y) are different

Translation from Natural Language to FOL

Some student knows logic.

Every student knows logic.

∀𝑥 Student 𝑥 ⇒ Knows(𝑥, Logic)

∃𝑥 Student 𝑥 ∧ Knows(𝑥, Logic)

∃𝑥 Student 𝑥 ⇒ Knows(𝑥, Logic) ?What about

Translation from Natural Language to FOL

There is some course that every student has taken.

Every even integer greater than 2 is the sum of two primes.

If a student takes a course and the course covers a concept, then the

student knows that concept.

Inference in First-Order Logic

● Convert everything to propositional logic

● Modus ponens

● Sound

● Complete for Horn clauses

● Resolution

● Sound and complete

Recall: Horn clause in PL

𝛼1 ∧ 𝛼2 ∧ ⋯ ∧ 𝛼𝑘 ⇒ 𝛽

𝛼1 ∧ 𝛼2 ∧ ⋯ ∧ 𝛼𝑘 ⇒ False

Each 𝛼𝑖 is a propositional symbol

Horn clause in FOL

𝛼1 ∧ 𝛼2 ∧ ⋯ ∧ 𝛼𝑘 ⇒ 𝛽

𝛼1 ∧ 𝛼2 ∧ ⋯ ∧ 𝛼𝑘 ⇒ False

Each 𝛼𝑖 is an atomic sentence

(which may involve universal quantifier)

∀𝑥1, … , ∀𝑥𝑛

∀𝑥1, … , ∀𝑥𝑛

Forward Inference with Modus Ponens

𝛼1
′ , 𝛼2

′ , … , 𝛼𝑘
′ , ∀𝑥1, … , ∀𝑥𝑛, (𝛼1 ∧ 𝛼2 ∧ ⋯ ∧ 𝛼𝑘) ⇒ 𝛽

𝛽′

𝛼1, 𝛼2, … , 𝛼𝑘 , 𝛽 and 𝛼1
′ , 𝛼2

′ , … , 𝛼𝑘
′ , 𝛽′ can be unified through a substitution from

variable to terms.

where 𝛼1
′ , 𝛼2

′ , … , 𝛼𝑘
′ , 𝛽′, 𝛼1, … , 𝛼𝑘 , 𝛽 are atomic sentences, and

make them look the same

Forward Inference with Modus Ponens

𝛼1
′ , 𝛼2

′ , … , 𝛼𝑘
′ , ∀𝑥1, … , ∀𝑥𝑛, (𝛼1 ∧ 𝛼2 ∧ ⋯ ∧ 𝛼𝑘) ⇒ 𝛽

𝛽′

Take(Alice, CS4710), Covers(CS4710, Logic), ∀x,y,z Take(x,y) ∧ Covers(y,z) ⇒ Knows(x,z)

?

Substitution:

x / Alice

y / CS4710

z / Logic

? = Knows(x,z) applying the substitution

= Knows(Alice,Logic)

Take(Alice, CS4710)

Covers(CS4710, Logic)

∀x,y,z Take(x,y) ∧ Covers(y,z) ⇒ Knows(x,z)

Knowledge Base

Forward Inference with Modus Ponens

𝛼1
′ , 𝛼2

′ , … , 𝛼𝑘
′ , ∀𝑥1, … , ∀𝑥𝑛, (𝛼1 ∧ 𝛼2 ∧ ⋯ ∧ 𝛼𝑘) ⇒ 𝛽

𝛽′

∀w Take(Alice, w), Covers(CS4710, Logic), ∀x,y,z Take(x,y) ∧ Covers(y,z) ⇒ Knows(x,z)

?

? = Knows(x,z) applying the substitution

= Knows(Alice,Logic)

∀w Take(Alice, w)

Covers(CS4710, Logic)

∀x,y,z Take(x,y) ∧ Covers(y,z) ⇒ Knows(x,z)

Knowledge Base

Substitution:

x / Alice

y / CS4710

z / Logic

w / CS4710

Forward Inference with Modus Ponens

Take(Alice, CS4710)

∀v Covers(CS4710, v)

∀x,y,z Take(x,y) ∧ Covers(y,z) ⇒ Knows(x,z)

𝛼1
′ , 𝛼2

′ , … , 𝛼𝑘
′ , ∀𝑥1, … , ∀𝑥𝑛, (𝛼1 ∧ 𝛼2 ∧ ⋯ ∧ 𝛼𝑘) ⇒ 𝛽

𝛽′

Take(Alice, CS4710), ∀v Covers(CS4710, v), ∀x,y,z Take(x,y) ∧ Covers(y,z) ⇒ Knows(x,z)

?

Substitution:

x / Alice

y / CS4710

z / v

? = Knows(x,z) applying the substitution

= ∀v Knows(Alice,v)

Knowledge Base

Substitute variable with

another variable

Forward Inference with Modus Ponens

Input: KB, 𝛼

Repeat:

Choose a set of atomic sentences 𝛼1
′ , … , 𝛼𝑘

′ and rule ∀𝑥1, … , ∀𝑥𝑛, (𝛼1 ∧
𝛼2 ∧ ⋯ ∧ 𝛼𝑘) ⇒ 𝛽 in KB such that

𝛼1
′ , 𝛼2

′ , … , 𝛼𝑘
′ , 𝛽′ matches 𝛼1, 𝛼2, … , 𝛼𝑘 , 𝛽

Add 𝛽′ to KB.

If 𝛽′ = 𝛼: return True

If such matching does not exist: return False

If 𝛼 ∈ KB: return True

under variable substitution, and 𝛽′ cannot be subsumed by any

sentence in KB.

Forward Inference with Modus Ponens

Take(Alice, CS4710)

Covers(DSA, Search)

∀x,y,z Take(x,y) ∧ Covers(y,z) ⇒ Knows(x,z)

Take(Alice, CS1234)

Take(Alice, MU4321)

Take(Bob, CS4710)

Covers(LinearAlgebra, matrix)

We can view of this problem as finding x,y,z that satisfies constraints

Take(x,y) and Covers(y,z)

→ Constraint Satisfaction Problem (CSP)

→ The heuristics we discussed before can be used

How to find a matching between x,y,z and terms?

CSP is a Single Horn Clause

Inference with Resolution

● High-level Ideas

● Convert everything to CNF

● Repeatedly apply the resolution rule from KB ∪ {𝛼}

Conversion to CNF

Conversion to CNF (1/2)

Conversion to CNF (2/2)

Resolution

Recap: FOL and PL

● First-order logic provides internal structures for propositions

● First-order logic uses quantifiers ∀, ∃ to generalize an idea across different objects

Knows(Alice, Logic)

Knows(Bob, DFS)

Takes(Boyfriend(Alice), CS4710)

AliceKnowsLogic

BobKnowsDFS

AliceBoyfriendTakesCS4710

ConstantFunctionPredicate Propositional symbol

Knowledge Representation using (first-order or other) logic

● Chapter 12 in

https://people.engr.tamu.edu/guni/csce421/files/AI_Russell_Norvig.pdf

● Give some ideas how to create knowledge representations on general concepts such

as events, time, physical objects etc, using first-order logic.

● Knowledge base and inference algorithms are important elements of expert

systems

● DENDRAL (1968): Predict molecular structure based on spectrographic data

● MYCIN (1975): Diagnose blood infections

● XCON (1978): Select computer system components based on customer’s

need

● Many companies built expert systems and software/hardware specialized for

their purpose.

https://people.engr.tamu.edu/guni/csce421/files/AI_Russell_Norvig.pdf

	Slide 1: Logic
	Slide 2: Wumpus World
	Slide 3: Exploring a wumpus world
	Slide 4: Exploring a wumpus world
	Slide 5: Exploring a wumpus world
	Slide 6: Exploring a wumpus world
	Slide 7: Exploring a wumpus world
	Slide 8: Exploring a wumpus world
	Slide 9: Exploring a wumpus world
	Slide 10: Exploring a wumpus world
	Slide 11: Systems with Logical Reasoning
	Slide 12: Example: Expert System
	Slide 13: Example: wumpus world
	Slide 14: Ingredients of Propositional Logic
	Slide 15: Sentence
	Slide 16: Ingredients of Logic – Syntax
	Slide 17: Ingredients of Logic – Syntax
	Slide 18: Ingredients of Logic – Semantics
	Slide 19: Ingredients of Logic – Semantics
	Slide 20: Ingredients of Logic – Semantics
	Slide 21: Ingredients of Logic – Semantics
	Slide 22: Ingredients of Logic – Knowledge Base
	Slide 23: Ingredients of Logic – Knowledge Base
	Slide 24: Recap: Propositional Logic
	Slide 25: Entailment
	Slide 26: Inference Algorithms
	Slide 27: A (Simple) Inference Algorithm: Model Checking
	Slide 28: A (Simple) Inference Algorithm: Model Checking
	Slide 29: Theorem Proving
	Slide 30: Inference Rules
	Slide 31: Standard Logical Equivalence
	Slide 32: Inference Rules
	Slide 33: Forward Inference
	Slide 34: Forward Inference
	Slide 35: Forward Inference
	Slide 36: A Sound and Complete Algorithm?
	Slide 37: Horn Clauses + Modus Ponens is Complete
	Slide 38: Horn Clauses + Modus Ponens is Complete
	Slide 39
	Slide 40: General Case: Resolution is Complete
	Slide 41: Converting Sentences to CNF Before Applying Resolution
	Slide 42: Converting Sentences to CNF: Example
	Slide 43: Converting Sentences to CNF: General Rules
	Slide 44: Resolution-Based Inference Algorithm
	Slide 45: Resolution-Based Inference Algorithm
	Slide 46: Resolution-Based Inference Algorithm
	Slide 47: Time Complexity
	Slide 48: Recap
	Slide 49: Homework 3
	Slide 50: Question 1: Logic Warmup
	Slide 51: Question 2: Logic Workout
	Slide 52: Question 3: PAC Physics and Satisfiability
	Slide 53: Question 4: Path Planning with Logic
	Slide 54: Question 5: Eating All Food
	Slide 55: Question 6: Localization
	Slide 56: Question 7: Mapping
	Slide 57: Question 8: Simultaneous Localization and Mapping
	Slide 58: Midterm Exam
	Slide 59: Types of Questions
	Slide 60: Midterm Review
	Slide 61: First-Order Logic
	Slide 62: Limitations of Propositional Logic
	Slide 63: Limitations of Propositional Logic
	Slide 64: Limitations of Propositional Logic
	Slide 65: First-Order Logic
	Slide 66: Syntax and Semantics of First-Order Logic
	Slide 67: Syntax and Semantics First-Order Logic
	Slide 68: Translation from Natural Language to FOL
	Slide 69: Translation from Natural Language to FOL
	Slide 70: Inference in First-Order Logic
	Slide 71: Forward Inference with Modus Ponens
	Slide 72: Forward Inference with Modus Ponens
	Slide 73: Forward Inference with Modus Ponens
	Slide 74: Forward Inference with Modus Ponens
	Slide 75: Forward Inference with Modus Ponens
	Slide 76: Forward Inference with Modus Ponens
	Slide 77: CSP is a Single Horn Clause
	Slide 78: Inference with Resolution
	Slide 79: Conversion to CNF
	Slide 80: Conversion to CNF (1/2)
	Slide 81: Conversion to CNF (2/2)
	Slide 82: Resolution
	Slide 83: Recap: FOL and PL
	Slide 84: Knowledge Representation using (first-order or other) logic

