
Machine Learning
Chen-Yu Wei

What we have studied so far…

● Given the rule of a game (and/or behavior model of the opponents), find the optimal
solution (search, search in multi-player games)

● Given the relation among variables, find a satisfied solution (constraint satisfaction)

● Given the relation among variables, find the probability of certain events, or the most
probable events (Bayes nets, HMM)

● Given a knowledge base, infer some facts (logic)

If has_hair, then mammal.

If mammal and has_hooves, then ungulate.
If has_feathers, then bird.

Knowledge base

How are these “rules” or “model of

the world” obtained?

Rules or Model of the World

● In games designed by human, we simply have the ground-truth rules

● Pacman

● Chess, Go

● Sudoku

● Some are rules set by human based on their observations/knowledge of the world

● Knowledge base in expert systems

● Some have appeared magically so far

● The behavior model of the ghosts in Pacman

● Probability tables in Bayes nets, HMM

Machine Learning

Rules

Model of the World

Search algo

Inference algo
Solution

What we have taken for granted

We will discuss how to let machine

learn these models through data

collected from the world

Machine Learning

Machine Learning

In some cases, even when the world model is designed by human and known,

we still want to perform machine learning

Evaluation function / Heuristic function

Depth-limited search

Guide the search in games with large branching factors

state
next

stateaction
state value

action

Low-level rules (known) High-level rules (learned)

Machine learning

from simulations

Naïve Bayes

Learning Simple Bayesian Networks

Suppose we have a set of data:

(Y, X) =

{ (sun, F) , (rain, F) , (rain, T) , (rain, T)

 (sun, T) , (sun, F) , (sun, F) , (sun, T) }

How should we build the BN model?

If now we observe X (traffic) = T, how to infer the Y (weather) distribution?

Y

X

Weather

Traffic

P(Y)

P(X | Y)

Y X P(X | Y)
Sun T
Sun F
Rain T
Rain F

Y P(Y)
Sun
Rain

training

How did we obtain the parameters?

Why do we model P(X = T | Y = sun) as
(Y=sun, X=T)

#(Y=sun)
 in the dataset?

Approximate inference

We have the model, and thus the

exact value of P(Y|X) is available.

But because the exact computation is

expensive, we approximate it with

samples drawn from the model.

Model learning

We do not have the model, and try to

build it from data drawn from the

nature.

Maximum Likelihood Estimation

can be used in training any BNs with

finite domains

argmax
𝑴

ෑ

𝑖=1

𝑛

𝑃𝑴(𝑥𝑖 , 𝑦𝑖)Pickset of all possible

models

⊂ ℝ6

Best explains the data (?)

--- has some drawbacks

(discussed later)

Dealing with High-Dimensional Observation

Y

X

Digit

8x8 Bitmap X:

Y ∈ {0, 1, 2, …, 9} Number of parameters in this

model?

Dealing with High-Dimensional Observation

Y

X00

Digit

X01 X77…… X:

Y ∈ {0, 1, 2, …, 9} Number of parameters in this

model?

Dealing with High-Dimensional Observation

Y

X00

Digit

X01 X77……

Training:

1) Get dataset

0

1

2

1

2) Match model with empirical frequency

1 0.1

2 0.1

3 0.1

4 0.1

5 0.1

6 0.1

7 0.1

8 0.1

9 0.1

0 0.1

1 0.01

2 0.05

3 0.05

4 0.30

5 0.80

6 0.90

7 0.05

8 0.60

9 0.50

0 0.80

1 0.05

2 0.01

3 0.90

4 0.80

5 0.90

6 0.90

7 0.25

8 0.85

9 0.60

0 0.80

P(Y)
P(X31=on | Y) P(X55=on | Y)

Dealing with High-Dimensional Observation

Y

X00

Digit

X01 X77……

Inference:

After training, now given a bitmap, decide its likelihood to be

each digit

P(Y | x00, x01, …, x77)

General Naïve Bayes Model

Y

X1

Class

X2 XN……

Features

Training:

1) Get dataset consisting of (X, Y) = (X1, …, XN, Y) pairs

2) Train model P(Y), P(Xi | Y) with maximum likelihood

estimation (= empirical frequency)

 (more options discussed later)

Inference:

Given x,

Infer P(Y | x) ∝ P(Y) P(x1| Y) P(x2 | Y) … P(xN | Y)

Finite domains for Y and Xi

Example: Spam Filtering

Training data:
Collection of emails, labeled spam or ham

Model (bag-of-word):

Dear Sir.

First, I must solicit your confidence in this
transaction, this is by virture of its nature as
being utterly confidencial and top secret. …

TO BE REMOVED FROM FUTURE MAILINGS,
SIMPLY REPLY TO THIS MESSAGE AND PUT
"REMOVE" IN THE SUBJECT.

99 MILLION EMAIL ADDRESSES
 FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, I know it was
working pre being stuck in the corner, but
when I plugged it in, hit the power nothing
happened.

Y

W1

spam / ham (binary)

W2 WN……

Special assumption (not in the digit example):

P(Wi | Y) is identical for every i

→ This is why it is called bag-of-world (word

ordering does not matter)

Example: Spam Filtering

● Model:

● What are the parameters?

the : 0.0156

to : 0.0153

and : 0.0115

of : 0.0095

you : 0.0093

a : 0.0086

with: 0.0080

from: 0.0075

...

the : 0.0210

to : 0.0133

of : 0.0119

2002: 0.0110

with: 0.0108

from: 0.0107

and : 0.0105

a : 0.0100

...

ham : 0.66

spam: 0.33

Spam Example

Word P(w|spam) P(w|ham) Tot Spam Tot Ham

(prior) 0.33333 0.66666 -1.1 -0.4

Gary 0.00002 0.00021 -11.8 -8.9

would 0.00069 0.00084 -19.1 -16.0

you 0.00881 0.00304 -23.8 -21.8

like 0.00086 0.00083 -30.9 -28.9

to 0.01517 0.01339 -35.1 -33.2

lose 0.00008 0.00002 -44.5 -44.0

weight 0.00016 0.00002 -53.3 -55.0

while 0.00027 0.00027 -61.5 -63.2

you 0.00881 0.00304 -66.2 -69.0

sleep 0.00006 0.00001 -76.0 -80.5

P(spam | w) = 98.9

Another Possible Model

Y

W1

spam / ham (binary)

W2 WN
… P(Wi | Y, Wi-1)

e.g., Earn money vs. Earn degree

May slightly improve accuracy

with the price of larger model (usually

requires more data to train)

Overfitting and Generalization

If using Maximum Likelihood Estimation…

For a new bitmap:

2 wins!!

If using Maximum Likelihood Estimation…

Prediction determined by relative probabilities:

south-west : inf

nation : inf

morally : inf

nicely : inf

extent : inf

seriously : inf

...

screens : inf

minute : inf

guaranteed : inf

$205.00 : inf

delivery : inf

signature : inf

...

Overfitting

● Relative frequency parameters will overfit the training data!

● Just because we never saw a 3 with pixel (15,15) on during training doesn’t mean we
won’t see it at test time

● Unlikely that every occurrence of “minute” is 100% spam

● Unlikely that every occurrence of “seriously” is 100% ham

● What about all the words that don’t occur in the training set at all?

● In general, we can’t give unseen events zero probability

● For Naïve Bayes we use smoothing to address this issue

● A special case of the general concept of “regularization”

Laplace Smoothing

● Laplace’s estimate:
● Pretend you saw every outcome k extra times

● What’s Laplace with k = 0?

● k is the strength of the prior

● Laplace for conditionals:
● Smooth each condition independently:

r r b

Real NB: Smoothing

● For real classification problems, smoothing is critical

● New odds ratios:

helvetica : 11.4

seems : 10.8

group : 10.2

ago : 8.4

areas : 8.3

...

verdana : 28.8

Credit : 28.4

ORDER : 27.2

 : 26.9

money : 26.5

...

Tuning on Held-Out Data

● Now we’ve got two kinds of unknowns
● Parameters: the probabilities P(X|Y), P(Y)

● Hyperparameters: e.g. the amount / type of
smoothing to do, k, 

● What should we learn where?
● Learn parameters from training data

● Tune hyperparameters on different data

● For each value of the hyperparameters, train
and test on the held-out data

● Choose the best value and do a final test on
the test data

Logistic Regression

Two Ways to Model Digit Classification

Y

X

Digit

8x8 Bitmap

Y

X

Digit

8x8 Bitmap

Modeling P(X|Y) and P(Y)

Inference: P(Y|X) ∝ P(Y)P(X|Y)

Modeling P(Y|X)

Inference: P(Y|X)

More “causal”, modeling how the

data is generated

More direct, focusing on the

classification task but not how the

data is generated

(allows data generation)

Generative Model

Discriminative Model

Y

X

Digit

8x8 Bitmap Like in Naïve Bayes, we cannot afford to

model P(Y|X) in the most general way

P(Y|X) = P(Y | X00, X01, …, X77)

Involves 264 × 10 parameters

We will again make some “assumptions” on

P(Y|X) to make the problem tractable.

Y

X00

Digit

X01 X77……

These assumptions by no means model the true

world, but suffice for our classification task.

Logistic Regression

Y

X

Digit

8x8 Bitmap

Y

X00

Digit

X01 X77……

Assumption:

𝑃 𝑌 = 𝑦 𝑋 = 𝑥 =
exp 𝑓𝑤(𝑥,𝑦)

σ
𝑦′ exp 𝑓𝑤(𝑥,𝑦′)

𝑓𝑤 𝑥, 𝑦 = 𝑤00
(𝑦)

𝑥00 + 𝑤01
(𝑦)

𝑥01 + ⋯ + 𝑤77
(𝑦)

𝑥77

𝑓𝑤 𝑥, 𝑦 ∈ ℝ is a function defined through

parameter 𝑤 that assigns a score for any (𝑥, 𝑦) that

indicates how much 𝑥 and 𝑦 matches each other.

= 𝑤
(𝑦)

⋅ 𝑥

Determining 𝑤 will determine the whole P(Y|X)

Logistic Regression

A good 𝑤 may look like:

+10

-10

𝑤
(1)

∈ ℝ64 𝑤
(2)

∈ ℝ64 𝑥 ∈ 0,1 64

𝑤
(2)

⋅ 𝑥 > 𝑤
(1)

⋅ 𝑥

⇒ 𝑓𝑤 𝑥, 2 > 𝑓𝑤(𝑥, 1)

Logistic Regression

Given a set of data 𝑥1, 𝑦1 , … , (𝑥𝑛, 𝑦𝑛), how can we find a good 𝑤?

Maximum Likelihood Estimation (MLE):

Find the 𝑤 that maximizes

ෑ

𝑖=1

𝑛

𝑃𝑤(𝑦𝑖|𝑥𝑖)

This is equivalent to minimizing

−log ෑ

𝑖=1

𝑛

𝑃𝑤 𝑦𝑖 𝑥𝑖

1
𝑛

Logistic loss

= ෑ

𝑖=1

𝑛
exp 𝑓𝑤(𝑥𝑖 , 𝑦𝑖)

σ𝑦′ exp 𝑓𝑤(𝑥𝑖 , 𝑦′)
= ෑ

𝑖=1

𝑛
exp 𝑤(𝑦𝑖) ⋅ 𝑥𝑖

σ𝑦′ exp 𝑤(𝑦′) ⋅ 𝑥𝑖

=
1

𝑛
෍

𝑖=1

𝑛

− log 𝑃𝑤 𝑦𝑖 𝑥𝑖 =
1

𝑛
෍

𝑖=1

𝑛

log ෍

𝑦′

exp 𝑤(𝑦′) ⋅ 𝑥𝑖 − 𝑤 𝑦𝑖 ⋅ 𝑥𝑖

Logistic Regression

Example: Suppose that feature dimension = 2 and #Classes = 3

𝑤(1) = [0.7, -0.1]

𝑤(2) = [0.3, -0.4]

𝑤(3) = [-0.9, 0.6]

What is the logistic loss of 𝑤 on the sample 𝑥, 𝑦 = ([0, 1], 3) ?

Overfitting in Logistic Regression

Similar to Naïve Bayes + MLE, Logistic Regression + MLE may overfit and give

too extreme distribution that only aligns with the training data

Assume that in the training data, pixel (7,0)

has ever been ON only when y=2

Then MLE would give 𝑤70
2

= ∞

Classified as 2!

⇒ Every sample with 𝑥70= ON will be classified as 2

Logistic Regression with Regularization

Minimize
1

𝑛
෍

𝑖=1

𝑛

−log 𝑃𝑤(𝑦𝑖|𝑥𝑖) + 𝜆 ෍

𝑦

𝑤 𝑦 2

Hyperparameters

or

Smaller 𝑤(𝑦) will lead to less extreme P(Y|X)

Subject to 𝑤(𝑦) ≤ 𝑅 for all 𝑦
1

𝑛
෍

𝑖=1

𝑛

−log 𝑃𝑤(𝑦𝑖|𝑥𝑖)Minimize

Optimization Procedure

How to Find the Minimizer?

argmin
𝑤

1

𝑛
෍

𝑖=1

𝑛

−log 𝑃𝑤(𝑦𝑖|𝑥𝑖) = argmin
𝑤

1

𝑛
෍

𝑖=1

𝑛

log ෍

𝑦′

exp 𝑤(𝑦′) ⋅ 𝑥𝑖 − 𝑤 𝑦𝑖 ⋅ 𝑥𝑖

Unlike in Naïve Bayes where the optimal model has a “closed-form” solution (i.e., just

counting the frequency), here, there is no closed form solution for the optimal 𝑤.

We will use Gradient Descent (GD) or Stochastic Gradient Descent (SGD) to find

an approximate optimal solution of w.

Gradient Descent

In general, if we want to find

argmin
𝑤

 𝐿(𝑤)

for some loss function 𝐿, we can run the following iterative procedure:

Randomly initialize 𝑤0

For 𝑡 = 1, 2, …

𝑤𝑡 = 𝑤𝑡−1 − 𝜂∇𝐿(𝑤𝑡−1)

Gradient Descent

𝜂 > 0 is called the “step size” or the “learning rate”

Exercise

When #Classes=2, the logistic loss can be written as

𝐿𝑖(𝑤) = −log 1 + exp −𝑦𝑖 𝑤 ⋅ 𝑥𝑖

When #Classes=2, the logistic loss can be

fully specified by 𝑤 = (𝑤 1 − 𝑤 −1)/2

where 𝑥𝑖 is the feature, and 𝑦𝑖 ∈ {−1,1} is the label

∇𝐿𝑖 𝑤 = ?

Gradient Descent

If we have 𝑛 samples, then we would like to find

argmin
𝑤

 𝐿 𝑤 = argmin
𝑤

1

𝑛
෍

𝑖=1

𝑛

𝐿𝑖(𝑤) = argmin
𝑤

1

𝑛
෍

𝑖=1

𝑛

−log 𝑃𝑤(𝑦𝑖|𝑥𝑖)

Randomly initialize 𝑤0

For 𝑡 = 1, 2, …

𝑤𝑡 = 𝑤𝑡−1 − 𝜂∇𝐿(𝑤𝑡−1)

Gradient Descent

=
1

𝑛
෍

𝑖=1

𝑛

∇𝐿𝑖(𝑤)

Per-round complexity =
𝑛 × (complexity of calculating the gradient of logistic loss)

Stochastic Gradient Descent

If we have 𝑛 samples, then we would like to find

argmin
𝑤

 𝐿 𝑤 = argmin
𝑤

1

𝑛
෍

𝑖=1

𝑛

𝐿𝑖(𝑤) = argmin
𝑤

1

𝑛
෍

𝑖=1

𝑛

−log 𝑃𝑤(𝑦𝑖|𝑥𝑖)

Randomly initialize 𝑤0

For 𝑡 = 1, 2, …

𝑤𝑡 = 𝑤𝑡−1 − 𝜂∇𝐿𝑖(𝑤𝑡−1)

Stochastic Gradient Descent

Sample 𝑖 ∼ Unif 1, 2, . . , 𝑛

Per-round complexity =
(complexity of calculating the gradient of logistic loss)

or let 𝑖 = (𝑡 mod 𝑛) if the dataset is

sufficiently shuffled

Because of uniform sampling, 𝔼𝑖 ∇𝐿𝑖(𝑤) =
1

𝑛
σ𝑖=1

𝑛 ∇𝐿𝑖(𝑤) = ∇𝐿(𝑤) for any 𝑤.

Stochastic Gradient Descent with Mini-batch

If we have 𝑛 samples, then we would like to find

argmin
𝑤

 𝐿 𝑤 = argmin
𝑤

1

𝑛
෍

𝑖=1

𝑛

𝐿𝑖(𝑤) = argmin
𝑤

1

𝑛
෍

𝑖=1

𝑛

−log 𝑃𝑤(𝑦𝑖|𝑥𝑖)

Randomly initialize 𝑤0

For 𝑡 = 1, 2, …

𝑤𝑡 = 𝑤𝑡−1 − 𝜂 ⋅
1

𝑏
෍

𝑖∈𝐵𝑖

∇𝐿𝑖(𝑤𝑡−1)

Stochastic Gradient Descent with Minibatch

Sample a set 𝐵𝑖 ⊂ {1, 2, … , 𝑛} with size 𝐵𝑖 = 𝑏 or forming the mini-batches following the

order 1, 2, .., n if the dataset is sufficiently

shuffled.

The gradient of different samples in a

minibatch can be computed parallelly with

GPUs

(Less noisy than SGD without minibatch)

Implicit Regularization by GD/SGD

● If we set 𝑤0 ≈ 0 and let 𝜂 to be small enough (and don’t train too long), then

the final 𝑤 will not be too large.

● In this case, we don’t really need to add constraint 𝑤 ≤ 𝑅 or add penalty

𝜆 𝑤 2

Recap: Logistic Regression for Classification

● Get dataset consisting of (X, Y) pairs:

● Write out the objective function / loss function:

● Use stochastic gradient descent (usually with minibatch) to minimize the loss

● Output the final 𝑤 for inference

𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑛, 𝑦𝑛 ∈ ℝ𝑑 × {1, 2, … , 𝐶}

1

𝑛
෍

𝑖=1

𝑛

−log 𝑃𝑤(𝑦𝑖|𝑥𝑖) =
1

𝑛
෍

𝑖=1

𝑛

log ෍

𝑦′

exp 𝑤(𝑦′) ⋅ 𝑥𝑖 − 𝑤 𝑦𝑖 ⋅ 𝑥𝑖

Classification without Probabilistic Modeling

● Often times, we don’t care about P(Y|X=x), i.e., the probability/likelihood of

being each class. Instead, we just want to know argmax P(Y|X=x), i.e. which

class has the largest likelihood.

● There are several classic classification algorithms that do not go through

probabilistic modeling, such as Support Vector Machine (SVM) and

Perceptron algorithm.

	Slide 1: Machine Learning
	Slide 2: What we have studied so far…
	Slide 3: Rules or Model of the World
	Slide 4: Machine Learning
	Slide 5: Machine Learning
	Slide 6: Naïve Bayes
	Slide 7: Learning Simple Bayesian Networks
	Slide 8: How did we obtain the parameters?
	Slide 9: Dealing with High-Dimensional Observation
	Slide 10: Dealing with High-Dimensional Observation
	Slide 11: Dealing with High-Dimensional Observation
	Slide 12: Dealing with High-Dimensional Observation
	Slide 13: General Naïve Bayes Model
	Slide 14: Example: Spam Filtering
	Slide 15: Example: Spam Filtering
	Slide 16: Spam Example
	Slide 17: Another Possible Model
	Slide 18: Overfitting and Generalization
	Slide 19: If using Maximum Likelihood Estimation…
	Slide 20: If using Maximum Likelihood Estimation…
	Slide 21: Overfitting
	Slide 22: Laplace Smoothing
	Slide 23: Real NB: Smoothing
	Slide 24: Tuning on Held-Out Data
	Slide 25: Logistic Regression
	Slide 26: Two Ways to Model Digit Classification
	Slide 27
	Slide 28: Logistic Regression
	Slide 29: Logistic Regression
	Slide 30: Logistic Regression
	Slide 31: Logistic Regression
	Slide 32: Overfitting in Logistic Regression
	Slide 33: Logistic Regression with Regularization
	Slide 34: Optimization Procedure
	Slide 35: How to Find the Minimizer?
	Slide 36: Gradient Descent
	Slide 37: Exercise
	Slide 38: Gradient Descent
	Slide 39: Stochastic Gradient Descent
	Slide 40: Stochastic Gradient Descent with Mini-batch
	Slide 41: Implicit Regularization by GD/SGD
	Slide 42: Recap: Logistic Regression for Classification
	Slide 43: Classification without Probabilistic Modeling

