Reinforcement Learning

Chen-Yu Wei

Overview on what we have talked about

- Search
	- Single-agent search
	- Multi-agent search
	- Constraint satisfaction
	- Logic
- Probabilistic Modeling
	- Bayesian network
	- (Hidden) Markov models
- Machine Learning
	- Learning from data

Finding a series of decisions or a solution in a large state space (Modeling the relation between variables **deterministically**)

- Modeling the relation between variables **probabilistically**
- Learning the relation between variables from data

Markov Decision Processes and Reinforcement Learning

- Search
	- Single-agent search
	- Multi-agent search
	- Constraint satisfaction
	- Logic
- Probabilistic Modeling
	- Bayesian network
	- (Hidden) Markov models
- Machine Learning
	- Learning the model from data

Probabilistic model for search problems (Markov decision processes)

> Searching while learning the model (Reinforcement Learning)

Reinforcement Learning (RL) vs. other ML methods

• How is RL different from the ML methods we have seem so far?

Transformer (self-attention computations)

thanks

and

thanks

 \cdots

 \cdots

 \cdots

...

and

Reinforcement Learning (RL) vs. other ML methods

- In supervised learning or self-supervised learning, it is important that we (human) have to collect a big amount of training data (i.e., (X, Y) pairs)
	- Bounding box: human labeling
	- Texts: web crawler
- Reinforcement learning handles problems where the machine has to collect data by itself while learning

Reinforcement Learning

X: View of the game Y: Action (left or right)

Instead of providing training data to the machine, we let it collect them **by itself** (through trial and error).

Instead of telling the machine which action to take, we only tell it **reward** (like in search problems).

Difference between telling action and telling reward: in the former case, the machine can just follow the action, but in the latter case, the machine still needs to try different actions.

Reinforcement Learning

Markov Decision Process

(Just a probabilistic model for search problems --- no "learning")

Example: Grid World

- Noisy movement: actions do not always go as planned
	- 80% of the time, the action North takes the agent North (if there is no wall there)
	- 10% of the time, North takes the agent West; 10% East
	- If there is a wall in the direction the agent would have been taken, the agent stays
- The agent receives rewards each time step
	- Small "living" reward each step (can be negative)
	- Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World **I**

Markov Decision Processes

- An MDP is defined by:
	- \bullet A set of states $s \in S$
	- A set of actions $a \in A$
	- \bullet A transition function T(s, a, s')
		- Probability that a from s leads to s', i.e., $P(s' | s, a)$

or $R(S, \alpha)$

- Also called the model or the dynamics
- A reward function $R(s, a, s')$
	- Sometimes just $R(s)$ or $R(s')$
- A start state
- Maybe a terminal state

What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent $() \rightarrow () \rightarrow () \rightarrow$
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$
P(S_{t+1} = s'|S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)
$$

= $P(S_{t+1} = s'|S_t = s_t, A_t = a_t)$

• This is just like search, where the successor function could only depend on the current state (not the history)

"Markov" as in Markov Chains? HMMs?

$$
(X_0) \rightarrow (X_1) \rightarrow (X_2) \rightarrow (X_3) \rightarrow \rightarrow
$$

Markov Model (Markov Chain)

Hidden Markov Model

Partially Observable Markov Decision Process

Markov Decision Process

Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy π^* : S \rightarrow A
	- A policy π gives an action for each state
	- An optimal policy is one that maximizes expected total return

$$
j_{ij} \sim \text{proved} = -0.
$$

Optimal Policies

 $R(s) = -0.01$ R(s) = -0.03

Example: Racing

Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: *Slow*, *Fast*
- Going faster gets double reward

Example: Racing

MDP Search Trees

● MDP search tree can be viewed as an **expectimax** search tree

Discounting

Discounting

- Give less importance to reward / cost in the distant future
- There are several reasons to do so
	- When performing reinforcement learning (which will be covered in the next lecture), uncertainty accumulates over time, so it's less meaningful to optimize reward in the distant future
	- In many cases, we prioritize more recent reward

\$100 right now

SELER

vs.

\$110 next year

Discounting

- How to discount?
	- Each time we descend a level, we multiply in the discount once
- Example: discount of $0.9 = \sqrt{ }$
	- \bullet U([1,2,3]) \leftarrow 1³1 \leftarrow 0.9^{*}2 \leftarrow 0.81³3
	- \bullet U([1,2,3]) < U([3,2,1])

Value Functions and Optimal Policies

Recap: Defining MDPs

- Markov decision processes:
	- Set of states S
	- Start state s_0
	- Set of actions A
	- Transitions $P(s'|s,a)$ (or $T(s,a,s')$)
	- Rewards R(s,a,s') (and discount γ)
- MDP quantities so far:
	- \bullet Policy = Choice of action for each state
	- \bullet Utility or Return = sum of (discounted) rewards

Racing Search Tree

Racing Search Tree

Racing Search Tree

- Problem: States are repeated
	- Idea: Only compute needed quantities once
- Problem: Tree goes on forever
	- Idea: Perform **depth-limited** computation with increasing depths until change is small
	- Note: deep parts of the tree eventually don't matter if γ < 1

Computing Time-Limited Values

Time-Limited Values

Define $V_k(s)$ to be the optimal value of s if the game ends in at most k more time steps

$$
V_0(s) = 0
$$

$$
V_k(s) = \begin{cases} \max_{a} \left(\sum_{s'} T(s, a, s') (R(s, a, s') + \gamma V_{k-1}(s')) \right) & \text{if } s \text{ is not a terminal state} \\ \max_{a} \left(\sum_{s'} T(s, a, s') R(s, a, s') \right) & \text{if } s \text{ is a terminal state} \end{cases}
$$

recursively for $k \geq 1$

Example

Assume no discount $(y = 1)$

Slightly Simplifying the Notation

$$
V_{k}(s) = \begin{cases} \max_{a} \left(\sum_{s'} T(s, a, s') (R(s, a, s') + \gamma V_{k-1}(s')) \right) & \text{if } s \text{ is not a terminal state} \\ \max_{a} \left(\sum_{s'} T(s, a, s') R(s, a, s') \right) & \text{if } s \text{ is a terminal state} \end{cases}
$$

It is possible to write them as
$$
V_k(s) = \max_{a} \left(\sum_{s'} T(s, a, s') (R(s, a, s') + \gamma V_{k-1}(s')) \right)
$$
 $\forall s$

by creating an artificial s_{dum} state so that

 $T(s_\mathrm{ter}, a, s_\mathrm{dum}) = 1 \quad$ for any terminal state s_ter and any action a $T(s_{\text{dum}}, a, s_{\text{dum}}) = 1$ for any action a $R(s_{\text{dum}}, a, s_{\text{dum}}) = 0$ for any action a

We did not have this matter when discussing about search because there we usually assume no reward from the terminal state.

Example Two ways to incorporate the final reward. Let s_{ter} be a terminal state, i.e., (4,2) or (4,3)

(1)
$$
R(s, a, s_{\text{ter}}) = +1 \text{ (or } -1) \qquad \mathcal{K}(s_{\text{ter }}, \alpha, s') = 0
$$

$$
V_{k}(s) = \begin{cases} \n\max_{a} \left(\sum_{s'} T(s, a, s') (R(s, a, s') + \gamma V_{k-1}(s')) \right) & \text{if } s \text{ is not a terminal state} \\ \n\max_{a} \left(\sum_{s'} T(s, a, s') R(s, a, s') \right) & \text{if } s \text{ is a terminal state} \n\end{cases}
$$

(2) $R(s_{\text{ter}}, a, s_{\text{dum}}) = +1$ (or -1) (Needs to create a dummy state)

$$
V_k(s) = \max_{a} \left(\sum_{s'} T(s, a, s') (R(s, a, s') + \gamma V_{k-1}(s')) \right) \ \forall s
$$

VALUES AFTER O ITERATIONS

 0.8 $\sigma_{\rm B} \in$ \rightarrow \circ \cdot \cdot

VALUES AFTER 1 ITERATIONS

VALUES AFTER 2 ITERATIONS

Noise = 0.2 Discount = 0.9 Living reward $= 0$

 V_{G}

State Value (V Value) and State-Action Value (Q Value)

 $V_0(s) = 0$ $V_k(s) = \max_{a} \left(\sum_{n} \right)$ $\overline{s'}$ $T(s, a, s')(R(s, a, s') + \gamma V_{k-1}(s'))$ $Q_k(s, a) = \sum_{k=1}^{n}$ $\overline{s'}$ $T(s, a, s')(R(s, a, s') + \gamma V_{k-1}(s'))$ $V_k(s) = \max_{\alpha}$ \boldsymbol{a} $Q_k(s, a)$ $Q_k(s, a)$ = The optimal value from s if **taking action** a in the first step and then perform optimally in the remaining $k - 1$ steps.

$$
\pi_{k}(s) = \arg\max_{\alpha} Q_{k}(s, \alpha)
$$

Q Values

Convergence

- Are V_k going to converge?
- If the discount is less than 1
	- The difference between V_k and V_{k+1} is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
	- That one-step reward ranges in [-R, R] where $R = max |R(s,a,s')|$
	- But everything is discounted by γ^k
	- So V_k and V_{k+1} are at most γ^k max|R| different
	- So as k increases, the values converge

 $|V_{K}(s)-V_{Kfl}(s)| \leq \gamma^{K_{\text{max}}}|R|$

 $V_k(s)$

 $\overline{\mathcal{K}}$

 γ

 γ κ

 $V_{k+1}(s)$

 $V_k(5) \rightarrow V(s)$

k⊣ I

Value Iteration

$V(s) = V_{\infty}(s)$

- Start with $V_0(s) = 0$
- Given $V_{k-1}(s)$, perform the following update for all state *s* and action a :

$$
Q_k(s, a) \leftarrow \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_{k-1}(s')]
$$

$$
V_k(s) \leftarrow \max_{a} Q_k(s, a)
$$

- Repeat until convergence: $|V_{k+1}(s) V_k(s)| \leq \epsilon$ for all s
- (Near) optimal policy: $\pi(s) = \argmax Q_k(s, a)$ \boldsymbol{a}
- Theorem: will converge to unique optimal values $V_k(s) \to V^*(s)$

The Limits of Value Iteration

- The state value function:
	- \bullet $V^*(s)$ = expected **discounted total reward** starting from s and acting optimally
- The state-action value function:
	- \bullet $Q^*(s, a)$ = expected **discounted total reward** starting by taking action a from state s and (thereafter) acting optimally

•
$$
Q^*(s, a) = \sum_{s'} T(s, a, s') (R(s, a, s') + \gamma V^*(s'))
$$

- The optimal policy (that maximizes the discounted total reward)
	- $\pi^*(s)$ = optimal action from state s = argmax $Q^*(s, a)$

Bellman Equation

$$
Q^*(s, a) = \sum_{s'} T(s, a, s') (R(s, a, s') \mathcal{f} \mathcal{Y}^*(s'))
$$

$$
V^*(s) = \max_{a} Q^*(s, a)
$$

As discussed previously, given T and R , one can approximate Q^* and V^* that satisfy the Bellman equation through **value iteration**.

This set of equations is an instance of **dynamic programming** (but probably slightly more advanced than what you learned in DSA because it could involve infinite depth)

Q-Learning

(Machine Learning in an MDP)

Recall how we compute the optimal policy in MDPs

Value Iteration

 $Q_k(s, a) \leftarrow \sum$ $\overline{s'}$ $T(s, a, s')$ [R(s, a, s') + $\gamma V_{k-1}(s')$] $\forall s, a$ $V_k(s) \leftarrow \max_{\sigma}$ \boldsymbol{a} $Q_k(s, a) \quad \forall s$ For $k = 1, 2, ...$ $V_0(s) \leftarrow 0 \quad \forall s$ If $|V_k(s) - V_{k-1}(s)| \leq \epsilon$ for all s: Let $\hat{Q}(s, a) = Q_k(s, a) \,\forall s, a$ break Return policy $\hat{\pi}(s) = \argmax \hat{Q}(s, a)$ \boldsymbol{a} Require knowledge about the model $=0$ if s is terminal

What if we don't know the transition T or the reward R ?

Solutions when we don't know the model

• We want to perform the update

$$
Q_k(s,a) \leftarrow \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V_{k-1}(s')] \quad \forall s,a
$$

- But we don't know T and R
- Fortunately, we can get a "sample" for the right-hand side
	- Suppose that we are on some state \hat{s} and we take an action \hat{a}
	- The environment will generate next state \hat{s}' and reveal the reward $\hat{R} = R(\hat{s}, \hat{a}, \hat{s}')$
	- Then we have

$$
\mathbb{E}_{\hat{R},\hat{S}'}\big[\hat{R} + \gamma V_{k-1}(\hat{S}')\big] = \sum_{S'} T(\hat{s},\hat{a},s') [R(\hat{s},\hat{a},s') + \gamma V_{k-1}(s')]
$$

• But we cannot simply do $Q_k(\hat{s}, \hat{a}) \leftarrow \hat{R} + \gamma V_{k-1}(\hat{s}')$... why?

Q-Learning

 $Q_k(s_k, a_k) \leftarrow (1 - \eta_k) Q_{k-1}(s_k, a_k) + \eta_k [R_k + \gamma V_{k-1}(s_{k+1})]$ $\eta_k \in (0,1)$. Learning rate $V_k(s_k) \leftarrow \max_{\alpha}$ \overline{a} $Q_k(s_k, a)$ For $k = 1, 2, ...$ $V_0(s) \leftarrow 0$, $Q_0(s, a) \leftarrow 0 \quad \forall s, a$ Let s_1 be the initial state. Take action a_k . Observe next state s_{k+1} and reward $R_k = R(s_k, a_k, s_{k+1})$. // Slightly modify the values on the visited state-action pair (s_k, a_k) : // Keep other values unchanged: $Q_k(s, a) \leftarrow Q_{k-1}(s, a)$ and $V_k(s) \leftarrow V_{k-1}(s)$ for $(s, a) \neq (s_k, a_k)$ If s_k is a terminal state: Reset s_{k+1} to be the initial state. **Continue** $=0$ if s_k is terminal

Q-Learning

The update

$$
Q_k(s_k, a_k) \leftarrow (1 - \eta_k) Q_{k-1}(s_k, a_k) + \eta_k [R_k + \gamma V_{k-1}(s_{k+1})]
$$

has the effect of averaging up multiple samples of $R_k + \gamma V_{k-1}(s_{k+1})$

(so mitigate the effect of randomness)

$$
Q = 0
$$
\n
$$
Q = 0
$$
\n
$$
Q = (1 - 1)Q + 2 \times 0
$$
\n
$$
Q = (1 - 1)Q + 2 \times 0
$$
\n
$$
Q = (1 - 1)Q + 2 \times 0
$$
\n
$$
Q = 1 - 1 = 0
$$

Deep Q-Learning

- Instead of recording $Q(s, a)$ for each individual s, a, use a neural network (NN) to model the mapping (NN input: s, a, NN output: $Q(s, a) \in \mathbb{R}$)
- Notable applications:
	- Playing Atari games:<https://www.youtube.com/watch?v=rFwQDDbYTm4>

Q-Learning Example

Initial state: (3,1) **Terminal states:** (4,2) and (4,3) **Actions:** NSEW **Reward:** $R(s, a, s') = R(s) = -0.2$ for all non-terminal s $R(s) = -1$ if $s = (4,2)$ $R(s) = +1$ if $s = (4,3)$ **Transition:** with probability 0.8: transition according to the action with probability 0.2: transition to two sides (see left figure) If wall is met, stay in the original square **Discount factor** $\gamma = 0.95$ The learner doesn't know these!

Q-Learning Example

 $s_1 = (3,1)$

Learner take action $a_1 = N$ Environment sample next state $s_2 = (3,2)$ and reveal reward -0.2 Learner update

$$
Q((3,1), N) = (1 - \eta)Q((3,1), N) + \eta[-0.2 + \gamma V((3,2))]
$$

= 0.9 × 0 + 0.1[-0.2 + 0.95 × 0] = -0.02

 $V((3,1)) = \max$ \boldsymbol{a} $Q((3,1), a) = 0$

// $Q(s, a)$, $V(s)$ for other s, a remains unchanged.

Learner take action $a_2 = S$ Environment sample next state $s_3 = (4,2)$ and reveal reward -0.2 Learner update

$$
Q((3,2), S) = (1 - \eta)Q((3,2), S) + \eta[-0.2 + \gamma V((4,2))]
$$

= 0.9 × 0 + 0.1[-0.2 + 0.95 × 0] = -0.02

$$
V((3,2)) = \max_{a} Q((3,2), a) = 0
$$

Iteration 1

Iteration 2

Q-Learning Example

Learner take action $a_3 = W$

Since $s_3 = (4,2)$ is a terminal state, there is no next state. Environment reveal reward -1.

Learner update

$$
Q((4,2), W) = (1 - \eta)Q((4,2), W) + \eta[-1]
$$

= 0.9 × 0 + 0.1[-1] = -0.1

$$
V((4,2)) = \max_{a} Q((4,2), a) = 0
$$

Restart at $s_4 = (3,1)$ // but the Q, V values continue to update Learner take action $a_4 = S$ Environment sample next state $s_5 = (3,2)$ and reveal reward -0.2 Learner update

 $Q((3,2), S) = (1 - \eta)Q((3,2), S) + \eta[-0.2 + 0.9V((4,2))]$ $= 0.9 \times -0.02 + 0.1[-0.2 + 0.9 \times 0]$ $V((3,2)) = \max$ \boldsymbol{a} $Q((3,2), a) = 0$

Iteration 3

Iteration 4

Q-Learning

Common strategies to pick actions:

 \bullet ϵ -Greedy:

$$
a_k = \begin{cases} \text{argmax } Q_{k-1}(s_k, a) & \text{with probability } 1 - \epsilon \\ \text{random} & \text{with probability } \epsilon \end{cases}
$$

• Boltzmann exploration: sample a_k from the distribution

 $\exp(Q_{k-1}(s_k,a))$ $\sum_{a'} \exp(Q_{k-1}(s_k,a'))$

Idea: balancing **exploration** and **exploitation**

Randomly try some new actions Try to perform well (get high reward) using the current estimation

Theorem

● If every state-action pair is visited infinitely often (which requires exploration), with properly chosen learning rate scheduling η_k , then $\lim_{k\to\infty}$ $k\rightarrow\infty$ $Q_k(s, a) = Q^*(s, a) \quad \forall s, a$

Summary

- Markov Decision Process formulates a search problem (finding a path that maximize the total reward) that has random state transition
- We can use value iteration (a dynamic programming algorithm) to find
	- State-action value function $Q^*(s, a)$
	- State value function $V^*(s)$

The optimal policy is then given by $\pi^*(s) = \argmax Q^*(s, a)$

- \boldsymbol{a} • Reinforcement Learning estimates the model (machine learning) through interacting with the MDP (search)
	- Q-learning \approx value iteration with samples and soft updates

Homework 6

- Choices problems: deadline 12/8 11:59PM
- Programming problem: deadline 12/18 11:59PM
	- Value iteration and Q-learning
- No late submission

Next Lecture

A review for the materials after the midterm