
Reinforcement Learning
Chen-Yu Wei

Overview on what we have talked about

● Search

● Single-agent search

● Multi-agent search

● Constraint satisfaction

● Logic

● Probabilistic Modeling

● Bayesian network

● (Hidden) Markov models

● Machine Learning

● Learning from data

Modeling the relation between variables probabilistically

Finding a series of decisions or a solution in a large state space

(Modeling the relation between variables deterministically)

Learning the relation between variables from data

Markov Decision Processes and Reinforcement Learning

● Search

● Single-agent search

● Multi-agent search

● Constraint satisfaction

● Logic

● Probabilistic Modeling

● Bayesian network

● (Hidden) Markov models

● Machine Learning

● Learning the model from data

Probabilistic model for search problems
(Markov decision processes)

Searching while learning the model
(Reinforcement Learning)

Reinforcement Learning (RL) vs. other ML methods

● How is RL different from the ML methods we have seem so far?

0

1

2

X: image

Y: digit

X: image

Y: bounding box

X: (𝑥1, 𝑥2, … , 𝑥𝑖−1)

Y: 𝑥𝑖

supervised learning self-supervised learning

Reinforcement Learning (RL) vs. other ML methods

● In supervised learning or self-supervised learning, it is important that we

(human) have to collect a big amount of training data (i.e., (X, Y) pairs)

● Bounding box: human labeling

● Texts: web crawler

● Reinforcement learning handles problems where the machine has to collect

data by itself while learning

Reinforcement Learning

X: View of the game Y: Action (left or right)

Instead of providing training data to the machine, we let

it collect them by itself (through trial and error).

Instead of telling the machine which action to take, we

only tell it reward (like in search problems).

Difference between telling action and telling reward: in the former case, the machine can

just follow the action, but in the latter case, the machine still needs to try different actions.

Reinforcement Learning

Markov Decision Process
(Just a probabilistic model for search problems --- no “learning”)

Example: Grid World

● Noisy movement: actions do not always go as planned

● 80% of the time, the action North takes the agent North (if there is no wall there)

● 10% of the time, North takes the agent West; 10% East

● If there is a wall in the direction the agent would have been taken, the agent stays

● The agent receives rewards each time step

● Small “living” reward each step (can be negative)

● Big rewards come at the end (good or bad)

● Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World Stochastic Grid World

Markov Decision Processes

● An MDP is defined by:

● A set of states s S

● A set of actions a A

● A transition function T(s, a, s’)

● Probability that a from s leads to s’, i.e., P(s’| s, a)

● Also called the model or the dynamics

● A reward function R(s, a, s’)

● Sometimes just R(s) or R(s’)

● A start state

● Maybe a terminal state

What is Markov about MDPs?

● “Markov” generally means that given the present state, the future and the

past are independent

● For Markov decision processes, “Markov” means action outcomes depend

only on the current state

● This is just like search, where the successor function could only depend on

the current state (not the history)

“Markov” as in Markov Chains? HMMs?

X1X0 X2 X3

Markov Model (Markov Chain)

Hidden Markov Model

X1X0 X2 X3

E1 E2 E3

Markov Decision Process

X1X0 X2 X3

A0 A1 A2

R0 R1 R2

Partially Observable Markov

Decision Process

???

Policies

● In deterministic single-agent search problems,

we wanted an optimal plan, or sequence of

actions, from start to a goal

● For MDPs, we want an optimal policy *: S → A

● A policy gives an action for each state

● An optimal policy is one that maximizes expected total

return

Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

Example: Racing

Example: Racing

● A robot car wants to travel far, quickly

● Three states: Cool, Warm, Overheated

● Two actions: Slow, Fast

● Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Example: Racing

s a s' T(s,a,s’) R(s,a,s’)

Slow 1.0 +1

Fast 0.5 +2

Fast 0.5 +2

Slow 0.5 +1

Slow 0.5 +1

Fast 1.0 –10

(end) 1.0 0

MDP Search Trees

● MDP search tree can be viewed as an expectimax search tree

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

s,a,s’

s is a state

(s, a) is a q-
state

Discounting

Discounting

● Give less importance to reward / cost in the distant future

● There are several reasons to do so

● When performing reinforcement learning (which will be covered in the next lecture),

uncertainty accumulates over time, so it’s less meaningful to optimize reward in the

distant future

● In many cases, we prioritize more recent reward

$100 right now

$110 next year

vs.

Discounting

● How to discount?

● Each time we descend a level,

we multiply in the discount once

● Example: discount of 0.9

● U([1,2,3]) = 1*1 + 0.9*2 + 0.81*3

● U([1,2,3]) < U([3,2,1])

Value Functions and Optimal Policies

Recap: Defining MDPs

● Markov decision processes:
● Set of states S

● Start state s0

● Set of actions A

● Transitions P(s’|s,a) (or T(s,a,s’))

● Rewards R(s,a,s’) (and discount)

● MDP quantities so far:
● Policy = Choice of action for each state

● Utility or Return = sum of (discounted) rewards

a

s

s, a

s,a,s’

s’

Racing Search Tree

Racing Search Tree

Racing Search Tree

● Problem: States are repeated

● Idea: Only compute needed

quantities once

● Problem: Tree goes on forever

● Idea: Perform depth-limited

computation with increasing depths

until change is small

● Note: deep parts of the tree

eventually don’t matter if γ < 1

Computing Time-Limited Values

Time-Limited Values

Define 𝑉𝑘 𝑠 to be the optimal value of s if the

game ends in at most k more time steps

𝑉0 𝑠 = 0

𝑉𝑘 𝑠 =

max
𝑎

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘−1(𝑠′)

max
𝑎

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑅 𝑠, 𝑎, 𝑠′

recursively for 𝑘 ≥ 1

if 𝑠 is a terminal state

if 𝑠 is not a terminal state

Example

Assume no discount (𝛾 = 1)

s a s' T(s,a,s’) R(s,a,s’)

Slow 1.0 +1

Fast 0.5 +2

Fast 0.5 +2

Slow 0.5 +1

Slow 0.5 +1

Fast 1.0 –10

(end) 1.0 0

0 0 0

2 1 0

3.5 2.5 0

𝑉𝑘 𝑠 =

max
𝑎

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘−1(𝑠′)

max
𝑎

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑅 𝑠, 𝑎, 𝑠′

Slightly Simplifying the Notation

𝑉𝑘 𝑠 =

max
𝑎

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘−1(𝑠′)

max
𝑎

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑅 𝑠, 𝑎, 𝑠′ if 𝑠 is a terminal state

if 𝑠 is not a terminal state

for any terminal state 𝑠ter and any action 𝑎

by creating an artificial 𝑠dum state so that

𝑇 𝑠ter, 𝑎, 𝑠dum = 1
𝑇 𝑠dum, 𝑎, 𝑠dum = 1 for any action 𝑎

𝑅 𝑠dum, 𝑎, 𝑠dum = 0 for any action 𝑎

𝑉𝑘 𝑠 = max
𝑎

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘−1(𝑠′) ∀𝑠It is possible to write them as

We did not have this matter when discussing

about search because there we usually

assume no reward from the terminal state.

Example Two ways to incorporate the final reward.

Let 𝑠ter be a terminal state, i.e., (4,2) or (4,3)

(1) 𝑅 𝑠, 𝑎, 𝑠ter = +1 (or −1)

(2) 𝑅 𝑠ter, 𝑎, 𝑠dum = +1 (or −1)

𝑉𝑘 𝑠 =

max
𝑎

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘−1(𝑠′)

max
𝑎

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑅 𝑠, 𝑎, 𝑠′ if 𝑠 is a terminal state

if 𝑠 is not a terminal state

𝑉𝑘 𝑠 = max
𝑎

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘−1(𝑠′) ∀𝑠

(Needs to create a dummy state)

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

State Value (V Value) and State-Action Value (Q Value)

𝑉0 𝑠 = 0

𝑉𝑘 𝑠 = max
𝑎

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘−1(𝑠′)

𝑄𝑘 𝑠, 𝑎 =

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘−1(𝑠′)

𝑉𝑘 𝑠 = max
𝑎

 𝑄𝑘(𝑠, 𝑎)

𝑄𝑘 𝑠, 𝑎 = The optimal value from 𝑠

if taking action 𝒂 in the first step

and then perform optimally in the

remaining 𝑘 − 1 steps.

Q Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Convergence

● Are Vk going to converge?

● If the discount is less than 1

● The difference between Vk and Vk+1 is that on the

bottom layer, Vk+1 has actual rewards while Vk

has zeros

● That one-step reward ranges in [-R, R] where

R = max |R(s,a,s’)|

● But everything is discounted by γk

● So Vk and Vk+1 are at most γk max|R| different

● So as k increases, the values converge

Value Iteration

● Start with 𝑉0(𝑠) = 0

● Given 𝑉𝑘−1(𝑠), perform the following update for all state 𝒔 and action 𝒂:

● Repeat until convergence: 𝑉𝑘+1 𝑠 − 𝑉𝑘(𝑠) ≤ 𝜖 for all 𝑠

● (Near) optimal policy: 𝜋 𝑠 = argmax
𝑎

 𝑄𝑘(𝑠, 𝑎)

● Theorem: will converge to unique optimal values 𝑉𝑘 𝑠 → 𝑉⋆(𝑠)

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

𝑄𝑘 𝑠, 𝑎 ←

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘−1(𝑠′)

𝑉𝑘 𝑠 ← max
𝑎

𝑄𝑘(𝑠, 𝑎)

The Limits of Value Iteration

● The state value function:

● 𝑉⋆(𝑠) = expected discounted total reward starting from s

and acting optimally

● The state-action value function:

● 𝑄⋆ 𝑠, 𝑎 = expected discounted total reward starting by

taking action a from state s and (thereafter) acting optimally

● 𝑄⋆ 𝑠, 𝑎 = σ𝑠′ 𝑇 𝑠, 𝑎, 𝑠′ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉⋆(𝑠′)

● The optimal policy (that maximizes the discounted

total reward)

● 𝜋⋆ 𝑠 = optimal action from state s = argmax
𝑎

 𝑄⋆(𝑠, 𝑎)

Bellman Equation

𝑄⋆ 𝑠, 𝑎 =

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉⋆(𝑠′)

𝑉⋆ 𝑠 = max
𝑎

 𝑄⋆(𝑠, 𝑎)

As discussed previously, given 𝑇 and 𝑅, one can

approximate 𝑄⋆ and 𝑉⋆ that satisfy the Bellman equation

through value iteration.

This set of equations is an instance of dynamic programming (but

probably slightly more advanced than what you learned in DSA

because it could involve infinite depth)

Q-Learning
(Machine Learning in an MDP)

Recall how we compute the optimal policy in MDPs

Value Iteration

𝑄𝑘 𝑠, 𝑎 ←

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘−1(𝑠′) ∀𝑠, 𝑎

𝑉𝑘 𝑠 ← max
𝑎

𝑄𝑘 𝑠, 𝑎 ∀𝑠

For 𝑘 = 1, 2, …

𝑉0 𝑠 ← 0 ∀𝑠

If 𝑉𝑘 𝑠 − 𝑉𝑘−1 𝑠 ≤ 𝜖 for all 𝑠:

 Let 𝑄 𝑠, 𝑎 = 𝑄𝑘 𝑠, 𝑎 ∀𝑠, 𝑎
 break

Return policy ො𝜋 𝑠 = argmax
𝑎

 𝑄(𝑠, 𝑎)

Require knowledge about the model

?

?

?

?

?

?

?

??

?

?

? ?

What if we don’t know the

transition 𝑇 or the reward 𝑅?

=0 if 𝑠 is terminal

Solutions when we don’t know the model

● We want to perform the update

𝑄𝑘 𝑠, 𝑎 ←

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘−1(𝑠′) ∀𝑠, 𝑎

● But we don’t know 𝑇 and 𝑅

● Fortunately, we can get a “sample” for the right-hand side

● Suppose that we are on some state Ƹ𝑠 and we take an action ො𝑎

● The environment will generate next state Ƹ𝑠′ and reveal the reward 𝑅 = 𝑅 Ƹ𝑠, ො𝑎, Ƹ𝑠′

● Then we have

𝔼 𝑅, Ƹ𝑠′ 𝑅 + 𝛾𝑉𝑘−1(Ƹ𝑠′) =

𝑠′

𝑇 Ƹ𝑠, ො𝑎, 𝑠′ 𝑅 Ƹ𝑠, ො𝑎, 𝑠′ + 𝛾𝑉𝑘−1(𝑠′)

● But we cannot simply do 𝑄𝑘 Ƹ𝑠, ො𝑎 ← 𝑅 + 𝛾𝑉𝑘−1(Ƹ𝑠′) … why?

Q-Learning

𝑄𝑘 𝑠𝑘 , 𝑎𝑘 ← 1 − 𝜂𝑘 𝑄𝑘−1 𝑠𝑘 , 𝑎𝑘 + 𝜂𝑘 𝑅𝑘 + 𝛾𝑉𝑘−1(𝑠𝑘+1)

𝑉𝑘 𝑠𝑘 ← max
𝑎

𝑄𝑘 𝑠𝑘, 𝑎

For 𝑘 = 1, 2, …

𝑉0 𝑠 ← 0, 𝑄0 𝑠, 𝑎 ← 0 ∀𝑠, 𝑎

Let 𝑠1 be the initial state.

Take action 𝑎𝑘. Observe next state 𝑠𝑘+1 and reward 𝑅𝑘 = 𝑅(𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1).

// Slightly modify the values on the visited state-action pair (𝑠𝑘, 𝑎𝑘):

// Keep other values unchanged:

𝑄𝑘 𝑠, 𝑎 ← 𝑄𝑘−1 𝑠, 𝑎 and 𝑉𝑘 𝑠 ← 𝑉𝑘−1 𝑠 for 𝑠, 𝑎 ≠ (𝑠𝑘 , 𝑎𝑘)

If 𝑠𝑘 is a terminal state:

Reset 𝑠𝑘+1 to be the initial state.

Continue

=0 if 𝑠𝑘 is terminal

𝜂𝑘 ∈ (0,1): learning rate

Q-Learning

The update

has the effect of averaging up multiple samples of 𝑅𝑘 + 𝛾𝑉𝑘−1(𝑠𝑘+1)

(so mitigate the effect of randomness)

𝑄𝑘 𝑠𝑘 , 𝑎𝑘 ← 1 − 𝜂𝑘 𝑄𝑘−1 𝑠𝑘 , 𝑎𝑘 + 𝜂𝑘 𝑅𝑘 + 𝛾𝑉𝑘−1(𝑠𝑘+1)

Deep Q-Learning

https://www.youtube.com/watch?v=rFwQDDbYTm4

● Instead of recording 𝑄(𝑠, 𝑎) for each individual 𝑠, 𝑎, use a neural network

(NN) to model the mapping (NN input: 𝑠, 𝑎, NN output: 𝑄 𝑠, 𝑎 ∈ ℝ)

● Notable applications:

● Playing Atari games: https://www.youtube.com/watch?v=rFwQDDbYTm4

https://www.youtube.com/watch?v=rFwQDDbYTm4

Q-Learning Example

Initial state: (3,1)

Terminal states: (4,2) and (4,3)

Actions: NSEW

Reward:

 𝑅 𝑠, 𝑎, 𝑠′ = 𝑅 𝑠 = −0.2 for all non-terminal 𝑠

 𝑅 𝑠 = −1 if 𝑠 = (4,2)

 𝑅 𝑠 = +1 if 𝑠 = (4,3)

Transition:

 with probability 0.8: transition according to the action

 with probability 0.2: transition to two sides (see left figure)

 If wall is met, stay in the original square

Discount factor 𝛾 = 0.95

starting state = (3,1)

The learner doesn’t know these!

Q-Learning Example
𝑠1 = (3,1)

Learner take action 𝑎1 = N

Environment sample next state 𝑠2 = (3,2) and reveal reward -0.2

Learner update

 // 𝑄 𝑠, 𝑎 , 𝑉(𝑠) for other 𝑠, 𝑎 remains unchanged.

Learner take action 𝑎2 = S

Environment sample next state 𝑠3 = (4,2) and reveal reward -0.2

Learner update

𝑄 3,1 , N = 1 − 𝜂 𝑄 3,1 , N + 𝜂 −0.2 + 𝛾𝑉((3,2))

= 0.9 × 0 + 0.1 −0.2 + 0.95 × 0 = −0.02

𝑄 3,2 , S = 1 − 𝜂 𝑄 3,2 , S + 𝜂 −0.2 + 𝛾𝑉((4,2))

= 0.9 × 0 + 0.1 −0.2 + 0.95 × 0 = −0.02

𝑉 3,1 = max
𝑎

 𝑄 3,1 , 𝑎 = 0

𝑉 3,2 = max
𝑎

 𝑄 3,2 , 𝑎 = 0

Iteration 1

Iteration 2

Q-Learning Example

Learner take action 𝑎3 = W

Since 𝑠3 = (4,2) is a terminal state, there is no next state.

Environment reveal reward -1.

Learner update

Restart at 𝑠4 = (3,1) // but the Q, V values continue to update

Learner take action 𝑎4 = S

Environment sample next state 𝑠5 = (3,2) and reveal reward -0.2

Learner update

𝑄 4,2 , W = 1 − 𝜂 𝑄 4,2 , W + 𝜂 −1

= 0.9 × 0 + 0.1 −1 = −0.1

𝑄 3,2 , S = 1 − 𝜂 𝑄 3,2 , S + 𝜂 −0.2 + 0.9𝑉((4,2))

= 0.9 × −𝟎. 𝟎𝟐 + 0.1 −0.2 + 0.9 × 0

𝑉 4,2 = max
𝑎

 𝑄 4,2 , 𝑎 = 0

𝑉 3,2 = max
𝑎

 𝑄 3,2 , 𝑎 = 0

Iteration 3

Iteration 4

Q-Learning

Common strategies to pick actions:

● 𝜖-Greedy:

 𝑎𝑘 = ൝
argmax

𝑎
 𝑄𝑘−1(𝑠𝑘, 𝑎)

 random

● Boltzmann exploration: sample 𝑎𝑘 from the distribution

with probability 1 − 𝜖

with probability 𝜖

exp 𝑄𝑘−1(𝑠𝑘,𝑎)

σ
𝑎′ exp 𝑄𝑘−1(𝑠𝑘,𝑎′)

Idea: balancing exploration and exploitation

Randomly try some new actions Try to perform well (get high reward)

using the current estimation

Theorem

● If every state-action pair is visited infinitely often (which requires exploration), with

properly chosen learning rate scheduling 𝜂𝑘, then lim
𝑘→∞

 𝑄𝑘 𝑠, 𝑎 = 𝑄⋆ 𝑠, 𝑎 ∀𝑠, 𝑎

Summary

● Markov Decision Process formulates a search problem (finding a path that

maximize the total reward) that has random state transition

● We can use value iteration (a dynamic programming algorithm) to find

● State-action value function 𝑄⋆ 𝑠, 𝑎

● State value function 𝑉⋆(𝑠)

 The optimal policy is then given by 𝜋⋆ 𝑠 = argmax
𝑎

 𝑄⋆(𝑠, 𝑎)

● Reinforcement Learning estimates the model (machine learning) through

interacting with the MDP (search)

● Q-learning ≈ value iteration with samples and soft updates

Homework 6

● Choices problems: deadline 12/8 11:59PM

● Programming problem: deadline 12/18 11:59PM

● Value iteration and Q-learning

● No late submission

Next Lecture

A review for the materials after the midterm

	Slide 1: Reinforcement Learning
	Slide 2: Overview on what we have talked about
	Slide 3: Markov Decision Processes and Reinforcement Learning
	Slide 4: Reinforcement Learning (RL) vs. other ML methods
	Slide 5: Reinforcement Learning (RL) vs. other ML methods
	Slide 6: Reinforcement Learning
	Slide 7: Reinforcement Learning
	Slide 8: Markov Decision Process
	Slide 9: Example: Grid World
	Slide 10: Grid World Actions
	Slide 11: Markov Decision Processes
	Slide 12: What is Markov about MDPs?
	Slide 13: “Markov” as in Markov Chains? HMMs?
	Slide 14: Policies
	Slide 15: Optimal Policies
	Slide 16: Example: Racing
	Slide 17: Example: Racing
	Slide 18: Example: Racing
	Slide 19: MDP Search Trees
	Slide 20: Discounting
	Slide 21: Discounting
	Slide 22: Discounting
	Slide 23: Value Functions and Optimal Policies
	Slide 24: Recap: Defining MDPs
	Slide 25: Racing Search Tree
	Slide 26: Racing Search Tree
	Slide 27: Racing Search Tree
	Slide 28: Computing Time-Limited Values
	Slide 29: Time-Limited Values
	Slide 30: Example
	Slide 31: Slightly Simplifying the Notation
	Slide 32: Example
	Slide 33: k=0
	Slide 34: k=1
	Slide 35: k=2
	Slide 36: k=3
	Slide 37: k=4
	Slide 38: k=5
	Slide 39: k=6
	Slide 40: k=7
	Slide 41: k=8
	Slide 42: k=9
	Slide 43: k=10
	Slide 44: k=11
	Slide 45: k=12
	Slide 46: k=100
	Slide 47: State Value (V Value) and State-Action Value (Q Value)
	Slide 48: Q Values
	Slide 49: Convergence
	Slide 50: Value Iteration
	Slide 51: The Limits of Value Iteration
	Slide 52: Bellman Equation
	Slide 53: Q-Learning
	Slide 54: Recall how we compute the optimal policy in MDPs
	Slide 55: Solutions when we don’t know the model
	Slide 56: Q-Learning
	Slide 57: Q-Learning
	Slide 58: Deep Q-Learning
	Slide 59: Q-Learning Example
	Slide 60: Q-Learning Example
	Slide 61: Q-Learning Example
	Slide 62: Q-Learning
	Slide 63: Theorem
	Slide 64: Summary
	Slide 65: Homework 6
	Slide 66: Next Lecture

