Reinforcement Learning

Chen-Yu Wei

Overview on what we have talked about

- Search
 - Single-agent search
 - Multi-agent search
 - Constraint satisfaction
 - Logic
- Probabilistic Modeling
 - Bayesian network
 - (Hidden) Markov models
- Machine Learning
 - Learning from data

 Finding a series of decisions or a solution in a large state space (Modeling the relation between variables deterministically)

- Modeling the relation between variables probabilistically
- Learning the relation between variables from data

Markov Decision Processes and Reinforcement Learning

- Search
 - Single-agent search
 - Multi-agent search
 - Constraint satisfaction
 - Logic
- Probabilistic Modeling
 - Bayesian network
 - (Hidden) Markov models
- Machine Learning
 - Learning the model from data

Probabilistic model for search problems (Markov decision processes)

 Searching while learning the model (Reinforcement Learning)

Reinforcement Learning (RL) vs. other ML methods

• How is RL different from the ML methods we have seem so far?

X: $(x_1, x_2, ..., x_{i-1})$ Y: x_i

self-supervised learning

Reinforcement Learning (RL) vs. other ML methods

- In supervised learning or self-supervised learning, it is important that we (human) have to collect a big amount of training data (i.e., (X, Y) pairs)
 - Bounding box: human labeling
 - Texts: web crawler
- Reinforcement learning handles problems where the machine has to collect data by itself while learning

Reinforcement Learning

X: View of the game Y: Action (left or right)

Instead of providing training data to the machine, we let it collect them **by itself** (through trial and error).

Instead of telling the machine which action to take, we only tell it **reward** (like in search problems).

Difference between telling action and telling reward: in the former case, the machine can just follow the action, but in the latter case, the machine still needs to try different actions.

Reinforcement Learning

Markov Decision Process

(Just a probabilistic model for search problems --- no "learning")

Example: Grid World

- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World

Stochastic Grid World

Markov Decision Processes

- An MDP is defined by:
 - A set of states $s \in S$
 - A set of actions $a \in A$
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s'| s, a)

or R(s,a)

- Also called the model or the dynamics
- A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
- A start state
- Maybe a terminal state

What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots, S_0 = s_0)$$

= $P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$

• This is just like search, where the successor function could only depend on the current state (not the history)

"Markov" as in Markov Chains? HMMs?

$$X_0 \rightarrow X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow \cdots \rightarrow$$

Markov Model (Markov Chain)

Hidden Markov Model

Partially Observable Markov Decision Process

Markov Decision Process

Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy $\pi^*: S \to A$
 - A policy π gives an action for each state
 - An optimal policy is one that maximizes expected total return

Optimal Policies

R(s) = -0.01

R(s) = -0.03

Example: Racing

Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: *Slow*, *Fast*
- Going faster gets double reward

Example: Racing

MDP Search Trees

• MDP search tree can be viewed as an expectimax search tree

Discounting

Discounting

- Give less importance to reward / cost in the distant future
- There are several reasons to do so
 - When performing reinforcement learning (which will be covered in the next lecture), uncertainty accumulates over time, so it's less meaningful to optimize reward in the distant future
 - In many cases, we prioritize more recent reward

\$100 right now

VS.

\$110 next year

Discounting

- How to discount?
 - Each time we descend a level, we multiply in the discount once
- Example: discount of 0.9 = 7
 - $U([1,2,3]) = 1^{1} + 0.9^{2} + (0.81)^{3}$
 - U([1,2,3]) < U([3,2,1])

Value Functions and Optimal Policies

Recap: Defining MDPs

- Markov decision processes:
 - Set of states S
 - Start state s₀
 - Set of actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)
- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility or Return = sum of (discounted) rewards

Racing Search Tree

Racing Search Tree

Racing Search Tree

- Problem: States are repeated
 - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
 - Idea: Perform **depth-limited** computation with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if $\gamma < 1$

Computing Time-Limited Values

Time-Limited Values

Define $V_k(s)$ to be the optimal value of s if the game ends in at most k more time steps

$$V_k(s) = \begin{cases} \max_a \left(\sum_{s'} T(s, a, s') (R(s, a, s') + \gamma V_{k-1}(s')) \right) & \text{if } s \text{ is not a terminal state} \\ \max_a \left(\sum_{s'} T(s, a, s') R(s, a, s') \right) & \text{if } s \text{ is a terminal state} \end{cases}$$

recursively for $k \ge 1$

 $V_0(s) = 0$

Example

а

Slow

Fast

Fast

Slow

Slow

Fast

(end)

S

s'

Assume no discount $(\gamma = 1)$

Slightly Simplifying the Notation

$$V_k(s) = \begin{cases} \max_a \left(\sum_{s'} T(s, a, s') (R(s, a, s') + \gamma V_{k-1}(s')) \right) & \text{if } s \text{ is not a terminal state} \\ \max_a \left(\sum_{s'} T(s, a, s') R(s, a, s') \right) & \text{if } s \text{ is a terminal state} \end{cases}$$

It is possible to write them as
$$V_k(s) = \max_a \left(\sum_{s'} T(s, a, s') (R(s, a, s') + \gamma V_{k-1}(s')) \right) \forall s$$

by creating an artificial s_{dum} state so that

 $T(s_{ter}, a, s_{dum}) = 1$ for any terminal state s_{ter} and any action a $T(s_{dum}, a, s_{dum}) = 1$ for any action a $R(s_{dum}, a, s_{dum}) = 0$ for any action a

We did not have this matter when discussing about search because there we usually assume no reward from the terminal state.

Example

Two ways to incorporate the final reward. Let s_{ter} be a terminal state, i.e., (4,2) or (4,3)

(1)
$$R(s, a, s_{ter}) = +1 \text{ (or } -1) \qquad \underbrace{\mathcal{R}(S_{rer}, a, s') = 0}_{k(s_{rer}, a, s') = 0}$$
$$V_k(s) = \begin{cases} \max_a \left(\sum_{s'} T(s, a, s') (R(s, a, s') + \gamma V_{k-1}(s')) \right) & \text{if } s \text{ is not a terminal state} \\ \max_a \left(\sum_{s'} T(s, a, s') R(s, a, s') \right) & \text{if } s \text{ is a terminal state} \end{cases}$$

(2) $R(s_{\text{ter}}, a, s_{\text{dum}}) = +1 \text{ (or } -1) \text{ (Needs to create a dummy state)}$

$$V_k(s) = \max_a \left(\sum_{s'} T(s, a, s') (R(s, a, s') + \gamma V_{k-1}(s')) \right) \quad \forall s$$

0	Gridworld Display			
	•	0.00	0.00	0.00
	^		^	
	0.00		0.00	0.00
ľ				
	0.00	0.00	0.00	0.00

VALUES AFTER 0 ITERATIONS

0.8 0.1 - J_J_J

○ ○ Gridworld Display				
• 0.00	• 0.00	0.00 >	1.00	
•		∢ 0.00	-1.00	
•	•	• 0.00	0.00	

0	○ ○ Gridworld Display			
	^			
	0.00	0.00 →	0.72 →	1.00
ĺ	^		^	
	0.00		0.00	-1.00
	0.00	0.00	0.00	0.00
				•

VALUES AFTER 2 ITERATIONS

0 0	Gridworl	d Display	
0.00)	0.52 →	0.78 ▸	1.00
•		• 0.43	-1.00
•	• 0.00	•	0.00
VALUES AFTER 3 ITERATIONS			

○ ○ Gridworld Display				
0.37)	0.66 →	0.83)	1.00	
•		• 0.51	-1.00	
•	0.00 →	• 0.31	∢ 0.00	
VAT.II	ES AFTER	4 TTERA	TONS	

○ ○ ○ Gridworld Display					
	0.51 →	0.72)	0.84)	1.00	
	• 0.27		• 0.55	-1.00	
	• 0.00	0.22 →	• 0.37	∢ 0.13	
	VALUES AFTER 5 ITERATIONS				

Noise = 0.2 Discount = 0.9 Living reward = 0

VG

Gridworld Display				
0.62)	0.74 ▸	0.85)	1.00	
• 0.50		• 0.57	-1.00	
▲ 0.34	0.36)	• 0.45	∢ 0.24	
VALUI	S AFTER	7 ITERA	FIONS	

○ ○ Gridworld Display				
0.63)	0.74 →	0.85)	1.00	
• 0.53		• 0.57	-1.00	
• 0.42	0.39 →	• 0.46	∢ 0.26	
VALUES AFTER 8 ITERATIONS				

O O O Gridworld Display				
ſ	0.64)	0.74 ▸	0.85)	1.00
	• 0.55		• 0.57	-1.00
	• 0.46	0.40 →	• 0.47	◀ 0.27
	VALUE	S AFTER	9 ITERA	TIONS

0 0	Gridworld Display				
	0.64)	0.74)	0.85)	1.00	
	• 0.56		• 0.57	-1.00	
	• 0.48	∢ 0.41	• 0.47	∢ 0.2 7	
	VALUES AFTER 10 ITERATIONS				

○ ○ ○ Gridworld Display				
0.0	64 ♪	0.74 →	0.85)	1.00
0.!	56		• 0.57	-1.00
0.4	48	◀ 0.42	• 0.47	∢ 0.27
VALUES AFTER 11 ITERATIONS				

00	○ ○ ○ Gridworld Display				
	0.64)	0.74 →	0.85)	1.00	
	• 0.57		• 0.57	-1.00	
	▲ 0.49	◀ 0.42	• 0.47	∢ 0.28	
	VALUE	S AFTER	12 ITERA	TIONS	

Gridworld Display			
0.64)	0.74 →	0.85)	1.00
• 0.57		• 0.57	-1.00
▲ 0.49	∢ 0.43	▲ 0.48	∢ 0.28
VALUES AFTER 100 ITERATIONS			

State Value (V Value) and State-Action Value (Q Value)

 $V_0(s) = 0$ $V_{k}(s) = \max_{a} \left(\sum_{s'} T(s, a, s') (R(s, a, s') + \gamma V_{k-1}(s')) \right)$ $Q_k(s,a) = \sum_{s'} T(s,a,s')(R(s,a,s') + \gamma V_{k-1}(s'))$ $Q_k(s, a) =$ The optimal value from s if taking action a in the first step $V_k(s) = \max_a Q_k(s, a)$ and then perform optimally in the remaining k-1 steps.

Q Values

Convergence

- Are V_k going to converge?
- If the discount is less than 1
 - The difference between V_k and V_{k+1} is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - That one-step reward ranges in [-R, R] where R = max |R(s,a,s')|
 - But everything is discounted by $\boldsymbol{\gamma}^k$
 - So V_k and V_{k+1} are at most $\gamma^k \max |R|$ different
 - So as k increases, the values converge

 $|V_{K}(s) - V_{K+1}(s)| \leq \gamma^{K} m(R)$

 $V_k(s)$

K

Y

VK

 $V_{k+1}(s)$

 $V_k(s) \rightarrow V(s)$

K-1

Value Iteration

$$\frac{v}{\sqrt{s}} = \sqrt{s}$$

- Start with $V_0(s) = 0$
- Given $V_{k-1}(s)$, perform the following update for all state s and action a:

$$Q_k(s,a) \leftarrow \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V_{k-1}(s')]$$
$$V_k(s) \leftarrow \max_a Q_k(s,a)$$

- Repeat until convergence: $|V_{k+1}(s) V_k(s)| \le \epsilon$ for all s
- (Near) optimal policy: $\pi(s) = \underset{a}{\operatorname{argmax}} Q_k(s, a)$
- **Theorem:** will converge to unique optimal values $V_k(s) \rightarrow V^*(s)$

The Limits of Value Iteration

- The state value function:
 - $V^*(s)$ = expected **discounted total reward** starting from s and acting optimally
- The state-action value function:
 - $Q^*(s, a)$ = expected **discounted total reward** starting by taking action a from state s and (thereafter) acting optimally

•
$$Q^*(s,a) = \sum_{s'} T(s,a,s') (R(s,a,s') + \gamma V^*(s'))$$

- The optimal policy (that maximizes the discounted total reward)
 - $\pi^*(s)$ = optimal action from state s = argmax $Q^*(s, a)$

Bellman Equation

$$Q^{*}(s,a) = \sum_{s'} T(s,a,s')(R(s,a,s') + \gamma V^{*}(s'))$$
$$V^{*}(s) = \max_{a} Q^{*}(s,a)$$

As discussed previously, given T and R, one can approximate Q^* and V^* that satisfy the Bellman equation through **value iteration**.

This set of equations is an instance of **dynamic programming** (but probably slightly more advanced than what you learned in DSA because it could involve infinite depth)

Q-Learning

(Machine Learning in an MDP)

Recall how we compute the optimal policy in MDPs

Value Iteration

 $V_0(s) \leftarrow 0 \quad \forall s$ Require knowledge about the model For k = 1, 2, ... $Q_k(s,a) \leftarrow \sum_{i} T(s,a,s') [R(s,a,s') + \gamma V_{k-1}(s')] \quad \forall s,a$ =0 if s is terminal $V_k(s) \leftarrow \max_{a} Q_k(s, a) \quad \forall s$ If $|V_k(s) - V_{k-1}(s)| \le \epsilon$ for all s: Let $\hat{Q}(s,a) = Q_k(s,a) \ \forall s,a$ break Return policy $\hat{\pi}(s) = \operatorname{argmax} \hat{Q}(s, a)$

What if we don't know the transition *T* or the reward *R*?

Solutions when we don't know the model

• We want to perform the update

$$Q_k(s,a) \leftarrow \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V_{k-1}(s')] \quad \forall s,a$$

- But we don't know *T* and *R*
- Fortunately, we can get a "sample" for the right-hand side
 - Suppose that we are on some state \hat{s} and we take an action \hat{a}
 - The environment will generate next state \hat{s}' and reveal the reward $\hat{R} = R(\hat{s}, \hat{a}, \hat{s}')$
 - Then we have

$$\mathbb{E}_{\hat{R},\hat{s}'}[\hat{R} + \gamma V_{k-1}(\hat{s}')] = \sum_{s'} T(\hat{s},\hat{a},s')[R(\hat{s},\hat{a},s') + \gamma V_{k-1}(s')]$$

• But we cannot simply do $Q_k(\hat{s}, \hat{a}) \leftarrow \hat{R} + \gamma V_{k-1}(\hat{s}') \dots$ why?

Q-Learning

 $V_0(s) \leftarrow 0, \ Q_0(s,a) \leftarrow 0 \quad \forall s,a$ Let s_1 be the initial state. For k = 1, 2, ...Take action a_k . Observe next state s_{k+1} and reward $R_k = R(s_k, a_k, s_{k+1})$. // Slightly modify the values on the visited state-action pair (s_k, a_k) : $Q_k(s_k, a_k) \leftarrow (1 - \eta_k) Q_{k-1}(s_k, a_k) + \eta_k \left[R_k + \gamma V_{k-1}(s_{k+1}) \right] \quad \eta_k \in (0, 1): \text{ learning rate}$ $V_k(s_k) \leftarrow \max_{a} Q_k(s_k, a)$ =0 if s_k is terminal // Keep other values unchanged: $Q_k(s,a) \leftarrow Q_{k-1}(s,a)$ and $V_k(s) \leftarrow V_{k-1}(s)$ for $(s,a) \neq (s_k,a_k)$ If s_k is a terminal state: Reset s_{k+1} to be the initial state. Continue

Q-Learning

The update

$$Q_k(s_k, a_k) \leftarrow (1 - \eta_k) Q_{k-1}(s_k, a_k) + \eta_k [R_k + \gamma V_{k-1}(s_{k+1})]$$

has the effect of averaging up multiple samples of $R_k + \gamma V_{k-1}(s_{k+1})$

(so mitigate the effect of randomness)

Q=0
Q=0
Q
$$\in (1-7) \land +2 \times 0$$

Q $\in (1-2) \land +2 \times 0$
 i

Deep Q-Learning

- Instead of recording Q(s, a) for each individual s, a, use a neural network (NN) to model the mapping (NN input: s, a, NN output: $Q(s, a) \in \mathbb{R}$)
- Notable applications:
 - Playing Atari games: <u>https://www.youtube.com/watch?v=rFwQDDbYTm4</u>

Q-Learning Example

Initial state: (3,1) **Terminal states:** (4,2) and (4,3) Actions: NSEW The learner doesn't know these! **Reward**: R(s, a, s') = R(s) = -0.2 for all non-terminal s R(s) = -1 if s = (4,2)R(s) = +1 if s = (4,3)**Transition:** with probability 0.8: transition according to the action with probability 0.2: transition to two sides (see left figure) If wall is met, stay in the original square **Discount factor** $\gamma = 0.95$

Q-Learning Example

 $s_1 = (3,1)$

Learner take action $a_1 = N$ Environment sample next state $s_2 = (3,2)$ and reveal reward -0.2 Learner update

$$Q((3,1), \mathbf{N}) = (1 - \eta)Q((3,1), \mathbf{N}) + \eta[-0.2 + \gamma V((3,2))]$$

= 0.9 × 0 + 0.1[-0.2 + 0.95 × 0] = -0.02

 $V((3,1)) = \max_{a} Q((3,1), a) = 0$

//Q(s, a), V(s) for other s, a remains unchanged.

Learner take action $a_2 = S$ Environment sample next state $s_3 = (4,2)$ and reveal reward -0.2 Learner update

$$Q((3,2), \mathbf{S}) = (1 - \eta)Q((3,2), \mathbf{S}) + \eta[-0.2 + \gamma V((4,2))]$$

= 0.9 × 0 + 0.1[-0.2 + 0.95 × 0] = -0.02
$$V((3,2)) = \max_{a} Q((3,2), a) = 0$$

Iteration 1

Iteration 2

Q-Learning Example

Learner take action $a_3 = W$

Since $s_3 = (4,2)$ is a terminal state, there is no next state. Environment reveal reward -1.

Learner update

$$Q((4,2), W) = (1 - \eta)Q((4,2), W) + \eta[-1]$$

= 0.9 × 0 + 0.1[-1] = -0.1
$$V((4,2)) = \max_{a} Q((4,2), a) = 0$$

Restart at $s_4 = (3,1)$ // but the Q, V values continue to update Learner take action $a_4 = S$ Environment sample next state $s_5 = (3,2)$ and reveal reward -0.2 Learner update

 $Q((3,2), \mathbf{S}) = (1 - \eta)Q((3,2), \mathbf{S}) + \eta[-0.2 + 0.9V((4,2))]$ = 0.9 × -0.02 + 0.1[-0.2 + 0.9 × 0] $V((3,2)) = \max_{a} Q((3,2), a) = 0$ **Iteration 3**

Iteration 4

Q-Learning

Common strategies to pick actions:

• ϵ -Greedy:

 $a_{k} = \begin{cases} \operatorname{argmax} Q_{k-1}(s_{k}, a) & \text{with probability } 1 - \epsilon \\ a & \text{with probability } \epsilon \end{cases}$

• Boltzmann exploration: sample a_k from the distribution

 $\frac{\exp(Q_{k-1}(s_k,a))}{\sum_{a'}\exp(Q_{k-1}(s_k,a'))}$

Idea: balancing exploration and exploitation

Randomly try some new actions

Try to perform well (get high reward) using the current estimation

Theorem

• If every state-action pair is visited infinitely often (which requires exploration), with properly chosen learning rate scheduling η_k , then $\lim_{k \to \infty} Q_k(s, a) = Q^*(s, a) \quad \forall s, a$

Summary

- Markov Decision Process formulates a search problem (finding a path that maximize the total reward) that has random state transition
- We can use value iteration (a dynamic programming algorithm) to find
 - State-action value function $Q^*(s, a)$
 - State value function $V^*(s)$

The optimal policy is then given by $\pi^*(s) = \operatorname{argmax} Q^*(s, a)$

- а
- Reinforcement Learning estimates the model (machine learning) through interacting with the MDP (search)
- Q-learning \approx value iteration with samples and soft updates

Homework 6

- Choices problems: deadline 12/8 11:59PM
- Programming problem: deadline 12/18 11:59PM
 - Value iteration and Q-learning
- No late submission

Next Lecture

A review for the materials after the midterm