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Overview: Language Modeling

• The core problem in NLP is language modeling
• Goal: Assigning probability to a sequence of words
• For text understanding: p(“The cat is on the mat”) >> p(“Truck the earth on”)

• For text generation: p(w | “The cat is on the”) -> “mat”

Autocomplete empowered by
language modeling
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Language Model Applications
Chatbots

Code Assistants

Shopping Assistants Generating Math Proofs 4/53

https://chatgpt.com/
https://github.com/features/copilot
https://www.amazon.com/gp/help/customer/display.html?nodeId=Tvh55TTsQ5XQSFc7Pr
https://www.nature.com/articles/s41586-023-06747-5


Language Models = Universal NLP Task Solvers

• Every NLP task can be converted into a text-to-text task!
§ Sentiment analysis: The movie’s closing scene is attractive; it was ___ (good)
§ Machine translation: “Hello world” in French is ___ (Bonjour le monde)
§ Question answering: Which city is UVA located in? ___ (Charlottesville)
§ …

• All these tasks can be formulated as a language modeling problem!
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Language Modeling: Probability Decomposition

• Given a text sequence , how can we model ?
• Autoregressive assumption: the probability of each word only depends on its previous

tokens
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Language Models Are Generative Models

• Suppose we have a language model that gives us the estimate of                                 , 
we can generate the next tokens one-by-one!

• Sampling: 

• Or greedily:
• But how do we know when to stop generation?
• Use a special symbol [EOS] (end-of-sequence) to denote stopping vocabulary
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Example: Language Models for Generation

• Recursively sample until we generate [EOS]
• Generate the first word:
• Generate the second word:

• Generate the third word:
• Generate the fourth word:
• Generate the fifth word:
• Generate the sixth word:
• Generate the seventh word:

• Generation finished!

beginning-of-sequence
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How to Obtain A Language Model?

Learn the probability distribution from a training corpus!

Text corpora contain rich distributional statistics!

Learning target:
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History of Language Models

• Language models started to be built with statistical methods
§ Sparsity
§ Poor generalization

Before 2000s

Statistical language models
(e.g., n-gram language models)
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History of Language Models

• The introduction of neural networks into language models mitigated sparsity and
improved generalization
§ Neural networks for language models were small-scale and inefficient for a long time
§ Task-specific architecture designs required for different NLP tasks
§ These language models were trained on individual NLP tasks as task-specific solvers

Before 2000s 2000s – 2018

(Simple & shallow) neural language models
(e.g., word2vec, RNNs, CNNs)

Statistical language models
(e.g., n-gram language models)
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History of Language Models

• Transformer became the dominant architecture for language modeling; scaling up
model sizes and (pretraining) data enabled significant generalization ability
§ Transformer demonstrated striking scalability and efficiency in sequence modeling
§ One pretrained model checkpoint fine-tuned to become strong task-specific models
§ Task-specific fine-tuning was still necessary

Before 2000s 2000s – 2018 2018 – 2022

(Small) pretrained neural models
(e.g., BERT, GPT-2, T5)

(Simple & shallow) neural language models
(e.g., word2vec, RNNs, CNNs)

Statistical language models
(e.g., n-gram language models)
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History of Language Models

• Generalist large language models (LLMs) became the universal task solvers and
replaced task-specific language models
§ Real-world NLP applications are usually multifaceted (require composite task abilities)
§ Tasks are not clearly defined and may overlap
§ Single-task models struggle to handle complex tasks

Large language models
(e.g., ChatGPT, GPT-4)

Before 2000s 2000s – 2018 2018 – 2022 2022 – Now

(Small) pretrained neural models
(e.g., BERT, GPT-2, T5)

(Simple & shallow) neural language models
(e.g., word2vec, RNNs, CNNs)

Statistical language models
(e.g., n-gram language models)
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Vector Semantics

• Represent a word as a point in a multi-dimensional semantic space
• A desirable vector semantic space: words with similar meanings are nearby in space

Figure source: https://web.stanford.edu/~jurafsky/slp3/6.pdf

2D visualization of a desirable high-dimensional vector semantic space
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How to Represent Words as Vectors?

• Given a vocabulary 
• Most straightforward way to represent words as vectors: use their indices
• One-hot vector: only one high value (1) and the remaining values are low (0)

• Each word is identified by a unique dimension
• Issue? Fail to capture word semantics!
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Distributional Hypothesis

• Words that occur in similar contexts tend to have similar meanings
• A word’s meaning is largely defined by the company it keeps (its context)
• Example: suppose we don’t know the meaning of “Ong choy” but see the following:

§ Ong choy is delicious sautéed with garlic
§ Ong choy is superb over rice
§ … ong choy leaves with salty sauces

• And we’ve seen the following contexts:
§ … spinach sautéed with garlic over rice
§ … chard stems and leaves are delicious
§ … collard greens and other salty leafy greens

• Ong choy = water spinach!

Example source: https://web.stanford.edu/~jurafsky/slp3/slides/vectorsemantics2024.pdf 17/53

https://web.stanford.edu/~jurafsky/slp3/slides/vectorsemantics2024.pdf


Learning Word Embeddings

• Assume a large text collection (e.g., Wikipedia)
• Hope to learn similar word embeddings for words occurring in similar contexts
• Construct a prediction task: use a center word’s embedding to predict its contexts!

• Intuition: If two words have similar embeddings, they will predict similar contexts, 
thus being semantically similar!

sautéed

garlic

rice

salty

leaves

sautéed

garlic

rice

salty

leaves

… …

Predicted contexts Predicted contexts
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Word Embedding Is Self-Supervised Learning

• Self-supervised learning: a model learns to predict parts of its input from other parts 
of the same input

Input: Ong choy is superb over rice
superb

over

rice

Prediction task:

is

Ong choy
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Word Similarity

• Measure word similarity with cosine similarity between embeddings
• Higher cosine similarity = more semantically close
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Word Analogy

• Word embeddings reflect intuitive semantic and syntactic analogy
• Example: man : woman :: king : ?
• General case: find the word such that a : b :: c : ?

• Find the word that maximizes the cosine similarity
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Sequence Modeling: Overview

• Use deep learning methods to understand, process, and generate text sequences
• Goals:

§ Learn context-dependent representations
§ Capture long-range dependencies
§ Handle complex relationships among large text units

• Sequence modeling architectures are based on deep neural networks (DNNs)!
§ Language exhibits hierarchical structures (e.g., letters form words, words form phrases, 

phrases form sentences)
§ DNNs learn multiple levels of abstraction across layers, allowing them to capture low-level 

patterns (e.g., word relations) in lower layers and high-level patterns (e.g., sentence 
meanings) in higher layers

§ Each layer in DNNs refines the word representations by considering contexts at different
granularities (shorter & longer-range contexts), allowing for contextualized understanding of 
words and sequences
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Simple Neural Language Model

Instantiate Feedforward network (FFN) as a neural language model

2-layer FFN 2-layer neural language model

Word embeddings

Hidden layer

Output distribution

Figure source: https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf 24/53

https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf


Limitations of (Simple) Neural Language Models

• Context window is fixed
• Increasing N will enlarge 𝑾

Fixed sizeConcatenated word embeddings
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Recurrent Neural Network (RNN) Overview

A neural language model that can process inputs of arbitrary lengths

Figure source: https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf

Simple neural
language model

Recurrent neural
language model

Different words
multiplied with

different subparts in W Reuse the same
weights for all words
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RNN Computation

• Hidden states in RNNs are computed based on
§ The hidden state at the previous step (memory)
§ The word embedding at the current step

• Parameters:
§ : weight matrix for the recurrent connection
§ : weight matrix for the input connection

[BOS]

Hidden states at the
previous word (time step)

Word embedding of the
current word (time step)
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RNN for Language Modeling

• Recall that language modeling predict the next word given previous words

• How to use RNNs to represent ?

Output probability at (t-1) step:

……

𝒉("#$) is a function of 𝒉("#&) and 𝒙("#$) :

𝒉("#&) is a function of 𝒉("#') and 𝒙("#&) :

𝒉($) is a function of 𝒉(() and 𝒙($) :
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Transformer: Overview

• Transformer is a specific kind of sequence modeling architecture (based on DNNs)
• Use attention to replace recurrent operations in RNNs
• The most important architecture for language modeling (almost all LLMs are based on 

Transformers)! 

Transformer: https://arxiv.org/pdf/1706.03762 30/53

https://arxiv.org/pdf/1706.03762


Transformer vs. RNN

Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf

RNN
(recurrent computations)

Transformer
(self-attention computations)
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Transformer: Motivation

• Parallel token processing
§ RNN: process one token at a time (computation for each token depends on previous ones)
§ Transformer: process all tokens in a sequence in parallel

• Long-term dependencies
§ RNN: bad at capturing distant relating tokens (vanishing gradients)
§ Transformer: directly access any token in the sequence, regardless of its position

• Bidirectionality
§ RNN: can only model sequences in one direction
§ Transformer: inherently allow bidirectional sequence modeling via attention
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Transformer Layer

Each Transformer layer contains the following important components:
§ Self-attention
§ Feedforward network
§ Residual connections + layer norm

Transformer layer

Figure source: https://jalammar.github.io/illustrated-transformer/ 33/53

https://jalammar.github.io/illustrated-transformer/


Self-Attention: Intuition

• Attention: weigh the importance of different words in a sequence when processing a 
specific word
§ “When I’m looking at this word, which other words should I pay attention to in order to 

understand it better?”

• Self-attention: each word attends to other words in the same sequence
• Example: “The chicken didn’t cross the road because it was too tired”

§ Suppose we are learning attention for the word “it”
§ With self-attention, “it” can decide which other words in the sentence it should focus on to 

better understand its meaning
§ Might assign high attention to “chicken” (the subject) & “road” (another noun)
§ Might assign less attention to words like “the” or “didn’t”
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Self-Attention: Example
Center word (query)Context word (key)

Current word = “it”

Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf

Derive the center word representation as a 
weighted sum of context representations!

<latexit sha1_base64="HgkdYRC8UrucYxITEJgdZIruAwE="></latexit>

ai =
X

xj2x

↵ijxj ,
X

xj2x

↵ij = 1

Attention score 𝑖 → 𝑗, summed to 1

Context word representationCenter word representation
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Self-Attention: Attention Score Computation

• Attention score is given by the softmax function over vector dot product

<latexit sha1_base64="r7nCrnG6Jd6+gHW+u3DiGQaBayM="></latexit>

↵ij = Softmax(xi · xj)

<latexit sha1_base64="HgkdYRC8UrucYxITEJgdZIruAwE="></latexit>

ai =
X

xj2x

↵ijxj ,
X

xj2x

↵ij = 1

Context word (key) representationCenter word (query) representation
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Self-Attention: Query, Key, and Value

• Each word in self-attention is represented by three different vectors
§ Allow the model to flexibly capture different types of relationships between tokens

• Query (Q):
§ Represent the current word seeking information about

• Key (K):
§ Represent the reference (context) against which the query is compared

• Value (V):
§ Represent the actual content associated with each token to be aggregated as final output
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Self-Attention: Query, Key, and Value

Each self-attention module has three weight matrices applied to the input word vector to
obtain the three copies of representations

Input word representation

query representation

key representation

value representation
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Self-Attention: Overall Computation

• Input: single word vector of each word
• Compute Q, K, V representations for each word:

• Compute attention scores with Q and K
§ The dot product of two vectors usually has an expected magnitude proportional to
§ Divide the attention score by to avoid extremely large values in softmax function

• Sum the value vectors weighted by attention scores

<latexit sha1_base64="pLwfuCmkc258TsfpoY0iZ1tLIh0="></latexit>xi

<latexit sha1_base64="2+JyUlhZZ7R3B1W0bdOcGJk9Tkg="></latexit>

qi = xiW
Q ki = xiW

K vi = xiW
V

<latexit sha1_base64="WUAXcNsFBBXDvR4jlJHsuyFWyiE="></latexit>

↵ij = Softmax

✓
qi · kjp

d

◆

Dimensionality of 𝑞 and 𝑘

<latexit sha1_base64="YRmoVjF9tBoQ4AvLxqXSoni7EpM="></latexit>p
d

<latexit sha1_base64="YRmoVjF9tBoQ4AvLxqXSoni7EpM="></latexit>p
d

<latexit sha1_base64="1Ti6D4cm3fe6sHZVii4WvXXg0SM="></latexit>

ai =
X

xj2x

↵ijvj
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• Example: an input sequence with three words 𝑥!, 𝑥", 𝑥#
• Suppose we want to compute the self-attention for 𝑥#

Self-Attention: Illustration

Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf

Compute query, key, value

Compare 𝑥'’s query with
the keys of all words

Divide the dot product by
vector dimension

Obtain attention scores via softmax

Sum the weighted value vectors

Output of self-attention
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Unidirectional Self-Attention

• Self-attention can capture context dependencies
• Unidirectional (or causal) self-attention:

§ Each position can only attend to earlier positions in the sequence (including itself).
§ Transformers with unidirectional self-attention are called Transformer decoders (e.g., GPT)
§ Use case: natural language generation (NLG) where the model generates 

output sequentially
upper-triangle portion set to -inf

<latexit sha1_base64="WUAXcNsFBBXDvR4jlJHsuyFWyiE="></latexit>

↵ij = Softmax

✓
qi · kjp

d

◆
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Pretraining: Motivation

• Before pretraining became prevalent in NLP, most NLP models were trained from
scratch on downstream task data

• Data scarcity: many NLP tasks do not have large labeled datasets available (costly to
obtain)

• Poor generalization: models trained from scratch on specific tasks do not generalize 
well to unseen data or other tasks

• Sensitivity to noise and randomness: models are more likely to learn spurious 
correlations or be affected by annotation errors/randomness in training
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Pretraining: Motivation

• There are abundant text data on the web, with rich information of linguistic features 
and knowledge about the world

• Learning from these easy-to-obtain data greatly benefits various downstream tasks
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Pretraining: Multi-Task Learning

Examples from: https://docs.google.com/presentation/d/1hQUd3pF8_2Gr2Obc89LKjmHL0DlH-
uof9M0yFVd3FA4/edit#slide=id.g28e2e9aa709_0_1

• In my free time, I like to {run, banana} (Grammar)
• I went to the zoo to see giraffes, lions, and {zebras, spoon} (Lexical semantics)
• The capital of Denmark is {Copenhagen, London} (World knowledge)

• I was engaged and on the edge of my seat the whole time. The movie was {good, bad}
(Sentiment analysis)

• The word for “pretty” in Spanish is {bonita, hola} (Translation)
• 3 + 8 + 4 = {15, 11} (Math)
• …
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Transformer for Pretraining

• Transformer is the common backbone architecture for language model pretraining
• Efficiency: Transformer processes all tokens in a sequence simultaneously – fast and 

efficient to train, especially on large datasets

• Scalability: Transformer architectures have shown impressive scaling properties, with 
performance improving as model size and training data increase (more on this later!)

• Versatility: Transformer can be adapted for various tasks and modalities beyond just 
text, including vision, audio, and other multimodal applications
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Transformer Decoder Pretraining

• Decoder architecture is the prominent choice in large language models
• Pretraining decoders is first introduced in GPT (generative pretraining) models
• Follow the standard language modeling (cross-entropy) objective

<latexit sha1_base64="KHB4wDz2Oqvg2VJKPiJVFnLE5DA="></latexit>

L(✓) = � 1

N

NX

i=1

log p✓(xi|x1, x2, . . . , xi�1)
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GPT Series

• GPT-1 (2018): 12 layers, 117M parameters, trained in ~1 week
• GPT-2 (2019): 48 layers, 1.5B parameters, trained in ~1 month
• GPT-3 (2020): 96 layers, 175B parameters, trained in several months

Papers: (GPT-1) https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
(GPT-2) https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
(GPT-3) https://arxiv.org/pdf/2005.14165.pdf

GPT-4
(???)

2018 2019 2020

GPT-2
(1.5B)

GPT-3
(175B)

Model
Parameter

2023

GPT-1
(0.1B)
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Why Scaling Up Language Models? Emergent Ability

• Larger models develop emergent abilities
§ Skills or capabilities that were not explicitly learned but arise as a result of model capacity 
§ Larger models demonstrate surprising abilities in challenging tasks even when they were not 

explicitly trained for them

• Emergent capabilities typically become noticeable only when the model size reaches a 
certain threshold (cannot be predicted by small model’s performance)
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Performance vs. Model Scale

Figure source: https://arxiv.org/pdf/2206.07682

Models exhibit random
performance until a certain 

scale, after which performance 
significantly increases
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Lots of Ongoing Developments!

LLM agents for complex reasoning
Figure source: https://openai.com/index/learning-to-reason-with-llms/

LLM agents for computer use
Figure source: https://www.anthropic.com/news/3-5-models-and-computer-use
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NLP Courses at UVA

• CS 4501 NLP: Undergraduate NLP course (introductory)
• CS 6501 NLP: Graduate NLP course (advanced)

52/53



Yu Meng
University of Virginia

yumeng5@virginia.edu

Thank You!

mailto:yumeng5@virginia.edu

