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Overview: Language Modeling
* The core problem in NLP is language modeling

* Goal: Assigning probability to a sequence of words

* For text understanding: p(“The cat is on the mat”) >> p(“Truck the earth on”)

* For text generation: p(w | “The cat is on the”) -> “mat”

e I'll meet you at the © >

airport

Autocomplete empowered by
language modeling
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Language Model Applications

© chatGPT “
Today
Friendly Profes... -+ B

Brainstorming Bl..

Yesterday
Cover Letter Crafting
Brainstorming Blog Po...
Creative Writing Prom...
Previous 7 Days

Building Your Personal...
Ideating Marketing Ca...
Designing a Compellin...

Refining Your Busines..

 Chatbots

@ v

Can you edit my email to be more friendly, but still professional?

ChatGPT

Certainly! Here's a revised version of the email with a more friendly yet

still professional tone:

Subject: Excited to Move Forward and Connect Further!
HiJudy,

1hope this email finds you well. | wanted to express our genuine
excitement @

@ Message ChatGPT.

Ask Rufus a question 9

a @ 8 W = &

Ask Rufus
O

Shopping Assistants

Code Assistants

Technical preview

Your Al pair programmer

e IMO2015P3

“Let ABC be an acute triangle. Let
(O) be its circumcircle, H its
orthocenter, and F the foot of the
altitude from A. Let M be the
midpoint of BC. Let Q be the point
on (O) such that QH L QA and let K
be the point on (O) such that KH L
KQ. Prove that the circumcircles
(O,) and (O,) of triangles FKM and
KQH are tangent to each other.”

—Alpha-
Geometry

f Solution

Construct D: midpoint"B’H [a]
[al, 0, midpoint HQ = BQ / 0,D [20]

Construct G midpoint HC [b] ...
ZGMD = £GO,D = M 0,6 D cyclic [26]

[al, [b] = BC/DG [30]

Construct E midpoint MK [c]
..., lel = ZKFC = ZKOE [184]

LFKO,=LFKO, = KO, //KO, [169]
[189] = 0,0,K collinear = (0,)(0,) tangent

Generating Math Proofs



https://chatgpt.com/
https://github.com/features/copilot
https://www.amazon.com/gp/help/customer/display.html?nodeId=Tvh55TTsQ5XQSFc7Pr
https://www.nature.com/articles/s41586-023-06747-5

i UNIVERSITY, VIRGINIA

Language Models = Universal NLP Task Solvers

* Every NLP task can be converted into a text-to-text task!
. Sentiment analysis: The movie’s closing scene is attractive; it was ___ (good)
. Machine translation: “Hello world” in Frenchis ___ (Bonjour le monde)
. Question answering: Which city is UVA located in? ____ (Charlottesville)

e All these tasks can be formulated as a language modeling problem!
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Language Modeling: Probability Decomposition

* Given a text sequence = [z1, 2, ...,Z,] , how can we model p(x)?

* Autoregressive assumption: the probability of each word only depends on its previous
tokens

n

p(x) = p(z1)p(z2|z1)p(23|T1, 22) - - P(TN |21, - - - s TR—1) = Hp(wi|w1, ey Ti-1)
i=1
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Language Models Are Generative Models

«  Suppose we have a language model that gives us the estimate of p(w|z1,...,%i—1),
we can generate the next tokens one-by-one! books
. laptops
e Sampling: z; ~ p(w|z1,...,Ti—1)
e Orgreedily: z; « argmax,p(w|z1,...,Ti—1)

* But how do we know when to stop generation? < >

a 200
* Use a special symbol [EOS] (end-of-sequence) to denote stopping vocabulary
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Example: Language Models for Generation

«  Recursively sample z; ~ p(w|z1,...,2;—1) until we generate [EOS]

= = ———

*  Generate the first word: “the” < z1 ~ p(w|[{BOS]) beginning-of-sequence

| S ———
* Generate the second word: “cat” +— x5 ~ p(w|“the”)

e Generate the third word: “is” + z3 ~ p(w|“the cat”)

*  Generate the fourth word: “on” « x4 ~ p(w|“the cat is”)

* Generate the fifth word: “the” < x5 ~ p(w|“the cat is on”)

* Generate the sixth word: “mat” < z¢ ~ p(w|“the cat is on the”)

* Generate the seventh word: [EOS] < 7 ~ p(w|“the cat is on the mat”)

e  Generation finished!
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How to Obtain A Language Model?

Learn the probability distribution p(w|z1,...,%;—1) from a training corpus!

WIKIPEDIA

The Free Encyclopedia

X
1,437,000+ 8 /&8

English

6,872,000+ articles
B&E

1,427,000+ $£F

Pycckwit
1996 000+ crateit

Deutsch
2.937.000+ Artikel

Espaiiol
1.974.000+ articulos

Italiano
1.878.000+ voci

Frang
2631000+ articles

s

ULV PP

Portugués
1.132.000+ artigos

Donald Trump % 202 languages v

Article  Talk Read View source View history Tools v
Joe Biden S 218 languages v 8
Article  Talk v

From Wikipedia, the free encyciopedia

Read View source View history Tools

"Joseph Biden" and "Biden" redirect here. For his first-born son, Joseph Biden Ill, see Beau Biden. For other uses, see Biden

(disambiguation).
Joseph Robinette Biden Jr.”! (born November 20, 1942) is an American politician
serving as the 46th and current president of the United States since 2021. Amember of
the Democratic Party, he served as the 47th vice president from 2009 to 2017 under
President Barack Obama and represented Delaware in the U.S. Senate from 1973 to
2009.

Born in Scranton, Pennsylvania, Biden moved with his family to Delaware in 1953. He
graduated from the University of Delaware in 1965 and from Syracuse University in
1968. He was elected to the New Castle County Council in 1870 and the U.S. Senate in
1972. As a senator, Biden drafted and led the effort to pass the Violent Crime Control
and Law Enforcement Act and the Violence Against Women Act. He also oversaw six
U.S. Supreme Court confirmation hearings, including the contentious hearings for
Robert Bork and Clarence Thomas. Biden ran unsuccessfully for the 1988 and 2008
Democratic presidential nominations. In 2008, Obama chose Biden as his running mate,
and he was a close counselor to Obama during his two terms as vice president. In the
2020 presidential election, the Democratic Party nominated Biden for president. He
selected Kamala Harris as his running mate, and they defeated Republican incumbents
Donald Trump and Mike Pence. He is the oldest president in U.S. history and the first to
have a female vice president.

As president, Biden signed the American Rescue Plan Act in response to the COVID-19
pandemic and subsequent recession. He signed bipartisan bills on infrastructure and
manufacturing. He proposed the Build Back Better Act, which failed in Congress, but
aspects of which were incorporated into the Inflation Reduction Act that he signed into
law in 2022. Biden appointed Ketanji Brown Jackson to the Supreme Court. He worked
with congressional Republicans to resolve the 2023 debt-ceiling crisis by negotiating a
deal to raise the debt ceiling. In foreign policy, Biden restored America's membership in
the Paris Agreement. He oversaw the complete withdrawal of U.S. troops from
Afghanistan that ended the war in Afghanistan, leading to the collapse of the Afghan
government and the Taliban seizing control. He responded to the Russian invasion of

Text corpora contain rich distributional statistics!

Joe Biden

Official portrait, 2021

46th President of the United States
Incumbent
Assumed office
January 20, 2021
Vice President  Kamala Harris

Preceded by Donald Trump
47th Vice President of the United States
In office
January 20, 2009 - January 20, 2017
President Barack Obama
Precededby  Dick Cheney
Succeeded by  Mike Pence
United States Senator
from Delaware
In office
January 3, 1973 - January 15, 2009
Precededby  J. Caleb Boggs

a8

wrait, 2017
the United States
fice

~January 20, 2021

ence

Obama
fen

1 details

1 John Trump

4,1946 (age 78)

s, New York City, U.S.
lican (1987-19989,
2011, 2012-present)
1(1999-2001)

ratic (2001-2009)
ndent (2011-2012)

Telnitkova
77: div. 1990)

Learning target:

) p(w|Ty,. .., Ti1
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History of Language Models

* Language models started to be built with statistical methods
Sparsity
Poor generalization

v

Before 2000s

!

Statistical language models
(e.g., n-gram language models)
10/53
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History of Language Models

* Theintroduction of neural networks into language models mitigated sparsity and
improved generalization

. Neural networks for language models were small-scale and inefficient for a long time
. Task-specific architecture designs required for different NLP tasks
. These language models were trained on individual NLP tasks as task-specific solvers

(Simple & shallow) neural language models
(e.g., word2vec, RNNs, CNNs)

Before 2000s 2000s — 2018

!

Statistical language models
(e.g., n-gram language models)

v
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History of Language Models

* Transformer became the dominant architecture for language modeling; scaling up
model sizes and (pretraining) data enabled significant generalization ability

. Transformer demonstrated striking scalability and efficiency in sequence modeling
. One pretrained model checkpoint fine-tuned to become strong task-specific models
. Task-specific fine-tuning was still necessary

(Simple & shallow) neural language models
(e.g., word2vec, RNNs, CNNs)

Before 2000s 2000s — 2018 2018 — 2022

} }

Statistical language models (Small) pretrained neural models
(e.g., n-gram language models) (e.g., BERT, GPT-2, T5)

v
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History of Language Models

Generalist large language models (LLMs) became the universal task solvers and
replaced task-specific language models

. Real-world NLP applications are usually multifaceted (require composite task abilities)
. Tasks are not clearly defined and may overlap
. Single-task models struggle to handle complex tasks

(Simple & shallow) neural language models Large language models
(e.g., word2vec, RNNs, CNNs) (e.g., ChatGPT, GPT-4)
Before 2000s 2000s — 2018 2018 — 2022 2022 — Now

! }

Statistical language models (Small) pretrained neural models
(e.g., n-gram language models) (e.g., BERT, GPT-2, T5)
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Vector Semantics

Represent a word as a point in a multi-dimensional semantic space

A desirable vector semantic space: words with similar meanings are nearby in space

not good
bad
to by s dislike whist
that now incredibly bad
are worse
a i you
than with is
very good incredibly good
amazing fantastic
terrific nice wonderful

good

2D visualization of a desirable high-dimensional vector semantic space

Figure source: https://web.stanford.edu/~jurafsky/slp3/6.pdf
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How to Represent Words as Vectors?

« Given avocabulary ¥V = {good, feel, I, sad, cats, have}
* Most straightforward way to represent words as vectors: use their indices
* One-hot vector: only one high value (1) and the remaining values are low (0)
* Each word is identified by a unique dimension
* Issue? Fail to capture word semantics!
Vgood = [1,0,0,0,0,0]
vieel = [0,1,0,0,0,0]
vr = [0,0,1,0,0,0]
Vsad = [0,0,0,1,0,0]
Veats = [0,0,0,0,1,0]
Vhave = [0,0,0,0,0, 1]



il UNIVERSITYsVIRGINIA

Distributional Hypothesis

Words that occur in similar contexts tend to have similar meanings
A word’s meaning is largely defined by the company it keeps (its context)

Example: suppose we don’t know the meaning of “Ong choy” but see the following:
. Ong choy is delicious sautéed with garlic
. Ong choy is superb over rice
. ... ong choy leaves with salty sauces

And we’ve seen the following contexts:

. ... spinach sautéed with garlic over rice
. ... chard stems and leaves are delicious
. ... collard greens and other salty leafy greens

Ong choy = water spinach!

Example source: https://web.stanford.edu/~jurafsky/slp3/slides/vectorsemantics2024.pdf 17/53
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Learning Word Embeddings

 Assume a large text collection (e.g., Wikipedia)
* Hope to learn similar word embeddings for words occurring in similar contexts
* Construct a prediction task: use a center word’s embedding to predict its contexts!

* Intuition: If two words have similar embeddings, they will predict similar contexts,
thus being semantically similar!

Predicted contexts Predicted contexts

sautéed sautéed

/ garlic / garlic
Vong choy i: rice Uspinach i: rice
salty

salty

leaves leaves

18/53
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Word Embedding Is Self-Supervised Learning

Self-supervised learning: a model learns to predict parts of its input from other parts

of the same input
is
/ superb
§ over
rice

Input: Ong choy is superb over rice Prediction task:  Ong choy

max H pe(clw)
(w,c)ED :n ““
S "
context word center word

po(clw) = PV Vo)
0 Zc'elw exp(ver - Vy)

19/53



'A‘

UNIVERSITYs VIRGINIA

Word Similarity

2.5+

2.0 4

1.5

1.0 A

0.5

0.0

-0.5 A

-1.0 4

-1.5 -

*  Measure word similarity with cosine similarity between embeddings cos(vu, , Vw,)
* Higher cosine similarity = more semantically close v-w ZN VW,
cos(v,w) = = =l
2D Visualization of Word Embeddings |’U| |’LU|
o bugs &Pedbug Zz— Zz—l w
o pleasant
® unpleasant
° :crlznce ‘mosquito
‘ﬂea
V|oI| mandolin rantula
dﬂ‘r‘?e ta‘matgéot
‘harp
‘symphony
‘dance art
<Poetry “ " literatur
hysfcs - nolo
py;wg Y nasty
‘peace failure ‘
I e
‘iOY 290Ny
_'2 -1 (’) 1 2I
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Word Analogy

*  Word embeddings reflect intuitive semantic and syntactic analogy
e Example: man : woman :: king : ? Vqueen ~ Uwoman — Uman + Uking

e General case: find the word suchthata:b::c:?

A

*  Find the word that maximizes the cosine similarity

w = arg max cos(vp — Vg + Ve, Uy ) "\
w’ eV O “~.~* woman
_ (Vb — Vo + V) - Vu king e % @
= arg max N g
w' eV |Vp — Vg + Ve||Vy]| O
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* Sequence Modeling and Recurrent Neural Networks (RNNs)
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Sequence Modeling: Overview

* Use deep learning methods to understand, process, and generate text sequences

* Goals:
. Learn context-dependent representations
. Capture long-range dependencies
. Handle complex relationships among large text units

* Sequence modeling architectures are based on deep neural networks (DNNs)!

. Language exhibits hierarchical structures (e.g., letters form words, words form phrases,
phrases form sentences)

. DNNs learn multiple levels of abstraction across layers, allowing them to capture low-level
patterns (e.g., word relations) in lower layers and high-level patterns (e.g., sentence
meanings) in higher layers

. Each layer in DNNs refines the word representations by considering contexts at different
granularities (shorter & longer-range contexts), allowing for contextualized understanding of
words and sequences
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Simple Neural Language Model

books

Instantiate Feedforward network (FFN) as a neural language model laptops
Output distribution i i
y = softmax(Uh) —=

a Z00

Hidden layer u

» h=0c(Wx+b) (eeeeececeeeoeo|

w

(0000 0000 0000 0000)|

Word embeddings T T T '[

input layer hidden layer output layer the students opened their
2D () NE) 2
2-layer FFN

2-layer neural language model

Figure source: https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnim.pdf 24/53
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Limitations of (Simple) Neural Language Models

e  Context window is fixed

* Increasing N will enlarge W

Concatenated word embeddings
=20 @ a...¢x®) c RN

books

laptops

a Z00

U
(ee0000000000)|
Fixed size - W e Rd'x(N-d)

(0000 0000 0000 0000)|

T

the  students opened their
e 22 23 z®

c R¢ c R? € R4 c R4
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Recurrent Neural Network (RNN) Overview

books

A neural language model that can process inputs of arbitrary lengths laptops
books
laptops
Simple neural

Recurrent neural

language model language model

a 200

u Wi,

Wi,

U

h(2) h(S) h#)

Different words (eeeeeeeeeee0)

multiplied with
different subparts in W w Reuse the same
weights for all words

(0000 0000 0000 0000)

LT

—{000 ]?[oooo
E)[oooo]g{oooo
—>[0000]§>[0000

E E
the  students opened their the  students opened
@ (2 23 @) ey 22 )

Figure source: https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture05-rnnlm.pdf

iw
To

their
@

o
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RNN Computation

books
 Hidden states in RNNs are computed based on laptops

. The hidden state at the previous step (memory)
. The word embedding at the current step

previous word (time step) current word (time step)

«  Parameters: : e
= Wy weight matrix for the recurrent connection " B ) o~ u
= W, :weight matrix for the input connection (@) @) ®
Wh (©) Wh (0] Wh (]
[ (] [
R — W hE D L wop® ° ° °
? ( e T Wea ) Iwe IWE IWE
L T . ° 5 °
Hidden states at the Word embedding of the : | : ‘ :
6) 6) 6)

Te

the  students opened their
2D 22 2(3) @

&
&
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RNN for Language Modeling

e Recall that language modeling predict the next word given previous words
p(x)=p(zM)p x(2)‘x(1) ceep x(")\x(l), oz = Hp x(t)|x(1), Gy
[+ (x1) - )11 ( )
*  How to use RNNs to represent p (x(t)|w(1), . -,x(t_l)) ?
Output probability at (t-1) step: y(t—l) = softmax (Uh(t_l)) = f (:1:(1), ce ,m(t_z), :I:(t_l))
h®=D is a function of Rt=2) and xt~D : Rt~ — 4 (Whh(t_2) + Wew(t_l)) =g (h(t_2), m(t_1)>

h(=2 is a function of Rt~ and x(t=2) ;. p(t=2) _ & (Whh,(t_3) + Wea:(t_2)) =g (h(t_3), m(t—2))

h® is a function of A® and x® : B = & (Whh(o) + We:n(l)) =g (h(o), m(l))
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Transformer
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Transformer: Overview

* Transformer is a specific kind of sequence modeling architecture (based on DNNs)
e Use attention to replace recurrent operations in RNNs

* The most important architecture for language modeling (almost all LLMs are based on
Transformers)!

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* f Lukasz Kaiser*
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Tllia Polosukhin*
illia.polosukhin@gmail.com

Transformer: https://arxiv.org/pdf/1706.03762
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Transformer vs. RNN

Transformer
RNN (self-attention computations)
(recurrent computations) Nesdi iokan |0?g n thanks all
) )
Next word long and thanks for all Iﬁgg:ﬁr?: [.o .og ts Iog Iog’ [Iog
| | | | | eaa® (U7 W)\ \\9/
Loss  [=10g fions] (10 Jand [E1ogdmans] EI0gTtor | [=10gJan] p 'I 4
d =
I?I
Softmax over [ .]ln, i wli ol o e
Vocabulary C’_L‘D Trgr:z;?cl:fr:er $
RNN h Blocks [
=i =) =)=\
Input ' ] 7 ] e
EmbeZdings @ @ $ @ @ o X4
So long and thanks for Inpu‘t e
Encoding /_E_\ /_IE /E\ /E\ /E\
Input tokens S Iong and thanks for

Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf
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Transformer: Motivation

e Parallel token processing
. RNN: process one token at a time (computation for each token depends on previous ones)
. Transformer: process all tokens in a sequence in parallel

* Long-term dependencies
. RNN: bad at capturing distant relating tokens (vanishing gradients)
. Transformer: directly access any token in the sequence, regardless of its position

* Bidirectionality
. RNN: can only model sequences in one direction
. Transformer: inherently allow bidirectional sequence modeling via attention
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Transformer Layer

Each Transformer layer contains the following important components:
. Self-attention
. Feedforward network
. Residual connections + layer norm

A
o

Add & Normalize

Transformer layer C
4

POSITIONAL
ENCODING
x+ (I x [

Figure source: https://jalammar.github.io/illustrated-transformer/
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Self-Attention: Intuition

Attention: weigh the importance of different words in a sequence when processing a

specific word

“When I'm looking at this word, which other words should | pay attention to in order to
understand it better?”

Self-attention: each word attends to other words in the same sequence

Example: “The chicken didn’t cross the road because it was too tired”

Suppose we are learning attention for the word “it”

With self-attention, “it” can decide which other words in the sentence it should focus on to
better understand its meaning

Might assign high attention to “chicken” (the subject) & “road” (another noun)

Might assign less attention to words like “the” or “didn’t”
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Self-Attention: Example

Derive the center word representation as a
weighted sum of context representations!

Center word representation Context word representation

v, A

a; — E QG , E OG5 =1

acjea: : .’EjE:B :
v v

Attention score i — j, summed to 1

Context word (key) Center word (query)

The The
_ chicken
didn’t didn’t
Cross Cross
the the
road road
because because
it Current word = “it”
was was

too too
tired tired

Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf 35/53
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Self-Attention: Attention Score Computation

* Attention score is given by the softmax function over vector dot product

a; = E Qi Ly, E Qg5 = 1

TjExT TjEx

Q5 = Softmax(a:l- . mj)

.
.......
. L
. 0
......
. L
.
----

Center word (query) representation Context word (key) representation
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Self-Attention: Query, Key, and Value

Each word in self-attention is represented by three different vectors
. Allow the model to flexibly capture different types of relationships between tokens

Query (Q):

. Represent the current word seeking information about

Key (K):
. Represent the reference (context) against which the query is compared

Value (V):
. Represent the actual content associated with each token to be aggregated as final output

37/53
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Self-Attention: Query, Key, and Value

Each self-attention module has three weight matrices applied to the input word vector to
obtain the three copies of representations

— O query representation

q, = x;W¢
we
Input word representation

key representation

value representation

38/53
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Self-Attention: Overall Computation

* Input: single word vector of each word &;
* Compute Q, K, V representations for each word:
q; = iUz'WQ ki, = CL‘Z-WK vV, = wiWV

 Compute attention scores with Q and K
. The dot product of two vectors usually has an expected magnitude proportional to v/d
. Divide the attention score byv/d to avoid extremely large values in softmax function

Q5 = Softmax <qz—‘7)
Vd Dimensionality of g and k

* Sum the value vectors weighted by attention scores

a; = E Ckij’vj

Tr;cx
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Self-Attention: lllustration

e Example: an input sequence with three words [xq, x5, X3] 8 Output of self-attention

* Suppose we want to compute the self-attention for x5 @

Sum the weighted value vectors

Obtain attention scores via softmax aj; ,
N © ) "))
Divide the dot product by X 7$
vector dimension Jdi Jai Ve
) Compare x3’s query with
N the keys of all words
— ) — 4
Compute query, key, value @@ @@ @@
X1 X2 X3

~J0 x, ~J0  x, 6~

Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf 40/53
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Unidirectional Self-Attention

* Self-attention can capture context dependencies

* Unidirectional (or causal) self-attention:
. Each position can only attend to earlier positions in the sequence (including itself).
. Transformers with unidirectional self-attention are called Transformer decoders (e.g., GPT)
. Use case: natural language generation (NLG) where the model generates

output sequentially
upper-triangle portion set to -inf

ha hp hco every token attends to

its previous tokens qi*k1| —00 | —o0 | —oo

Unidirectional Qi = Softmax (

q; - kj q2-k1[q2-k2| —oo | —co
Self-Attention

Vd

] ce q4-k1|q4-k2|q4-k3 |q4-k4

q3+k1|q3°k2|q3°k3| —oco

~
Pl - — - ———

__J
—
vy}
—/
—
O
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Large language models (LLMs)
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Pretraining: Motivation

* Before pretraining became prevalent in NLP, most NLP models were trained from
scratch on downstream task data

e Data scarcity: many NLP tasks do not have large labeled datasets available (costly to
obtain)

* Poor generalization: models trained from scratch on specific tasks do not generalize
well to unseen data or other tasks

e Sensitivity to noise and randomness: models are more likely to learn spurious
correlations or be affected by annotation errors/randomness in training
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Pretraining: Motivation

* There are abundant text data on the web, with rich information of linguistic features
and knowledge about the world

e Learning from these easy-to-obtain data greatly benefits various downstream tasks
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Pretraining: Multi-Task Learning

In my free time, | like to {run, banana} (Grammar)
| went to the zoo to see giraffes, lions, and {zebras, spoon} (Lexical semantics)

The capital of Denmark is {Copenhagen, London} (World knowledge)

| was engaged and on the edge of my seat the whole time. The movie was {good, bad}
(Sentiment analysis)

The word for “pretty” in Spanish is {bonita, hola} (Translation)
3+8+4={15, 11} (Math)

Examples from: https://docs.google.com/presentation/d/1hQUd3pF8 2Gr20bc89LKimHLODIH-
uof9MOyYFVd3FA4/edit#tslide=id.g28e2e9aa709_0_1
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Transformer for Pretraining

* Transformer is the common backbone architecture for language model pretraining

* Efficiency: Transformer processes all tokens in a sequence simultaneously — fast and
efficient to train, especially on large datasets

e  Scalability: Transformer architectures have shown impressive scaling properties, with
performance improving as model size and training data increase (more on this later!)

* Versatility: Transformer can be adapted for various tasks and modalities beyond just
text, including vision, audio, and other multimodal applications
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Transformer Decoder Pretraining

* Decoder architecture is the prominent choice in large language models
* Pretraining decoders is first introduced in GPT (generative pretraining) models

* Follow the standard language modeling (cross-entropy) objective

N
1
5(0) = N Zlogpe(%\l‘l,@, e ,fEi—1)

=1
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GPT Series

 GPT-1(2018): 12 layers, 117M parameters, trained in ~1 week
* GPT-2(2019): 48 layers, 1.5B parameters, trained in ~1 month
 GPT-3(2020): 96 layers, 175B parameters, trained in several months

Model ;
Parameter N
..
L 4
*
® © o .

(175B) ,*°

GPT-1 GPT-2 et
(OlB) (1.53)--‘- -‘--lllll
2018 2019 2020 2023

Papers: (GPT-1) https://cdn.openai.com/research-covers/language-unsupervised/language understanding paper.pdf

(GPT-2) https://d4mucfpksywv.cloudfront.net/better-language-models/language models are_unsupervised multitask learners.pdf
(GPT-3) https://arxiv.org/pdf/2005.14165.pdf 48/53
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Why Scaling Up Language Models? Emergent Ability

* Larger models develop emergent abilities
. Skills or capabilities that were not explicitly learned but arise as a result of model capacity
. Larger models demonstrate surprising abilities in challenging tasks even when they were not
explicitly trained for them

* Emergent capabilities typically become noticeable only when the model size reaches a
certain threshold (cannot be predicted by small model’s performance)
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Performance vs. Model Scale
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Figure source: https://arxiv.org/pdf/2206.07682
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Lots of Ongoing Developments!

September 12,2024

Learning to Reason with LLMs

We are introducing OpenAl o1, a new large language model trained with
reinforcement learning to perform complex reasoning. o1 thinks before it answers
—it can produce a long internal chain of thought before responding to the user.

Contributions

OpenAl o1 ranks in the 89th percentile on competitive programming questions
(Codeforces), places among the top 500 students in the US in a qualifier for the USA Math
Olympiad (AIME), and exceeds human PhD-level accuracy on a benchmark of physics,
biology, and chemistry problems (GPQA). While the work needed to make this new model
as easy to use as current models is still ongoing, we are releasing an early version of this
model, OpenAl ol1-preview, forimmediate use in ChatGPT and to trusted APl users.

LLM agents for complex reasoning

Figure source: https://openai.com/index/learning-to-reason-with-llms/

Please fill out the vendor request form for
'Ant Equipment Co.' using data from either
the vendor spreadsheet or search portal tabs
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complete the form in window two.|
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LLM agents for computer use

Figure source: https://www.anthropic.com/news/3-5-models-and-computer-use
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NLP Courses at UVA

e (€S 4501 NLP: Undergraduate NLP course (introductory)
e (CS 6501 NLP: Graduate NLP course (advanced)
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Thank You!

Yu Meng
University of Virginia
yumeng5@virginia.edu
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