
Search in Games
Chen-Yu Wei

Turn-Based Two-Player Game

You choose one of the three bins. I choose a number from that bin. Your goal is

to maximize the chosen number.

A

-50 50

B

1 3

C

15 -5

If I am

● adversarial

● random

● benign/cooperative

Turn-Based Two-Player Zero-Sum Games

MAX

MIN

-50 50 1 3 15 -5 Terminal state values

Turn-Based Two-Player Zero-Sum Games

MAX

MIN

-50 50 1 3 15 -5 Terminal state values

-50 1 -5

1

Minimax values for

non-terminal states

Example: PACMAN

-20 -8 -18 -5 -10 +4… … -20 +8

Example: Tic-Tac-Toe

Calculating Minimax Values

def value(state):

if the state is a terminal state: return the state’s utility

if the next agent is MAX: return max-value(state)

if the next agent is MIN: return min-value(state)

def min-value(state):

initialize v = +∞
for each successor of state:

v = min(v, value(successor))

return v

def max-value(state):

initialize v = −∞
for each successor of state:

v = max(v, value(successor))

return v

The Minimax Policy

MAX

MIN

-50 50 1 3 15 -5

-50 1 -5

1

“Policy” is mapping from state to action. MAX Player’s minimax policy

MIN Player’s minimax policy “Minimax policy” is the optimal policy

against the most adversarial opponent.

Time / Space Complexity

● Same as DFS

● Time: O(bm)

● Space: O(bm)

● For chess

● b≈35, m≈100

● Too large to find the true minimax value/policy

Alpha-Beta Pruning and
Evaluation Functions

2 7 1 8

MAX

MIN

MAX

MIN

MAX

MIN

8

MAX

MIN

MAX

MIN ≤ 8

8

MAX

MIN

MAX

MIN ≤ 8

7

8

MAX

MIN

MAX

MIN = 7

7

≥ 7

8

MAX

MIN

MAX

MIN = 7

7

≥ 7

3

≤ 3

8

MAX

MIN

MAX

MIN = 7

7

= 7

3

≤ 3

≤ 7

8

MAX

MIN

MAX

MIN = 7

7

= 7

3

≤ 3

9

≤ 9

≤ 7

8

MAX

MIN

MAX

MIN = 7

7

= 7

3

≤ 3

9

≤ 9

≤ 7

8

8

MAX

MIN

MAX

MIN = 7

7

= 7

3

≤ 3

9

= 8

8

≥ 8

≤ 7

8

MAX

MIN

MAX

MIN = 7

7

= 7

3

≤ 3

9

= 8

8

≥ 8

≤ 7

8

MAX

MIN

MAX

MIN = 7

7

= 7

3

≤ 3

9

= 8

8

≥ 8

= 7

≥ 7

8

MAX

MIN

MAX

MIN = 7

7

= 7

3

≤ 3

9

= 8

8

≥ 8

= 7

≥ 7

1

≤ 1

8

MAX

MIN

MAX

MIN = 7

7

= 7

3

≤ 3

9

= 8

8

≥ 8

= 7

≥ 7

1

≤ 1

8

≤ 8

8

MAX

MIN

MAX

MIN = 7

7

= 7

3

≤ 3

9

= 8

8

≥ 8

= 7

≥ 7

1

≤ 1

8

≤ 8

9

8

MAX

MIN

MAX

MIN = 7

7

= 7

3

≤ 3

9

= 8

8

≥ 8

= 7

≥ 7

1

≤ 1

8

= 8

9

= 8

≤ 8

8

MAX

MIN

MAX

MIN = 7

7

= 7

3

≤ 3

9

= 8

8

≥ 8

= 7

≥ 7

1

≤ 1

8

= 8

9

= 8

9

≤ 9

≤ 8

8

MAX

MIN

MAX

MIN = 7

7

= 7

3

≤ 3

9

= 8

8

≥ 8

= 7

≥ 7

1

≤ 1

8

= 8

9

= 8

9

≤ 9

≤ 8

9

8

MAX

MIN

MAX

MIN = 7

7

= 7

3

≤ 3

9

= 8

8

≥ 8

= 7

≥ 7

1

≤ 1

8

= 8

9

= 8

9

= 9

9

≤ 8

≥ 9

8

MAX

MIN

MAX

MIN = 7

7

= 7

3

≤ 3

9

= 8

8

≥ 8

= 7

≥ 7

1

≤ 1

8

= 8

9

= 8

9

= 9

9

= 8

≥ 9

8

MAX

MIN

MAX

MIN = 7

7

= 7

3

≤ 3

9

= 8

8

≥ 8

= 7

= 8

1

≤ 1

8

= 8

9

= 8

9

= 9

9

= 8

≥ 9

Alpha-Beta Pruning

MAX

MIN

MAX

MIN n Maintain a value upper bound

(i.e., “≤”) that decreases over time

Maintain a value lower bound

(i.e., “≥”) that increases over time

Prune if there is inconsistency with ancestors

Alpha-Beta Pruning

def min-value(state , α, β):

initialize v = +∞

for each successor of state:

v = min(v, value(successor, α, β))

if v ≤ α return v

β = min(β, v)

return v

def max-value(state, α, β):

initialize v = -∞

for each successor of state:

v = max(v, value(successor, α, β))

if v ≥ β return v

α = max(α, v)

return v

α: MAX’s best option on path to root

β: MIN’s best option on path to root

Alpha-Beta Pruning

● The pruning has no effect on the minimax value computed for the root.

● Child ordering affects the efficiency

● If a MAX node finds a larger children value (or a MIN node finds a smaller children

value) quicker, then more time can be saved.

● With perfect ordering, the time complexity drops to O(bm/2)

● Doubles solvable depth

● Full search of, e.g., chess, is still hopeless

Resource Limits

● In realistic games, cannot search to leaves

● Solution: depth-limited search

● Search only to a limited depth

● At the last layer of the search, call the evaluation function

(heuristic function)

● Example

● Suppose we have 100 seconds, can explore

10K nodes / sec

● So can check 1M nodes per move

● - reaches about depth 8 – decent chess program

● Use iterative deepening for an anytime algorithm

? ? ? ?

-1 -2 4 9

4

min

max

-2 4

Evaluation Functions

● Evaluation functions score non-terminal nodes in depth-limited search

● E.g., weighted linear sum of features:

 where f1(s) = (num white queens – num black queens), etc.

● Evaluation function can provide guidance to expand most promising

nodes first (allowing alpha-beta pruning to prune more)

Expectimax

Two-Player Turn-Based Game

-50 50 1 3 15 -5

MAX

MIN -50 1 -5

Two-Player Turn-Based Game

-50 50 1 3 15 -5

MAX

Chance 0 2 5

Expectimax Search

● When do we have randomness?
● Explicit randomness: rolling dice

● Unpredictable opponents: the ghosts respond randomly

● Actions can fail: when moving a robot, wheels might slip

● Values now reflect average-case (expectimax) outcomes, not worst-case

(minimax) outcomes.

Reminder: Probabilities

● Example: Traffic on freeway
● Random variable: T = whether there’s traffic

● Outcomes: T in {none, light, heavy}

● Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

0.25 0.50 0.25

0.25 0.50 0.25Probability:

20 min 30 min 60 minTime:
35 minx x x+ +

Expectimax

def value(state):

if the state is a terminal state: return the state’s utility

if the next agent is MAX: return max-value(state)

if the next agent is EXP: return exp-value(state)

def exp-value(state):

initialize v = 0

for each successor of state:

 p = probability(successor)

v += p * value(successor)

return v

def max-value(state):

initialize v = -∞

for each successor of state:

v = max(v, value(successor))

return v

Expectimax

12 9 6 03 2 154 6

Depth-Limited Expectimax

…

…

492 362 …

400 300

Estimate of true

expectimax value

(which might

require a lot of

work to compute)

What Probabilities to Use?

● In expectimax search, we have a probabilistic model of how the opponent

(or environment) will behave.

● Model could be a simple uniform distribution (roll a die)

● Model could be sophisticated and require a great deal of computation

● We have a chance node for any outcome out of our control: opponent or environment

● For now, assume each chance node magically comes along with

probabilities that specify the distribution over its outcomes

● You’ll get more ideas about how to produce such probabilistic models later

in the semester when we talk about “learning from data”

Quiz: Informed Probabilities

● Suppose you know that your opponent is running a depth-2 minimax,

using the result 80% of the time, and moving randomly otherwise

● Question: What tree search should you use?

0.1 0.9

● Answer: Expectimax!

● To figure out EACH chance node’s

probabilities, you have to run a simulation of

your opponent

● This kind of thing gets very slow very quickly

● Minimax search, on the other hand, has the

nice property that it all collapses into one

game tree

The Dangers of Optimism and Pessimism

Dangerous Optimism
Assuming chance when the world is adversarial

Dangerous Pessimism
Assuming the worst case when it’s not likely

Assumptions vs. Reality

Adversarial Ghost Random Ghost

Minimax

Pacman

Won 5/5

Avg. Score: 483

Won 5/5

Avg. Score: 493

Expectimax

Pacman

Won 1/5

Avg. Score: -303

Won 5/5

Avg. Score: 503

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble

Ghost used depth 2 search with an eval function that seeks Pacman

Random Ghost – Expectimax Pacman

Adversarial Ghost – Minimax Pacman

Adversarial Ghost – Expectimax Pacman

Random Ghost – Minimax Pacman

Monte-Carlo Tree Search

Issues of the Search Methods We Introduced So Far

● When branching factor (i.e., number of possible actions) is large, the search

cannot go deep

● In Go, the branching factor could be > 300

● 𝛼-𝛽 search would be limited to 4 or 5 layers

● Sometimes it’s difficult to define a good evaluation function

Monte-Carlo Tree Search (MCTS)

● Selective search

● Do not try to explore all possible actions

● Only explore parts of the tree that has more potential to improve for the root

● Evaluation by rollouts

● Play multiple games to termination from a state (using some rollout policy), and

evaluate through win rate

Monte-Carlo Tree Search (MCTS)

Monte-Carlo Tree Search (MCTS)

Selection

● Starting from the root node, execute tree

policy until reaching a leaf node

● One effective tree policy is given by

UCB1, which chooses an action based

on

𝑊(𝑛)

𝑁(𝑛)
+ 𝐶 ×

log 𝑁(parent(𝑛))

𝑁(𝑛)

37/100

60/79 1/10 2/11

16/53 6/6 3/4

10/18 0/3 0/3

3/26

27/35

𝑊(𝑛): total #wins of all playouts that went through node 𝑛
𝑁(𝑛): total #playouts that went through node 𝑛

Monte-Carlo Tree Search (MCTS)

Expand

● On some iterations, grow the search tree from

selected leaf nodes by adding one or more

child nodes

37/100

60/79 1/10 2/11

16/53 6/6 3/4

10/18 0/3 0/3

3/26

27/35

0/0

Monte-Carlo Tree Search (MCTS)

Simulation

● From the selected or expanded node (if

any), execute the rollout policy to the

end of the game

● Rollout policy

● Could be heuristics, such as “consider

capture moves” in chess

● Could be learned through neural networks

by self-play

37/100

60/79 1/10 2/11

16/53 6/6 3/4

10/18 0/3 0/3

3/26

27/35

0/0

Black wins

Execute rollout policy

Monte-Carlo Tree Search (MCTS)

Backup

● Update the #wins and #playouts on nodes

along the tree policy

37/101

61/80 1/10 2/11

16/54 6/6 3/4

10/18 0/3 0/3

3/26

28/36

0/1

Monte-Carlo Tree Search (MCTS)

Finally,

● Choose the action from the root node that has the largest visit count.

● Why not the action with the highest win rate?

● After the opponent’s move, start the same procedure from the new state

(can keep the statistics from the previous state)

Application of MCTS in AlphaGo and AlphaGo Zero

Check Section 16.6 of https://www.andrew.cmu.edu/course/10-

703/textbook/BartoSutton.pdf

https://www.andrew.cmu.edu/course/10-703/textbook/BartoSutton.pdf
https://www.andrew.cmu.edu/course/10-703/textbook/BartoSutton.pdf

	Slide 1: Search in Games
	Slide 2
	Slide 3: Turn-Based Two-Player Game
	Slide 4: Turn-Based Two-Player Zero-Sum Games
	Slide 5: Turn-Based Two-Player Zero-Sum Games
	Slide 6: Example: PACMAN
	Slide 7: Example: Tic-Tac-Toe
	Slide 8: Calculating Minimax Values
	Slide 9: The Minimax Policy
	Slide 10: Time / Space Complexity
	Slide 11: Alpha-Beta Pruning and Evaluation Functions
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Alpha-Beta Pruning
	Slide 34: Alpha-Beta Pruning
	Slide 35: Alpha-Beta Pruning
	Slide 36: Resource Limits
	Slide 37: Evaluation Functions
	Slide 38: Expectimax
	Slide 39: Two-Player Turn-Based Game
	Slide 40: Two-Player Turn-Based Game
	Slide 41: Expectimax Search
	Slide 42: Reminder: Probabilities
	Slide 43: Expectimax
	Slide 44: Expectimax
	Slide 45: Depth-Limited Expectimax
	Slide 46: What Probabilities to Use?
	Slide 47: Quiz: Informed Probabilities
	Slide 48: The Dangers of Optimism and Pessimism
	Slide 49: Assumptions vs. Reality
	Slide 50: Random Ghost – Expectimax Pacman
	Slide 51: Adversarial Ghost – Minimax Pacman
	Slide 52: Adversarial Ghost – Expectimax Pacman
	Slide 53: Random Ghost – Minimax Pacman
	Slide 54: Monte-Carlo Tree Search
	Slide 55: Issues of the Search Methods We Introduced So Far
	Slide 56: Monte-Carlo Tree Search (MCTS)
	Slide 57: Monte-Carlo Tree Search (MCTS)
	Slide 58: Monte-Carlo Tree Search (MCTS)
	Slide 59: Monte-Carlo Tree Search (MCTS)
	Slide 60: Monte-Carlo Tree Search (MCTS)
	Slide 61: Monte-Carlo Tree Search (MCTS)
	Slide 62: Monte-Carlo Tree Search (MCTS)
	Slide 63: Application of MCTS in AlphaGo and AlphaGo Zero

