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Turn-Based Two-Player Game

You choose one of the three bins. I choose a number from that bin.  Your goal is 

to maximize the chosen number. 

A

-50     50

B

1     3

C

15     -5

If I am

● adversarial

● random

● benign/cooperative



Turn-Based Two-Player Zero-Sum Games
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Minimax values for 

non-terminal states



Example: PACMAN

-20 -8 -18 -5 -10 +4… … -20 +8



Example:  Tic-Tac-Toe



Calculating Minimax Values

def value(state):

if the state is a terminal state: return the state’s utility

if the next agent is MAX: return max-value(state)

if the next agent is MIN: return min-value(state)

def min-value(state):

initialize v = +∞
for each successor of state:

v = min(v, value(successor))

return v

def max-value(state):

initialize v = −∞
for each successor of state:

v = max(v, value(successor))

return v



The Minimax Policy

MAX

MIN

-50 50 1 3 15 -5

-50 1 -5

1

“Policy” is mapping from state to action. MAX Player’s minimax policy 

MIN Player’s minimax policy “Minimax policy” is the optimal policy 

against the most adversarial opponent.



Time / Space Complexity

● Same as DFS

● Time: O(bm)

● Space: O(bm)

● For chess

● b≈35, m≈100

● Too large to find the true minimax value/policy



Alpha-Beta Pruning and 
Evaluation Functions
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Alpha-Beta Pruning

MAX

MIN

MAX

MIN n Maintain a value upper bound 

(i.e., “≤”) that decreases over time

Maintain a value lower bound 

(i.e., “≥”) that increases over time

Prune if there is inconsistency with ancestors



Alpha-Beta Pruning

def min-value(state , α, β):

initialize v = +∞

for each successor of state:

v = min(v, value(successor, α, β))

if v ≤ α return v

β = min(β, v)

return v

def max-value(state, α, β):

initialize v = -∞

for each successor of state:

v = max(v, value(successor, α, β))

if v ≥ β return v

α = max(α, v)

return v

α: MAX’s best option on path to root

β: MIN’s best option on path to root



Alpha-Beta Pruning

● The pruning has no effect on the minimax value computed for the root. 

● Child ordering affects the efficiency

● If a MAX node finds a larger children value (or a MIN node finds a smaller children 

value) quicker, then more time can be saved. 

● With perfect ordering, the time complexity drops to O(bm/2) 

● Doubles solvable depth

● Full search of, e.g., chess, is still hopeless



Resource Limits

● In realistic games, cannot search to leaves

● Solution: depth-limited search

● Search only to a limited depth

● At the last layer of the search, call the evaluation function 

(heuristic function)

● Example

● Suppose we have 100 seconds, can explore 

10K nodes / sec

● So can check 1M nodes per move

● - reaches about depth 8 – decent chess program

● Use iterative deepening for an anytime algorithm

? ? ? ?

-1 -2 4 9

4

min

max

-2 4



Evaluation Functions

● Evaluation functions score non-terminal nodes in depth-limited search

● E.g., weighted linear sum of features:

    where  f1(s) = (num white queens – num black queens), etc.

● Evaluation function can provide guidance to expand most promising 

nodes first (allowing alpha-beta pruning to prune more)



Expectimax



Two-Player Turn-Based Game

-50 50 1 3 15 -5

MAX

MIN -50 1 -5



Two-Player Turn-Based Game

-50 50 1 3 15 -5

MAX

Chance 0 2 5



Expectimax Search

● When do we have randomness? 
● Explicit randomness: rolling dice

● Unpredictable opponents: the ghosts respond randomly

● Actions can fail: when moving a robot, wheels might slip

● Values now reflect average-case (expectimax) outcomes, not worst-case 

(minimax) outcomes.



Reminder: Probabilities

● Example: Traffic on freeway
● Random variable: T = whether there’s traffic

● Outcomes: T in {none, light, heavy}

● Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

0.25 0.50 0.25

0.25 0.50 0.25Probability:

20 min 30 min 60 minTime:
35 minx x x+ +



Expectimax

def value(state):

if the state is a terminal state: return the state’s utility

if the next agent is MAX: return max-value(state)

if the next agent is EXP: return exp-value(state)

def exp-value(state):

initialize v = 0

for each successor of state:

  p = probability(successor)

v += p * value(successor)

return v

def max-value(state):

initialize v = -∞

for each successor of state:

v = max(v, value(successor))

return v



Expectimax

12 9 6 03 2 154 6



Depth-Limited Expectimax

…

…

492 362 …

400 300

Estimate of true 

expectimax value 

(which might 

require a lot of 

work to compute)



What Probabilities to Use?

● In expectimax search, we have a probabilistic model of how the opponent 

(or environment) will behave.

● Model could be a simple uniform distribution (roll a die)

● Model could be sophisticated and require a great deal of computation

● We have a chance node for any outcome out of our control: opponent or environment

● For now, assume each chance node magically comes along with 

probabilities that specify the distribution over its outcomes

● You’ll get more ideas about how to produce such probabilistic models later 

in the semester when we talk about “learning from data”



Quiz: Informed Probabilities

● Suppose you know that your opponent is running a depth-2 minimax, 

using the result 80% of the time, and moving randomly otherwise

● Question: What tree search should you use?  

0.1          0.9

● Answer: Expectimax!

● To figure out EACH chance node’s 

probabilities, you have to run a simulation of 

your opponent

● This kind of thing gets very slow very quickly

● Minimax search, on the other hand, has the 

nice property that it all collapses into one 

game tree



The Dangers of Optimism and Pessimism

Dangerous Optimism
Assuming chance when the world is adversarial

Dangerous Pessimism
Assuming the worst case when it’s not likely



Assumptions vs. Reality

Adversarial Ghost Random Ghost

Minimax 

Pacman

Won 5/5

Avg. Score: 483

Won 5/5

Avg. Score: 493

Expectimax 

Pacman

Won 1/5

Avg. Score: -303

Won 5/5

Avg. Score: 503

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble

Ghost used depth 2 search with an eval function that seeks Pacman



Random Ghost – Expectimax Pacman



Adversarial Ghost – Minimax Pacman



Adversarial Ghost – Expectimax Pacman



Random Ghost – Minimax Pacman



Monte-Carlo Tree Search



Issues of the Search Methods We Introduced So Far

● When branching factor (i.e., number of possible actions) is large, the search 

cannot go deep 

● In Go, the branching factor could be > 300

● 𝛼-𝛽 search would be limited to 4 or 5 layers

● Sometimes it’s difficult to define a good evaluation function 



Monte-Carlo Tree Search (MCTS)

● Selective search

● Do not try to explore all possible actions

● Only explore parts of the tree that has more potential to improve for the root

● Evaluation by rollouts

● Play multiple games to termination from a state (using some rollout policy), and 

evaluate through win rate



Monte-Carlo Tree Search (MCTS)



Monte-Carlo Tree Search (MCTS)

Selection

● Starting from the root node, execute tree 

policy until reaching a leaf node

● One effective tree policy is given by 

UCB1, which chooses an action based 

on 

𝑊(𝑛)

𝑁(𝑛)
+ 𝐶 ×

log 𝑁(parent(𝑛))

𝑁(𝑛)
 

37/100

60/79 1/10 2/11

16/53 6/6 3/4

10/18 0/3 0/3

3/26

27/35

𝑊(𝑛):  total #wins of all playouts that went through node 𝑛
𝑁(𝑛):  total #playouts that went through node 𝑛



Monte-Carlo Tree Search (MCTS)

Expand

● On some iterations, grow the search tree from 

selected leaf nodes by adding one or more 

child nodes

37/100

60/79 1/10 2/11

16/53 6/6 3/4

10/18 0/3 0/3

3/26

27/35

0/0



Monte-Carlo Tree Search (MCTS)

Simulation

● From the selected or expanded node (if 

any), execute the rollout policy to the 

end of the game

● Rollout policy

● Could be heuristics, such as “consider 

capture moves” in chess

● Could be learned through neural networks 

by self-play

37/100

60/79 1/10 2/11

16/53 6/6 3/4

10/18 0/3 0/3

3/26

27/35

0/0

Black wins

Execute rollout policy



Monte-Carlo Tree Search (MCTS)

Backup

● Update the #wins and #playouts on nodes 

along the tree policy

37/101

61/80 1/10 2/11

16/54 6/6 3/4

10/18 0/3 0/3

3/26

28/36

0/1



Monte-Carlo Tree Search (MCTS)

Finally, 

● Choose the action from the root node that has the largest visit count.

● Why not the action with the highest win rate?  

● After the opponent’s move, start the same procedure from the new state 

(can keep the statistics from the previous state)



Application of MCTS in AlphaGo and AlphaGo Zero

Check Section 16.6 of https://www.andrew.cmu.edu/course/10-

703/textbook/BartoSutton.pdf 

https://www.andrew.cmu.edu/course/10-703/textbook/BartoSutton.pdf
https://www.andrew.cmu.edu/course/10-703/textbook/BartoSutton.pdf
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