Search
Chen-Yu Wel

Question

A farmer wants to get his cabbage, goat, and wolf across a river. He has a boat that only

holds two. He cannot leave the cabbage and goat alone or the goat and wolf alone. How many
river crossings does he need?

- no solution

https://stanford-cs221.github.io/autumn2023-extra/modules/search/modeling.pdf

Model the Problem

How many different “states”?
How many different “actions™?

Farmer

Cabbage

F>
FC>
FG>
FWp>

oat Wolf

F<
FC«
FG«
FW«

Build a Search Tree

W||FC

CC|IFW

FCOW||
F | Fopl FWe:1
CW‘HF
F<3:1
FCV'V||
FC>:1 FWp:1
W|FC’ E||F W
Fal FGal Fa:l FGal
FW||(; F‘WHC FC|| KN F(‘: W
FWD:l FCIE>:1
|I;CW ||F'CW
F<;:1 Fdl:l
F |'CW F H'CW
F ‘r>:l F ID:l
||FC‘ W ||FC' w

Search Problem

State space

Initial state

Goal test: Given a state, return whether the state is a goal

Action

Successor function: Given current state and action, return the new state
(The cost of an action)

Example: PACMAN

Eat all dots

States: {(X,y), dot booleans}
Actions: NSEW
Successor: update location and possibly a dot boolean

Goal test: dots all false

SCORE:

Go to some destination

States: (Xx,y) location

Actions: NSEW

Successor: update location only
Goal test: is (x,y)=END

Example: SAINT (Slagle, 1961) (Ca

Symbolic Integrator

x4 . . .) .) i

| dc = 1 tan’(arcsin x) — tan(arcsin x) + arcsin x - T S
2572 cot ™ ydy XS

(1 - r) 3 J ' J ok

States: symbolic expression [+ [ree
Actions: “common techniques”
Successor: the new expression after applying the technique 1
Goal test: whether the expression is in “standard form”

/ T ™ Integration by parts

“‘common technique” examples:
e [cf(x)dx =c [f(x)dx
e [f(tanx)dx = [f(y)zdy

1+y
- If seeing 1 — x2, then substitute x = sin y

z= tan (w)

Example: Machine translation

Translate “/R#FIE” to English

States: current word sequence

Actions: the next word
Successor: the concatenation of current sequence and next word
Goal test: whether the current sequence means the same as {/R#FIE

Why is you
Why is Why is |
Why < Why are Why are you

Why are |

Topics

e BFS
e DFS
e UCS (Dijkstra Algorithm)

e Difference with DSA2:

e The state space is exponentially large, and it's unlikely we’ll store the whole state
space in memory

General Framework

/State Space Graph \

State Space and Search Tree

Each NODE in in the
search tree is an entire
PATH in the state space

graph.

We construct both on
demand — and we
construct as little as
possible.

Search Tree

S
————
d e p
————— -, U
C e h r (0]
1 _— S 1
a r p q f
/\ 1 L} /\
p f A
L} /\
q c G a
a

A General Framework

Expanded « {}
Frontier « {initial_state }
While Frontier Is not empty:

Choose a node s from Frontier Q@

For all action a: M
s’ « succ(s, a)

If s" has not been reached e

Put s’ in Frontier

Move s to Expanded ©) All nodes that are nqt in
Expanded or Frontier

/

Nodes are divided into 3 groups: Expanded, Frontier, and Unreached.

(0) Place the initial state in Frontier

(1) Choose a node s from Frontier

(2) Move all unreached successors of s to Frontier

(3) Move s to Expanded

(1) Choose a node s from Frontier

(2) Move all unreached successors of s to Frontier

(3) Move s to Expanded

(1) Choose a node s from Frontier

@ L
o

(2) Move all unreached successors of s to Frontier

@ L
o

(3) Move s to Expanded

@ L
o

(1) Choose a node s from Frontier

(2) Move all unreached successors of s to Frontier

(3) Move s to Expanded

Implementation

Choose and then remove it

Expanded « {}
Frontier « {initial_state }
While Frontier Is not empty:

Choose a node s from Frontier

For all action a:
s’ « succ(s,a)
If s" has not been reached:
Put s" in Frontier

Move s to Expanded

Frontier ¢ {initial_state }
While FExontier is not empty:

Pop a node s from Frontier

For all action a:
s’ « succ(s,a)
If not Reached|s’]:
Put s’ in Frontier
Reached[s’] « True

Termination When Goal i1s Encountered

Frontier « {initial_state }
While Frontier Is not empty:

Pop a node s from Frontier
If s Is a goal state, terminate

For all action a:
s’ « succ(s,a)
If not Reached|s’]:

Put s’ in Frontier
Reached[s'] « True

Frontier « {initial_state }
While Frontier is not empty:

Pop a node s from Frontier

For all action a:
s’ « succ(s,a)
If not Reached[s]:
If s" is a goal state, terminate
Push s’ to Frontier
Reached[s’] « True

Late Goal Test

Early Goal Test

Termination When Goal i1s Encountered

e Early Goal Test allows guicker termination when a goal is found.
e Breadth First Search
e Depth First Search

e However, when actions are associated with costs and we want to find a
minimum cost solution (i.e., cost-sensitive), we may have to use the
Late Goal Test.

e Uniform Cost Search (Dijkstra Algorithm)

Uninformed Search

DFS and BFS

Depth First Search Breadth First Search

DFS and BFS

Frontier « {initial_state }
While Frontier is not empty:

Pop a node s from Frontier

For all action a:
s’ « succ(s, a)
If not Reached]s’]:

differ here

If s’ is a goal state, terminate

Push s’ to Frontier
Reached[s'] « True

DFS

Frontier « {initial_state }
While Frontier is not empty:

Pop the newest node s from Frontier

For all action a:
s’ « succ(s, a)
If not Reached]s’]:
If s’ is a goal state, terminate
Push s’ to Frontier
Reached[s'] « True

DFS

DFS

DFS

DFS

DFS

DFS

DFS

DFS

DFS

DFS

DFS

DFS

BFS

Frontier « {initial_state }
While Frontier is not empty:

Pop the oldest node s from Frontier

For all action a:
s’ « succ(s, a)
If not Reached]s’]:
If s’ is a goal state, terminate
Push s’ to Frontier
Reached[s'] « True

BFS

BFS

BFS

BFS

BFS

BFS

BFS

BFS

BFS

BFS

BFS

BFS

BFS

DFS vs. BFS

In what cases is DFS quicker to find the goal?
In what cases is BFS quicker to find the goal?

DFS vs. BFS

Does DFS / BFS find the goal with the
smallest depth?

DFS vs. BFS

Suppose there exists a goal at layer < d.
What is the time complexity for DFS / BFS

to find a goal?

6(:5:0@ n bb* R HM> _ O(Ed)

ond loanv’l
o .

m layers <

.D/ : O .J:)M
]"5 () b: branching factor

m: maximum depth
Goals at various depths

DFS vs. BFS

What's the maximum possible size of
Frontier in DFS / BFS?

8. O(4

m layers <

b: branching factor
m: maximum depth
Goals at various depths

DFS vs. BFS mo d

I N T

DFS b" bm
of

BFS bd b

So DFS can be more memory-efficient than BFS?
Yes ... but not with our current implementation

DFS

Frontier « {initial_state }
While Frontier is not empty:

Pop the newest node s from Frontier

For all action a:
s’ « succ(s, a)
If not Reached]s’]:
If s" is a goal state, terminate
Push s’ to Frontier
Reached[s’] « True

DFS

Frontier « {initial_state }
While Frontier is not empty:

For all action a:
s’ « succ(s, a)
If s’ is a goal state, terminate
Push s’ to Frontier

Pop the newest node s from Frontier

\

——__ Because we omit the check, the
algorithm may end up search in
same sub-trees multiple times.

A Memory Efficient Version of DFS for Acyclic Graphs

Previous DFS Example

DFS

Frontier « {initial_state }
While Frontier is not empty:

Pop the newest node s from Frontier

For all action a:
s’ « succ(s, a)
If s’ is not an ancestor of s:
If s" is a goal state, terminate
Push s’ to Frontier

A Memory Efficient Version of DFS for Cyclic Graphs

@/?Q\n

(Memory Efficient) DFS

handling cycles

(Memory Efficient) DFS

handling cycles

(Memory Efficient) DFS

handling cycles

Sd

(Memory Efficient) DFS

handling cycles

Sd

sab sac

(Memory Efficient) DFS

handling cycles

Sd

sab sac

(Memory Efficient) DFS

handling cycles

Sd

sab sac

sacd sace

(Memory Efficient) DFS

handling cycles

Sd

sab sac

sacd sace

sacdb

(Memory Efficient) DFS

handling cycles

Sd

sab sac

sacd sace

sacdb

(Memory Efficient) DFS

handling cycles

Sd

sab sac

sacd sace

sacdb sacef

(Memory Efficient) DFS

handling cycles

Sd

sab

Sac

sacd

sacdb

sace

sacef

sacefd

sacefG

DFS vs. BFS

| Tme | Spwe

DFS A §
m -
(memory-efficient version) b b
BFS K d
A . .

io(a(. b"‘)

lterative Deepening Search (IDS)

e |dea: get DFS’s space advantage with BFS'’s time advantage
)
e Run a DFS with depth limit 1. If no solution... &
e Run a DFS with depth limit 2. If no solution... &~

e Run a DFS with depth limit 3.

e Isn’t that wastefully redundant? L”’

Gﬁrﬁﬁﬂymépgns in the last level

e Branching factor 10, solution 5 deep:
e BFS: 10 + 100 + 1,000 + 10,000 + 100,000 = 111,110
e IDS: 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450

Which One is DFS/BFS?

Cost-Sensitive Search Problem

PO (e
O O
1 8 H
g 10
o)
P 4
g

3
15 0

Uniform Cost Search (Dijkstra)

Frontier « {initial_state }
While Frontier is not empty:

Pop a node s from Frontier
If s Is a goal state, then terminate

Choose the one with smallest g(s)

For all action a:
s’ « succ(s, a)
If not Reached[s’]:

Put s’ in Frontier
Reached[s'] « True

g(s) «min{ g(s"),g(s) + cost(s,a) }

g(x)

UCS

g(x)

UCS

g(x)

UCS

g(x)

16

UCS

g(x)

11

16

UCS

g(x)

11

16

UCS

g(x)

1

UCS

g(x)

UCS

UCS

x| g

UCS

UCS

g(x)

=

g(x)

=

UCS

DFS/BFS/UCS? (Deepilight blue = high/low cost)

DFS/BFS/UCS? (Deepilight blue = high/low cost)

DFS/BFS/UCS? (Deepilight blue = high/low cost)

Informed Search

Inefficiency of the Search Algorithms We See So Far

Inefficiency of the Search Algorithms We See So Far

(1 =x)
1
x = gin(y)
[sinty
73 dy .
J cos v . 'Il"-{‘.':}
——
’ z = tan (y/2)
-) i 2 .
f + I "
oot~ py tan* y dy 32 — @
| oot vy 1 . a+0 _.)4 | c{?ﬂ" .
T 2= tan (32)
” -;—'- L T - b g
| dx [' ;4 o - r -
A0+ 1424 e ok
i i y
4 -
cot ™ ydy tan” y dy 32 - 5 33
f S | {1+z7)(1=2)
I 75 — oz -
[1+71+) p
J y
//<' - Integration by parts ¥
>
il “a
‘\ .:2d: [u’:i
J I J1%2
w =z

z= 1an (w)

‘ dw dw

Heuristic Function

Suppose we have some “guess” for the distance from every node to the goal.
Can we leverage it to accelerate the search?

Heuristic Function

Having a heuristic function that accurately predict the distance might be impossible.
However, some function that correlates with the true distance may be easy to find.

Greedy Best-First Search

Suppose we have a heuristic function h(s).

Frontier « {initial_state }
While Frontier is not empty:

Pop a node s from Frontier «—— Choose the one with smallest h(s)

For all action a:
s’ « succ(s, a)
If not Reached|s’]:
If s’ is a goal state, then terminate
Push s’ to Frontier
Reached[s'] « True

Greedy Best-First Search

e |f the heuristic is good
e Take us directly to the goal
e Like a nicely-guided DFS

e |n the worst case

e Take us to the wrong way
e Like a badly-guided DFS

A* Search: Combining Greedy and UCS

Suppose we have a heuristic function h(s). Backward cost Forward cost
/
Frontier « {initial_state }
While Frontier is not empty:

Pop a node s from Frontier «<— Choose the one with smallest g(s) + h(s)
If s Is a goal state, then terminate

UCS is a special case with h(s) =0

For all action a:
s’ « succ(s, a)
If not Reached|s’]:
Push s’ to Frontier
Reached[s'] « True

g(s) «min{g(s"),g(s) + cost(s,a) }

A* Search

Evaluation functions:

Greedy (Greedy Best-First) Search: h(s)

Uniform Cost Search: g(s)

A* Search: g(s) + h(s)

Weighted A* Search: g(s) + w - h(s) for some w € (0,)

CeS*(S—QSr) = Co;-t(f,&-] where S‘=_Sq:,(,(_)',a>

A* Search

A* Search = Uniform Cost Search with modified cost

cost(s,a) = cost(s,a) + h(s") — h(s)

Proof 3
Let §(s) be the values of UCS with the modified loss

g(s) = co\s_tw) + cost(s, = s3) + -+ + cost(s,;;, = S)

= [cost(s; = s5) + h@) — h(s1)] + [cost(s, 2 s3) + h(sg) — hisy)] + -+ O\
+[cost(sy, = 5) +&(;L9)/— his,,)]

=@E)+ h(s) — hsy)

Initial state

UCS vs. A*

St
.Goa .;oal
UCS A*

UCS / Greedy Best-First / A* ?

UCS / Greedy Best-First / A* ?

UCS / Greedy Best-First / A* ?

Comparison

SCORE: 0 SCORE: 0 SCORE: 0

Greedy UCS A*

The Optimality of A* Corts

R
'/9

Definitions

A heuristic function h is called consistent if for all s and s’

h(s) < h(s") + cost(s — s') (triangle inequality)
and h(G) = 0 for any goal state G.

The Optimality of A*

Theorem

If the heuristic function Is consistent, then A* returns minimum-cost solution.

Proof A*is equivalent to UCS with cost(s = s"): = cost(s = s") + h(s") — h(s) = O
Total modified cost of any path s; > s, = - > s, > G iS Gusisfeuy

cost(s; = s,) + cost(s, = s3) + -+ + cost(s,, > G)

= |cost(s; = s,) + h(sy) — h(sy)] + [cost(s, = s3) + h(s3) — h(sy)] + -+
+|cost(s,;, = G) + h(G) — h(s,,)]

= cost(s; = s,) + cost(s, = s3) + -+ + cost(s,, = G) — h(sy) +h(G)

Since cost(s — s") = 0 by the consistency of h, A*’s optimality follows
UCS's optimality under non-negative cost.

The Optimality of A*

Definitions

A heuristic function h Is called admissible if for all s
0 < h(s) < h*(s)

where h*(s) is the true minimum distance from s to goal.

Theorems

If h IS consistent, then it is also admissible.

If the heuristic function is admissible and the graph is a tree, then A*
returns minimum-cost solution.

The Optimality of A*

For general graphs, we can treat it like a tree by omitting the condition “if not
Reached[s’]” in the graph search algorithm (like what we did for memory-
efficient DFS).

This allows us to apply the theorem in the previous page.

Admissible but not Consistent
b < 3) th(c)

Admissible but not Consistent

S (0+2)

Expanded = {}

Admissible but not Consistent

A (1+4) B(1+1)

Expanded = {S}

Admissible but not Consistent

S (0+2)

>

A (1+4) B(1+1)

|

C (3+1)

Expanded = {S, B}

Admissible but not Consistent

S (0+2)

>

A (1+4) B(1+1)

|

C (3+1)

l

G (6+0)

Expanded = {S, B, C}

Admissible but not Consistent

A (1+4) B (1+1)

o

-2+ C(3+1)

l

G (6+0)

Expanded = {S, B, C}

The Optimality of A*

Assume dist(s, G,) < dist(s, G,)

If admissible + tree, then A*

returns minimume-cost solution.

Proof by contradiction

> Path returned by A*
—_— - > Optlmal Path

By the tree structure, every node can only be
reached by its unique predecessor

§

n expanded earlier than G,

a, expanded earlier than G,

¢ f(a)) =[g(ay) + h(ay)J< g(ay) + h* (ay)

= dist(s, G,) < dist(s,G{) < = f(G1)
a, expanded earlier than G,

v f(az) = g(ay) + h(ay) < g(az) + h*(ay)
= dist(s, G,) < f(G;)

a,—1 €xpanded earlier than G,

G, expanded earlier than G4

Why “Admissibility”? (with an example)

h=6

We hope that the nodes on the shortest path are expanded before G is expanded.

"\ f
9(A) + h(A) < g(A) + h*(A) 9(G)
Shortest path length from Sto G Some path length from S to G

Admissibility ensures g(A) + h(A) < g(G)

Creating Admissible/Consistent Heuristics

e Most of the work in solving hard search problems is in coming up with
admissible/consistent heuristics.

e Often, admissible/consistent heuristics are solutions to relaxed problems,
where new actions are available.

e |Inadmissible heuristics are often useful too.

Example: 8 Puzzles

p2
>

Goal State

Start State

Average nodes expanded when the
optimal path has...

...4 steps |...8 steps ...12 steps
UCS 112 6,300 3.6 x 10°
#wrong tile 13 39 227
Manhattan 12 25 /3

Homework 1
Xuhui Kang, Haolin Liu

Deadline: 11:59PM, September 16

Homework 1

1. Choice Questions (10 points)
a. 14 questions.
b. Choice questions are 10 points in total and distributed evenly

2. Program Questions (25 points)

Homework 1: Choice Questions

o Each question may be either single-choice or multiple-choice. Read
carefully and select your answers accordingly.
e Grading:
o Full Credit: If all correct options are selected.
o Partial Credit: If only some correct options are selected, with no wrong options

chosen.
o No Credit: If any incorrect options are selected.

o Submission: Please answer directly on Gradescope. No need to submit a
separate PDF.

e Scores and correct answers will not be released immediately after
submission.

Homework 1: Coding

In this problem, you are going to help Pacman find paths in a maze world by
focusing on implementing search algorithms.

Autograder is given both offline and online in GradeScope. Your grade in
gradescope is the final grade.

SCORE: 922

Homework 1: Coding

Question 1 -- 4: Implement Depth First Search, Breadth First Search, Uniform
Cost Search, and A* algorithm. Your goal is to reach a target area.

5188 Pacman - X

SCORE: -108

Homework 1: Coding

Question 5 : The goal of this question is to visit all four corners rather than
reaching a destination state.

Question 6: In the corner search problem, you need to implement an
admissible heuristic function for A* algorithm.

You may need to consider
more complex state space,
which not only contain
possible coordinate of the Pac-
Man, but tracking the
visitation of corners as well.

Homework 1: Coding

Question 7 : The goal of this question is to find a way to eat all of the pellets
in the maze. The position of the pellets is known to the pacman.

Homework 1: Coding

Question 8 : The goal of this question is to eat the closest dot (pellet) by
finding the path to it.

SCORE: 877

	Slide 1: Search
	Slide 2: Question
	Slide 3: Model the Problem
	Slide 4: Build a Search Tree
	Slide 5: Search Problem
	Slide 6: Example: PACMAN
	Slide 7: Example: SAINT (Slagle, 1961)
	Slide 8: Example: Machine translation
	Slide 9: Topics
	Slide 10: General Framework
	Slide 11: State Space and Search Tree
	Slide 12: A General Framework
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Implementation
	Slide 27: Termination When Goal is Encountered
	Slide 28: Termination When Goal is Encountered
	Slide 29: Uninformed Search
	Slide 30: DFS and BFS
	Slide 31: DFS and BFS
	Slide 32: DFS
	Slide 33: DFS
	Slide 34: DFS
	Slide 35: DFS
	Slide 36: DFS
	Slide 37: DFS
	Slide 38: DFS
	Slide 39: DFS
	Slide 40: DFS
	Slide 41: DFS
	Slide 42: DFS
	Slide 43: DFS
	Slide 44: DFS
	Slide 45: BFS
	Slide 46: BFS
	Slide 47: BFS
	Slide 48: BFS
	Slide 49: BFS
	Slide 50: BFS
	Slide 51: BFS
	Slide 52: BFS
	Slide 53: BFS
	Slide 54: BFS
	Slide 55: BFS
	Slide 56: BFS
	Slide 57: BFS
	Slide 58: BFS
	Slide 59: DFS vs. BFS
	Slide 60: DFS vs. BFS
	Slide 61: DFS vs. BFS
	Slide 62: DFS vs. BFS
	Slide 63: DFS vs. BFS
	Slide 64: DFS
	Slide 65: DFS
	Slide 66: Previous DFS Example
	Slide 67: DFS
	Slide 68: (Memory Efficient) DFS
	Slide 69: (Memory Efficient) DFS
	Slide 70: (Memory Efficient) DFS
	Slide 71: (Memory Efficient) DFS
	Slide 72: (Memory Efficient) DFS
	Slide 73: (Memory Efficient) DFS
	Slide 74: (Memory Efficient) DFS
	Slide 75: (Memory Efficient) DFS
	Slide 76: (Memory Efficient) DFS
	Slide 77: (Memory Efficient) DFS
	Slide 78: DFS vs. BFS
	Slide 79: Iterative Deepening Search (IDS)
	Slide 80: Which One is DFS/BFS?
	Slide 81: Cost-Sensitive Search Problem
	Slide 82: Uniform Cost Search (Dijkstra)
	Slide 83: UCS
	Slide 84: UCS
	Slide 85: UCS
	Slide 86: UCS
	Slide 87: UCS
	Slide 88: UCS
	Slide 89: UCS
	Slide 90: UCS
	Slide 91: UCS
	Slide 92: UCS
	Slide 93: UCS
	Slide 94: UCS
	Slide 95: DFS/BFS/UCS? (Deep/light blue  high/low cost)
	Slide 96: DFS/BFS/UCS? (Deep/light blue  high/low cost)
	Slide 97: DFS/BFS/UCS? (Deep/light blue  high/low cost)
	Slide 98: Informed Search
	Slide 99: Inefficiency of the Search Algorithms We See So Far
	Slide 100: Inefficiency of the Search Algorithms We See So Far
	Slide 101: Heuristic Function
	Slide 102: Heuristic Function
	Slide 103: Greedy Best-First Search
	Slide 104: Greedy Best-First Search
	Slide 105: A* Search: Combining Greedy and UCS
	Slide 106: A* Search
	Slide 107: A* Search
	Slide 108: UCS vs. A*
	Slide 109: UCS / Greedy Best-First / A* ?
	Slide 110: UCS / Greedy Best-First / A* ?
	Slide 111: UCS / Greedy Best-First / A* ?
	Slide 112: Comparison
	Slide 113: The Optimality of A*
	Slide 114: The Optimality of A*
	Slide 115: The Optimality of A*
	Slide 116: The Optimality of A*
	Slide 117: Admissible but not Consistent
	Slide 118: Admissible but not Consistent
	Slide 119: Admissible but not Consistent
	Slide 120: Admissible but not Consistent
	Slide 121: Admissible but not Consistent
	Slide 122: Admissible but not Consistent
	Slide 123: The Optimality of A*
	Slide 124: Why “Admissibility”? (with an example)
	Slide 125: Creating Admissible/Consistent Heuristics
	Slide 126: Example: 8 Puzzles
	Slide 127: Homework 1
	Slide 128: Homework 1
	Slide 129: Homework 1: Choice Questions
	Slide 130: Homework 1: Coding
	Slide 131: Homework 1: Coding
	Slide 132: Homework 1: Coding
	Slide 133: Homework 1: Coding
	Slide 134: Homework 1: Coding

