
Search
Chen-Yu Wei

Question

https://stanford-cs221.github.io/autumn2023-extra/modules/search/modeling.pdf

Model the Problem

How many different “states”?

How many different “actions”?

Build a Search Tree

Search Problem

● State space

● Initial state

● Goal test: Given a state, return whether the state is a goal

● Action

● Successor function: Given current state and action, return the new state

● (The cost of an action)

Example: PACMAN

States: {(x,y), dot booleans}

Actions: NSEW

Successor: update location and possibly a dot boolean

Goal test: dots all false

Eat all dots

Go to some destination

States: (x,y) location

Actions: NSEW

Successor: update location only

Goal test: is (x,y)=END

Example: SAINT (Slagle, 1961)

Symbolic Integrator

States: symbolic expression

Actions: “common techniques”

Successor: the new expression after applying the technique

Goal test: whether the expression is in “standard form”

“common technique” examples:

• ∫ 𝑐 𝑓 𝑥 d𝑥 = 𝑐 ∫ 𝑓 𝑥 d𝑥

• ∫ 𝑓 tan 𝑥 d𝑥 = ∫
𝑓(𝑦)

1+𝑦2 d𝑦

• If seeing 1 − 𝑥2, then substitute 𝑥 = sin 𝑦

Example: Machine translation

Translate “你好嗎” to English

States: current word sequence

Actions: the next word

Successor: the concatenation of current sequence and next word

Goal test: whether the current sequence means the same as 你好嗎

How

Why

What

Why is

Why are

What is

What are

How is

How are

Why is you

Why is I

Why are you

Why are I

…
…

Topics

● BFS

● DFS

● UCS (Dijkstra Algorithm)

● Difference with DSA2:

● The state space is exponentially large, and it’s unlikely we’ll store the whole state

space in memory

General Framework

State Space and Search Tree

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

We construct both on
demand – and we

construct as little as
possible.

Each NODE in in the
search tree is an entire
PATH in the state space

graph.

Search TreeState Space Graph

A General Framework

Frontier ← { initial_state }

While Frontier is not empty:

Choose a node 𝑠 from Frontier

For all action 𝑎:

If 𝑠′ has not been reached

Put 𝑠′ in Frontier

Move 𝑠 to Expanded

Expanded ← { }

Nodes are divided into 3 groups: Expanded, Frontier, and Unreached.

All nodes that are not in

Expanded or Frontier

①

②

③

𝑠′ ← succ(𝑠, 𝑎)

⓪ Place the initial state in Frontier

① Choose a node 𝑠 from Frontier

② Move all unreached successors of 𝑠 to Frontier

③ Move 𝑠 to Expanded

① Choose a node 𝑠 from Frontier

② Move all unreached successors of 𝑠 to Frontier

③ Move 𝑠 to Expanded

① Choose a node 𝑠 from Frontier

② Move all unreached successors of 𝑠 to Frontier

③ Move 𝑠 to Expanded

① Choose a node 𝑠 from Frontier

② Move all unreached successors of 𝑠 to Frontier

③ Move 𝑠 to Expanded

Implementation

Frontier ← { initial_state }

While Frontier is not empty:

Choose a node 𝑠 from Frontier

For all action 𝑎:

If 𝑠′ has not been reached:

Put 𝑠′ in Frontier

Move 𝑠 to Expanded

Expanded ← { }

𝑠′ ← succ(𝑠, 𝑎)

Frontier ← { initial_state }

While Frontier is not empty:

Pop a node 𝑠 from Frontier

For all action 𝑎:

If not Reached[𝑠′]:

Put 𝑠′ in Frontier

Reached[𝑠′] ← True

𝑠′ ← succ(𝑠, 𝑎)

Choose and then remove it

Termination When Goal is Encountered

Frontier ← { initial_state }

While Frontier is not empty:

Pop a node 𝑠 from Frontier

For all action 𝑎:

If not Reached[𝑠′]:

Put 𝑠′ in Frontier

𝑠′ ← succ(𝑠, 𝑎)

Reached[𝑠′] ← True

If 𝑠 is a goal state, terminate

Frontier ← { initial_state }

While Frontier is not empty:

Pop a node 𝑠 from Frontier

For all action 𝑎:

If not Reached[𝑠′]:

Push 𝑠′ to Frontier

Reached[𝑠′] ← True

𝑠′ ← succ(𝑠, 𝑎)

If 𝑠′ is a goal state, terminate

Late Goal Test Early Goal Test

Termination When Goal is Encountered

● Early Goal Test allows quicker termination when a goal is found.

● Breadth First Search

● Depth First Search

● However, when actions are associated with costs and we want to find a

minimum cost solution (i.e., cost-sensitive), we may have to use the

Late Goal Test.

● Uniform Cost Search (Dijkstra Algorithm)

Uninformed Search

DFS and BFS

Breadth First SearchDepth First Search

DFS and BFS

Frontier ← { initial_state }

While Frontier is not empty:

Pop a node 𝑠 from Frontier

For all action 𝑎:

If not Reached[𝑠′]:

Push 𝑠′ to Frontier

Reached[𝑠′] ← True

𝑠′ ← succ(𝑠, 𝑎)

If 𝑠′ is a goal state, terminate

differ here

DFS

Frontier ← { initial_state }

While Frontier is not empty:

Pop the newest node 𝑠 from Frontier

For all action 𝑎:

If not Reached[𝑠′]:

Push 𝑠′ to Frontier

Reached[𝑠′] ← True

𝑠′ ← succ(𝑠, 𝑎)

If 𝑠′ is a goal state, terminate

DFS

S

G

d

b

p q

c

e

h

a

f

r

S

d

p

p

p

q

q

q

q

q

he rc

c

a a

a

aG

e

c

b

h f

f

r

G

DFS

S

G

d

b

p q

c

e

h

a

f

r

S

d

p

p

p

q

q

q

q

q

he rc

c

a a

a

aG

e

c

b

h f

f

r

G

DFS

S

G

d

b

p q

c

e

h

a

f

r

S

d

p

p

p

q

q

q

q

q

he rc

c

a a

a

aG

e

c

b

h f

f

r

G

DFS

S

G

d

b

p q

c

e

h

a

f

r

S

d

p

p

p

q

q

q

q

q

he rc

c

a a

a

aG

e

c

b

h f

f

r

G

DFS

S

G

d

b

p q

c

e

h

a

f

r

S

d

p

p

p

q

q

q

q

q

he rc

c

a a

a

aG

e

c

b

h f

f

r

G

DFS

S

G

d

b

p q

c

e

h

a

f

r

S

d

p

p

p

q

q

q

q

q

he rc

c

a a

a

aG

e

c

b

h f

f

r

G

DFS

S

G

d

b

p q

c

e

h

a

f

r

S

d

p

p

p

q

q

q

q

q

he rc

c

a a

a

aG

e

c

b

h f

f

r

G

DFS

S

G

d

b

p q

c

e

h

a

f

r

S

d

p

p

p

q

q

q

q

q

he rc

c

a a

a

aG

e

c

b

h f

f

r

G

DFS

S

G

d

b

p q

c

e

h

a

f

r

S

d

p

p

p

q

q

q

q

q

he rc

c

a a

a

aG

e

c

b

h f

f

r

G

DFS

S

G

d

b

p q

c

e

h

a

f

r

S

d

p

p

p

q

q

q

q

q

he rc

c

a a

a

aG

e

c

b

h f

f

r

G

DFS

S

G

d

b

p q

c

e

h

a

f

r

S

d

p

p

p

q

q

q

q

q

he rc

c

a a

a

aG

e

c

b

h f

f

r

G

DFS

S

G

d

b

p q

c

e

h

a

f

r

S

d

p

p

p

q

q

q

q

q

he rc

c

a a

a

aG

e

c

b

h f

f

r

G

BFS

Frontier ← { initial_state }

While Frontier is not empty:

Pop the oldest node 𝑠 from Frontier

For all action 𝑎:

If not Reached[𝑠′]:

Push 𝑠′ to Frontier

Reached[𝑠′] ← True

𝑠′ ← succ(𝑠, 𝑎)

If 𝑠′ is a goal state, terminate

BFS

S

G

d

b

p q

c

e

h

a

f

r

S

d

p

p

p

q

q

q

q

q

he rc

c

a a

a

aG

e

c

b

h f

f

r

G

BFS

S

G

d

b

p q

c

e

h

a

f

r

S

d

p

p

p

q

q

q

q

q

he rc

c

a a

a

aG

e

c

b

h f

f

r

G

BFS

S

G

d

b

p q

c

e

h

a

f

r

S

d

p

p

p

q

q

q

q

q

he rc

c

a a

a

aG

e

c

b

h f

f

r

G

BFS

S

G

d

b

p q

c

e

h

a

f

r

S

d

p

p

p

q

q

q

q

q

he rc

c

a a

a

aG

e

c

b

h f

f

r

G

BFS

S

G

d

b

p q

c

e

h

a

f

r

S

d

p

p

p

q

q

q

q

q

he rc

c

a a

a

aG

e

c

b

h f

f

r

G

BFS

S

G

d

b

p q

c

e

h

a

f

r

S

d

p

p

p

q

q

q

q

q

he rc

c

a a

a

aG

e

c

b

h f

f

r

G

BFS

S

G

d

b

p q

c

e

h

a

f

r

S

d

p

p

p

q

q

q

q

q

he rc

c

a a

a

aG

e

c

b

h f

f

r

G

BFS

S

G

d

b

p q

c

e

h

a

f

r

S

d

p

p

p

q

q

q

q

q

he rc

c

a a

a

aG

e

c

b

h f

f

r

G

BFS

S

G

d

b

p q

c

e

h

a

f

r

S

d

p

p

p

q

q

q

q

q

he rc

c

a a

a

aG

e

c

b

h f

f

r

G

BFS

S

G

d

b

p q

c

e

h

a

f

r

S

d

p

p

p

q

q

q

q

q

he rc

c

a a

a

aG

e

c

b

h f

f

r

G

BFS

S

G

d

b

p q

c

e

h

a

f

r

S

d

p

p

p

q

q

q

q

q

he rc

c

a a

a

aG

e

c

b

h f

f

r

G

BFS

S

G

d

b

p q

c

e

h

a

f

r

S

d

p

p

p

q

q

q

q

q

he rc

c

a a

a

aG

e

c

b

h f

f

r

G

BFS

S

G

d

b

p q

c

e

h

a

f

r

S

d

p

p

p

q

q

q

q

q

he rc

c

a a

a

aG

e

c

b

h f

f

r

G

DFS vs. BFS

In what cases is DFS quicker to find the goal?

In what cases is BFS quicker to find the goal?

DFS vs. BFS

Does DFS / BFS find the goal with the

smallest depth? …

DFS vs. BFS

Suppose there exists a goal at layer ≤ 𝑑.

What is the time complexity for DFS / BFS

to find a goal?

…
𝑏

𝑚 layers

b: branching factor

m: maximum depth

Goals at various depths

DFS vs. BFS

What’s the maximum possible size of

Frontier in DFS / BFS? …
𝑏

𝑚 layers

b: branching factor

m: maximum depth

Goals at various depths

DFS vs. BFS

Time Frontier Size

DFS

BFS

So DFS can be more memory-efficient than BFS?

Yes … but not with our current implementation

DFS

Frontier ← { initial_state }

While Frontier is not empty:

Pop the newest node 𝑠 from Frontier

For all action 𝑎:

If not Reached[𝑠′]:

Push 𝑠′ to Frontier

Reached[𝑠′] ← True

𝑠′ ← succ(𝑠, 𝑎)

If 𝑠′ is a goal state, terminate

DFS

Frontier ← { initial_state }

While Frontier is not empty:

Pop the newest node 𝑠 from Frontier

For all action 𝑎:

Push 𝑠′ to Frontier

𝑠′ ← succ(𝑠, 𝑎)

If 𝑠′ is a goal state, terminate
Because we omit the check, the

algorithm may end up search in

same sub-trees multiple times.

A Memory Efficient Version of DFS for Acyclic Graphs

Previous DFS Example

S

G

d

b

p q

c

e

h

a

f

r

S

d

p

p

p

q

q

q

q

q

he rc

c

a a

a

aG

e

c

b

h f

f

r

G

DFS

Frontier ← { initial_state }

While Frontier is not empty:

Pop the newest node 𝑠 from Frontier

For all action 𝑎:

Push 𝑠′ to Frontier

𝑠′ ← succ(𝑠, 𝑎)

If 𝑠′ is a goal state, terminate

If 𝑠′ is not an ancestor of 𝑠:

A Memory Efficient Version of DFS for Cyclic Graphs

(Memory Efficient) DFS

S

a

b

c

d

e

f

G
handling cycles

s

(Memory Efficient) DFS

S

a

b

c

d

e

f

G
handling cycles

s

(Memory Efficient) DFS

S

a

b

c

d

e

f

G
handling cycles

s

sa

(Memory Efficient) DFS

S

a

b

c

d

e

f

G
handling cycles

s

sa

sab sac

(Memory Efficient) DFS

S

a

b

c

d

e

f

G
handling cycles

s

sa

sab sac

(Memory Efficient) DFS

S

a

b

c

d

e

f

G
handling cycles

s

sa

sab sac

sacd sace

(Memory Efficient) DFS

S

a

b

c

d

e

f

G
handling cycles

s

sa

sab sac

sacd sace

sacdb

(Memory Efficient) DFS

S

a

b

c

d

e

f

G
handling cycles

s

sa

sab sac

sacd sace

sacdb

(Memory Efficient) DFS

S

a

b

c

d

e

f

G
handling cycles

s

sa

sab sac

sacd sace

sacdb sacef

(Memory Efficient) DFS

S

a

b

c

d

e

f

G
handling cycles

s

sa

sab sac

sacd sace

sacdb sacef

sacefd sacefG

DFS vs. BFS

Time Space

DFS

(memory-efficient version)

BFS

IDS

Iterative Deepening Search (IDS)

● Idea: get DFS’s space advantage with BFS’s time advantage

● Run a DFS with depth limit 1. If no solution…

● Run a DFS with depth limit 2. If no solution…

● Run a DFS with depth limit 3. …..

● Isn’t that wastefully redundant?

● Generally most work happens in the last level

● Branching factor 10, solution 5 deep:
● BFS: 10 + 100 + 1,000 + 10,000 + 100,000 = 111,110

● IDS: 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450

Which One is DFS/BFS?

Cost-Sensitive Search Problem

S

G

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

10

Uniform Cost Search (Dijkstra)

Frontier ← { initial_state }

While Frontier is not empty:

Pop a node 𝑠 from Frontier

For all action 𝑎:

If not Reached[𝑠′]:

Put 𝑠′ in Frontier

Reached[𝑠′] ← True

𝑠′ ← succ(𝑠, 𝑎)

𝑔 𝑠′ ← min 𝑔 𝑠′ , 𝑔 𝑠 + cost 𝑠, 𝑎

If 𝑠 is a goal state, then terminate

Choose the one with smallest 𝑔 𝑠

UCS

S

G

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

10

𝑥 𝑔(𝑥)

S

a

b

c

d

e

f

h

p

q

r

G

UCS

S

G

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

10

𝑥 𝑔(𝑥)

S 0

a ∞

b ∞

c ∞

d ∞

e ∞

f ∞

h ∞

p ∞

q ∞

r ∞

G ∞

UCS

S

G

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

10

𝑥 𝑔(𝑥)

S 0

a ∞

b ∞

c ∞

d 3

e 9

f ∞

h ∞

p 1

q ∞

r ∞

G ∞

UCS

S

G

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

10

𝑥 𝑔(𝑥)

S 0

a ∞

b ∞

c ∞

d 3

e 9

f ∞

h ∞

p 1

q 16

r ∞

G ∞

UCS

S

G

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

10

𝑥 𝑔(𝑥)

S 0

a ∞

b 4

c 11

d 3

e 5

f ∞

h ∞

p 1

q 16

r ∞

G ∞

UCS

S

G

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

10

𝑥 𝑔(𝑥)

S 0

a 6

b 4

c 11

d 3

e 5

f ∞

h ∞

p 1

q 16

r ∞

G ∞

UCS

S

G

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

10

𝑥 𝑔(𝑥)

S 0

a 6

b 4

c 11

d 3

e 5

f ∞

h 13

p 1

q 16

r 7

G ∞

UCS

S

G

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

10

𝑥 𝑔(𝑥)

S 0

a 6

b 4

c 11

d 3

e 5

f ∞

h 13

p 1

q 16

r 7

G ∞

UCS

S

G

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

10

𝑥 𝑔(𝑥)

S 0

a 6

b 4

c 11

d 3

e 5

f 9

h 13

p 1

q 16

r 7

G 17

UCS

S

G

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

10

𝑥 𝑔(𝑥)

S 0

a 6

b 4

c 11

d 3

e 5

f 9

h 13

p 1

q 16

r 7

G 11

UCS

S

G

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

10

𝑥 𝑔(𝑥)

S 0

a 6

b 4

c 11

d 3

e 5

f 9

h 13

p 1

q 16

r 7

G 11

UCS

S

G

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

10

𝑥 𝑔(𝑥)

S 0

a 6

b 4

c 11

d 3

e 5

f 9

h 13

p 1

q 16

r 7

G 11

DFS/BFS/UCS? (Deep/light blue → high/low cost)

DFS/BFS/UCS? (Deep/light blue → high/low cost)

DFS/BFS/UCS? (Deep/light blue → high/low cost)

Informed Search

Inefficiency of the Search Algorithms We See So Far

Inefficiency of the Search Algorithms We See So Far

Heuristic Function

S

n1

n2

G

6

8

50

20

Suppose we have some “guess” for the distance from every node to the goal.

Can we leverage it to accelerate the search?

Heuristic Function

Having a heuristic function that accurately predict the distance might be impossible.

However, some function that correlates with the true distance may be easy to find.

10

5

11.2

Greedy Best-First Search

Frontier ← { initial_state }

While Frontier is not empty:

Pop a node 𝑠 from Frontier

For all action 𝑎:

If not Reached[𝑠′]:

Push 𝑠′ to Frontier

Reached[𝑠′] ← True

𝑠′ ← succ(𝑠, 𝑎)

Choose the one with smallest ℎ 𝑠

If 𝑠′ is a goal state, then terminate

Suppose we have a heuristic function ℎ 𝑠 .

Greedy Best-First Search

● If the heuristic is good

● Take us directly to the goal

● Like a nicely-guided DFS

● In the worst case

● Take us to the wrong way

● Like a badly-guided DFS

…

b

…

b

A* Search: Combining Greedy and UCS

Frontier ← { initial_state }

While Frontier is not empty:

Pop a node 𝑠 from Frontier

For all action 𝑎:

If not Reached[𝑠′]:

Push 𝑠′ to Frontier

Reached[𝑠′] ← True

𝑠′ ← succ(𝑠, 𝑎)

Choose the one with smallest 𝑔 𝑠 + ℎ 𝑠

Suppose we have a heuristic function ℎ 𝑠 .

𝑔 𝑠′ ← min 𝑔 𝑠′ , 𝑔 𝑠 + cost 𝑠, 𝑎

If 𝑠 is a goal state, then terminate

UCS is a special case with ℎ 𝑠 = 0

Backward cost Forward cost

A* Search

Evaluation functions:

● Greedy (Greedy Best-First) Search: ℎ 𝑠

● Uniform Cost Search: 𝑔 𝑠

● A* Search: 𝑔 𝑠 + ℎ 𝑠

● Weighted A* Search: 𝑔 𝑠 + 𝑤 ⋅ ℎ 𝑠 for some 𝑤 ∈ (0, ∞)

A* Search

A* Search = Uniform Cost Search with modified cost

෦cost 𝑠, 𝑎 = cost 𝑠, 𝑎 + ℎ 𝑠′ − ℎ(𝑠)

Proof

Let ෤𝑔 𝑠 be the values of UCS with the modified loss

෤𝑔 𝑠 = ෦cost 𝑠1 → 𝑠2 + ෦cost 𝑠2 → 𝑠3 + ⋯ + ෦cost 𝑠𝑚 → 𝑠

= cost 𝑠1 → 𝑠2 + ℎ 𝑠2 − ℎ(𝑠1) + cost 𝑠2 → 𝑠3 + ℎ 𝑠3 − ℎ(𝑠2) + ⋯
 + cost 𝑠𝑚 → 𝑠 + ℎ 𝑠 − ℎ(𝑠𝑚)

= 𝑔 𝑠 + ℎ 𝑠 − ℎ 𝑠1

s1
s2 s3

sm s

initial state

UCS vs. A*

Start Goal
Start

Goal

UCS A*

UCS / Greedy Best-First / A* ?

UCS / Greedy Best-First / A* ?

UCS / Greedy Best-First / A* ?

Comparison

Greedy UCS A*

The Optimality of A*

A heuristic function ℎ is called consistent if for all 𝑠 and 𝑠′

ℎ 𝑠 ≤ ℎ 𝑠′ + cost 𝑠 → 𝑠′

and ℎ 𝐺 = 0 for any goal state 𝐺.

Definitions

(triangle inequality)

The Optimality of A*

If the heuristic function is consistent, then A* returns minimum-cost solution.

Theorem

Proof A* is equivalent to UCS with ෦cost 𝑠 → 𝑠′ : = cost 𝑠 → 𝑠′ + ℎ 𝑠′ − ℎ(𝑠)

Total modified cost of any path 𝑠1 → 𝑠2 → ⋯ → 𝑠𝑚 → 𝐺 is

෦cost 𝑠1 → 𝑠2 + ෦cost 𝑠2 → 𝑠3 + ⋯ + ෦cost 𝑠𝑚 → 𝐺

= cost 𝑠1 → 𝑠2 + ℎ 𝑠2 − ℎ(𝑠1) + cost 𝑠2 → 𝑠3 + ℎ 𝑠3 − ℎ(𝑠2) + ⋯
 + cost 𝑠𝑚 → 𝐺 + ℎ 𝐺 − ℎ(𝑠𝑚)

= cost 𝑠1 → 𝑠2 + cost 𝑠2 → 𝑠3 + ⋯ + cost 𝑠𝑚 → 𝐺 − ℎ(𝑠1)

Since ෦cost 𝑠 → 𝑠′ ≥ 0 by the consistency of ℎ, A*’s optimality follows

UCS’s optimality under non-negative cost.

The Optimality of A*

A heuristic function ℎ is called admissible if for all 𝑠

0 ≤ ℎ 𝑠 ≤ ℎ⋆ 𝑠

where ℎ⋆ 𝑠 is the true minimum distance from 𝑠 to goal.

Definitions

If the heuristic function is admissible and the graph is a tree, then A*

returns minimum-cost solution.

Theorems

If ℎ is consistent, then it is also admissible.

The Optimality of A*

S

G

d

b

p q

c

e

h

a

f

r

S

d

p

p

p

q

q

q

q

q

he rc

c

a a

a

aG

e

c

b

h f

f

r

G

For general graphs, we can treat it like a tree by omitting the condition “if not

Reached[s’]” in the graph search algorithm (like what we did for memory-

efficient DFS).

This allows us to apply the theorem in the previous page.

Admissible but not Consistent

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

Admissible but not Consistent

S (0+2)

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0 Expanded = { }

Admissible but not Consistent

S (0+2)

A (1+4) B (1+1)

Expanded = { S }

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

Admissible but not Consistent

S (0+2)

A (1+4) B (1+1)

C (3+1)

Expanded = { S, B }

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

Admissible but not Consistent

S (0+2)

A (1+4) B (1+1)

C (3+1)

G (6+0)

Expanded = { S, B, C }

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

Admissible but not Consistent

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S (0+2)

A (1+4) B (1+1)

C (3+1)

G (6+0)

C (2+1)

Expanded = { S, B, C }

The Optimality of A*

Proof by contradiction

s

n

G1

G2

a1

a2

am-1

Path returned by A*

Optimal Path

Assume dist 𝑠, 𝐺2 < dist 𝑠, 𝐺1

• 𝑛 expanded earlier than 𝐺1

• 𝑎1 expanded earlier than 𝐺1

∵ 𝑓 𝑎1 = 𝑔 𝑎1 + ℎ 𝑎1 ≤ 𝑔 𝑎1 + ℎ⋆ 𝑎1

= dist 𝑠, 𝐺2 < dist 𝑠, 𝐺1 ≤ 𝑔 𝐺1 = 𝑓(𝐺1)

• 𝑎2 expanded earlier than 𝐺1

∵ 𝑓 𝑎2 = 𝑔 𝑎2 + ℎ 𝑎2 ≤ 𝑔 𝑎2 + ℎ⋆ 𝑎2

= dist 𝑠, 𝐺2 < 𝑓(𝐺1)
…

• 𝑎𝑚−1 expanded earlier than 𝐺1

• 𝐺2 expanded earlier than 𝐺1

By the tree structure, every node can only be

reached by its unique predecessor
If admissible + tree, then A*

returns minimum-cost solution.

Why “Admissibility”? (with an example)

A

GS

1 3

h = 6

h = 0

5

h = 7

S

A G

0+7

1+6 5+0

We hope that the nodes on the shortest path are expanded before G is expanded.

g(A) + h(A) g(G)

Some path length from S to G

≤ g(A) + h*(A)

Shortest path length from S to G

Admissibility ensures g(A) + h(A) ≤ g(G)

Creating Admissible/Consistent Heuristics

● Most of the work in solving hard search problems is in coming up with

admissible/consistent heuristics.

● Often, admissible/consistent heuristics are solutions to relaxed problems,

where new actions are available.

● Inadmissible heuristics are often useful too.

15

366

Example: 8 Puzzles

Start State
Goal State

Average nodes expanded when the

optimal path has…

…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

#wrong tile 13 39 227

Manhattan 12 25 73

Homework 1
Xuhui Kang, Haolin Liu

Deadline: 11:59PM, September 16

Homework 1

1. Choice Questions (10 points)
a. 14 questions.
b. Choice questions are 10 points in total and distributed evenly

2. Program Questions (25 points)

Homework 1: Choice Questions

● Each question may be either single-choice or multiple-choice. Read
carefully and select your answers accordingly.

● Grading:
○ Full Credit: If all correct options are selected.
○ Partial Credit: If only some correct options are selected, with no wrong options

chosen.
○ No Credit: If any incorrect options are selected.

● Submission: Please answer directly on Gradescope. No need to submit a
separate PDF.

● Scores and correct answers will not be released immediately after
submission.

Homework 1: Coding

In this problem, you are going to help Pacman find paths in a maze world by
focusing on implementing search algorithms.

Autograder is given both offline and online in GradeScope. Your grade in
gradescope is the final grade.

Homework 1: Coding

Question 1 -- 4: Implement Depth First Search, Breadth First Search, Uniform
Cost Search, and A* algorithm. Your goal is to reach a target area.

Homework 1: Coding

Question 5 : The goal of this question is to visit all four corners rather than
reaching a destination state.

Question 6: In the corner search problem, you need to implement an
admissible heuristic function for A* algorithm.

You may need to consider
more complex state space,
which not only contain
possible coordinate of the Pac-
Man, but tracking the
visitation of corners as well.

Homework 1: Coding

Question 7 : The goal of this question is to find a way to eat all of the pellets
in the maze. The position of the pellets is known to the pacman.

Homework 1: Coding

Question 8 : The goal of this question is to eat the closest dot (pellet) by
finding the path to it.

	Slide 1: Search
	Slide 2: Question
	Slide 3: Model the Problem
	Slide 4: Build a Search Tree
	Slide 5: Search Problem
	Slide 6: Example: PACMAN
	Slide 7: Example: SAINT (Slagle, 1961)
	Slide 8: Example: Machine translation
	Slide 9: Topics
	Slide 10: General Framework
	Slide 11: State Space and Search Tree
	Slide 12: A General Framework
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Implementation
	Slide 27: Termination When Goal is Encountered
	Slide 28: Termination When Goal is Encountered
	Slide 29: Uninformed Search
	Slide 30: DFS and BFS
	Slide 31: DFS and BFS
	Slide 32: DFS
	Slide 33: DFS
	Slide 34: DFS
	Slide 35: DFS
	Slide 36: DFS
	Slide 37: DFS
	Slide 38: DFS
	Slide 39: DFS
	Slide 40: DFS
	Slide 41: DFS
	Slide 42: DFS
	Slide 43: DFS
	Slide 44: DFS
	Slide 45: BFS
	Slide 46: BFS
	Slide 47: BFS
	Slide 48: BFS
	Slide 49: BFS
	Slide 50: BFS
	Slide 51: BFS
	Slide 52: BFS
	Slide 53: BFS
	Slide 54: BFS
	Slide 55: BFS
	Slide 56: BFS
	Slide 57: BFS
	Slide 58: BFS
	Slide 59: DFS vs. BFS
	Slide 60: DFS vs. BFS
	Slide 61: DFS vs. BFS
	Slide 62: DFS vs. BFS
	Slide 63: DFS vs. BFS
	Slide 64: DFS
	Slide 65: DFS
	Slide 66: Previous DFS Example
	Slide 67: DFS
	Slide 68: (Memory Efficient) DFS
	Slide 69: (Memory Efficient) DFS
	Slide 70: (Memory Efficient) DFS
	Slide 71: (Memory Efficient) DFS
	Slide 72: (Memory Efficient) DFS
	Slide 73: (Memory Efficient) DFS
	Slide 74: (Memory Efficient) DFS
	Slide 75: (Memory Efficient) DFS
	Slide 76: (Memory Efficient) DFS
	Slide 77: (Memory Efficient) DFS
	Slide 78: DFS vs. BFS
	Slide 79: Iterative Deepening Search (IDS)
	Slide 80: Which One is DFS/BFS?
	Slide 81: Cost-Sensitive Search Problem
	Slide 82: Uniform Cost Search (Dijkstra)
	Slide 83: UCS
	Slide 84: UCS
	Slide 85: UCS
	Slide 86: UCS
	Slide 87: UCS
	Slide 88: UCS
	Slide 89: UCS
	Slide 90: UCS
	Slide 91: UCS
	Slide 92: UCS
	Slide 93: UCS
	Slide 94: UCS
	Slide 95: DFS/BFS/UCS? (Deep/light blue  high/low cost)
	Slide 96: DFS/BFS/UCS? (Deep/light blue  high/low cost)
	Slide 97: DFS/BFS/UCS? (Deep/light blue  high/low cost)
	Slide 98: Informed Search
	Slide 99: Inefficiency of the Search Algorithms We See So Far
	Slide 100: Inefficiency of the Search Algorithms We See So Far
	Slide 101: Heuristic Function
	Slide 102: Heuristic Function
	Slide 103: Greedy Best-First Search
	Slide 104: Greedy Best-First Search
	Slide 105: A* Search: Combining Greedy and UCS
	Slide 106: A* Search
	Slide 107: A* Search
	Slide 108: UCS vs. A*
	Slide 109: UCS / Greedy Best-First / A* ?
	Slide 110: UCS / Greedy Best-First / A* ?
	Slide 111: UCS / Greedy Best-First / A* ?
	Slide 112: Comparison
	Slide 113: The Optimality of A*
	Slide 114: The Optimality of A*
	Slide 115: The Optimality of A*
	Slide 116: The Optimality of A*
	Slide 117: Admissible but not Consistent
	Slide 118: Admissible but not Consistent
	Slide 119: Admissible but not Consistent
	Slide 120: Admissible but not Consistent
	Slide 121: Admissible but not Consistent
	Slide 122: Admissible but not Consistent
	Slide 123: The Optimality of A*
	Slide 124: Why “Admissibility”? (with an example)
	Slide 125: Creating Admissible/Consistent Heuristics
	Slide 126: Example: 8 Puzzles
	Slide 127: Homework 1
	Slide 128: Homework 1
	Slide 129: Homework 1: Choice Questions
	Slide 130: Homework 1: Coding
	Slide 131: Homework 1: Coding
	Slide 132: Homework 1: Coding
	Slide 133: Homework 1: Coding
	Slide 134: Homework 1: Coding

