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Question

A farmer wants to get his cabbage, goat, and wolf across a river. He has a boat that only

holds two. He cannot leave the cabbage and goat alone or the goat and wolf alone. How many
river crossings does he need?

- no solution

https://stanford-cs221.github.io/autumn2023-extra/modules/search/modeling.pdf



Model the Problem

How many different “states”?
How many different “actions™?

Farmer

Cabbage

F>
FC>
FG>
FWp>

oat Wolf

F<
FC«
FG«
FW«



Build a Search Tree
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Search Problem

State space

Initial state

Goal test: Given a state, return whether the state is a goal

Action

Successor function: Given current state and action, return the new state
(The cost of an action)



Example: PACMAN

Eat all dots

States: {(X,y), dot booleans}
Actions: NSEW
Successor: update location and possibly a dot boolean

Goal test: dots all false

SCORE:

Go to some destination

States: (Xx,y) location

Actions: NSEW

Successor: update location only
Goal test: is (x,y)=END



Example: SAINT (Slagle, 1961) (Ca

Symbolic Integrator

x4 . . . ) . ) i

| dc = 1 tan’(arcsin x) — tan(arcsin x) + arcsin x - T S
2572 cot ™ ydy XS

(1 - r) 3 J ' J ok

States: symbolic expression [+ [ree
Actions: “common techniques”
Successor: the new expression after applying the technique 1
Goal test: whether the expression is in “standard form”

/ T ™ Integration by parts

“‘common technique” examples:
e [cf(x)dx =c [ f(x)dx
e [ f(tanx)dx = [ f(y)zdy

1+y
- If seeing 1 — x2, then substitute x = sin y

z= tan (w)




Example: Machine translation

Translate “/R#FIE” to English

States: current word sequence

Actions: the next word
Successor: the concatenation of current sequence and next word
Goal test: whether the current sequence means the same as {/R#FIE

Why is you
Why is Why is |
Why < Why are Why are you

Why are |




Topics

e BFS
e DFS
e UCS (Dijkstra Algorithm)

e Difference with DSA2:

e The state space is exponentially large, and it's unlikely we’ll store the whole state
space in memory



General Framework



/State Space Graph \

State Space and Search Tree

Each NODE in in the
search tree is an entire
PATH in the state space

graph.

We construct both on
demand — and we
construct as little as
possible.

Search Tree
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A General Framework

Expanded « {}
Frontier « {initial_state }
While Frontier Is not empty:

Choose a node s from Frontier Q@

For all action a: M
s’ « succ(s, a)

If s" has not been reached e

Put s’ in Frontier

Move s to Expanded ©) All nodes that are nqt in
Expanded or Frontier

/

Nodes are divided into 3 groups: Expanded, Frontier, and Unreached.




(0) Place the initial state in Frontier




(1) Choose a node s from Frontier




(2) Move all unreached successors of s to Frontier




(3) Move s to Expanded




(1) Choose a node s from Frontier




(2) Move all unreached successors of s to Frontier




(3) Move s to Expanded




(1) Choose a node s from Frontier
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(2) Move all unreached successors of s to Frontier
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(3) Move s to Expanded
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(1) Choose a node s from Frontier




(2) Move all unreached successors of s to Frontier




(3) Move s to Expanded




Implementation

Choose and then remove it

Expanded « {}
Frontier « {initial_state }
While Frontier Is not empty:

Choose a node s from Frontier

For all action a:
s’ « succ(s,a)
If s" has not been reached:
Put s" in Frontier

Move s to Expanded

Frontier ¢ {initial_state }
While FExontier is not empty:

Pop a node s from Frontier

For all action a:
s’ « succ(s,a)
If not Reached|s’]:
Put s’ in Frontier
Reached[s’] « True




Termination When Goal i1s Encountered

Frontier « {initial_state }
While Frontier Is not empty:

Pop a node s from Frontier
If s Is a goal state, terminate

For all action a:
s’ « succ(s,a)
If not Reached|s’]:

Put s’ in Frontier
Reached[s'] « True

Frontier « {initial_state }
While Frontier is not empty:

Pop a node s from Frontier

For all action a:
s’ « succ(s,a)
If not Reached[s]:
If s" is a goal state, terminate
Push s’ to Frontier
Reached[s’] « True

Late Goal Test

Early Goal Test




Termination When Goal i1s Encountered

e Early Goal Test allows guicker termination when a goal is found.
e Breadth First Search
e Depth First Search

e However, when actions are associated with costs and we want to find a
minimum cost solution (i.e., cost-sensitive), we may have to use the
Late Goal Test.

e Uniform Cost Search (Dijkstra Algorithm)



Uninformed Search



DFS and BFS

Depth First Search Breadth First Search



DFS and BFS

Frontier « {initial_state }
While Frontier is not empty:

Pop a node s from Frontier

For all action a:
s’ « succ(s, a)
If not Reached]s’]:

differ here

If s’ is a goal state, terminate

Push s’ to Frontier
Reached[s'] « True




DFS

Frontier « {initial_state }
While Frontier is not empty:

Pop the newest node s from Frontier

For all action a:
s’ « succ(s, a)
If not Reached]s’]:
If s’ is a goal state, terminate
Push s’ to Frontier
Reached[s'] « True




DFS



DFS
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BFS

Frontier « {initial_state }
While Frontier is not empty:

Pop the oldest node s from Frontier

For all action a:
s’ « succ(s, a)
If not Reached]s’]:
If s’ is a goal state, terminate
Push s’ to Frontier
Reached[s'] « True




BFS



BFS



BFS
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DFS vs. BFS

In what cases is DFS quicker to find the goal?
In what cases is BFS quicker to find the goal?



DFS vs. BFS

Does DFS / BFS find the goal with the
smallest depth?




DFS vs. BFS

Suppose there exists a goal at layer < d.
What is the time complexity for DFS / BFS

to find a goal?

6(:5:0@ n bb* R HM> _ O(Ed)

ond loanv’l
o .

m layers <

.D/ : O .J:)M
]"5 ( ) b: branching factor

m: maximum depth
Goals at various depths



DFS vs. BFS

What's the maximum possible size of
Frontier in DFS / BFS?

8. O( 4

m layers <

b: branching factor
m: maximum depth
Goals at various depths



DFS vs. BFS mo d

I N T

DFS b" bm
of

BFS bd b

So DFS can be more memory-efficient than BFS?
Yes ... but not with our current implementation



DFS

Frontier « {initial_state }
While Frontier is not empty:

Pop the newest node s from Frontier

For all action a:
s’ « succ(s, a)
If not Reached]s’]:
If s" is a goal state, terminate
Push s’ to Frontier
Reached[s’] « True




DFS

Frontier « {initial_state }
While Frontier is not empty:

For all action a:
s’ « succ(s, a)
If s’ is a goal state, terminate
Push s’ to Frontier

Pop the newest node s from Frontier

\

——__  Because we omit the check, the
algorithm may end up search in
same sub-trees multiple times.

A Memory Efficient Version of DFS for Acyclic Graphs



Previous DFS Example



DFS

Frontier « {initial_state }
While Frontier is not empty:

Pop the newest node s from Frontier

For all action a:
s’ « succ(s, a)
If s’ is not an ancestor of s:
If s" is a goal state, terminate
Push s’ to Frontier

A Memory Efficient Version of DFS for Cyclic Graphs

@/?Q\n



(Memory Efficient) DFS

handling cycles




(Memory Efficient) DFS

handling cycles




(Memory Efficient) DFS

handling cycles

Sd




(Memory Efficient) DFS

handling cycles

Sd

sab sac




(Memory Efficient) DFS

handling cycles

Sd
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(Memory Efficient) DFS

handling cycles

Sd

sab sac

sacd sace




(Memory Efficient) DFS

handling cycles

Sd

sab sac

sacd sace

sacdb




(Memory Efficient) DFS

handling cycles

Sd

sab sac

sacd sace

sacdb




(Memory Efficient) DFS

handling cycles

Sd

sab sac

sacd sace

sacdb sacef




(Memory Efficient) DFS

handling cycles

Sd

sab

Sac

sacd

sacdb

sace

sacef

sacefd

sacefG




DFS vs. BFS
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lterative Deepening Search (IDS)

e |dea: get DFS’s space advantage with BFS'’s time advantage
)
e Run a DFS with depth limit 1. If no solution... &
e Run a DFS with depth limit 2. If no solution... &~

e Run a DFS with depth limit 3. .....

e Isn’t that wastefully redundant? L”’

Gﬁrﬁﬁﬂymépgns in the last level

e Branching factor 10, solution 5 deep:
e BFS: 10 + 100 + 1,000 + 10,000 + 100,000 = 111,110
e IDS: 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450



Which One is DFS/BFS?




Cost-Sensitive Search Problem
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Uniform Cost Search (Dijkstra)

Frontier « {initial_state }
While Frontier is not empty:

Pop a node s from Frontier
If s Is a goal state, then terminate

Choose the one with smallest g(s)

For all action a:
s’ « succ(s, a)
If not Reached[s’]:

Put s’ in Frontier
Reached[s'] « True

g(s) «min{ g(s"),g(s) + cost(s,a) }
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DFS/BFS/UCS? (Deepilight blue = high/low cost)




DFS/BFS/UCS? (Deepilight blue = high/low cost)




DFS/BFS/UCS? (Deepilight blue = high/low cost)




Informed Search



Inefficiency of the Search Algorithms We See So Far




Inefficiency of the Search Algorithms We See So Far

(1 =x)
1
x = gin(y)
[ sinty
73 dy .
J cos v . 'Il"-{‘.':}
——
’ z = tan (y/2)
- ) i 2 .
f + I "
oot~ py tan* y dy 32 — @
| oot vy 1 . a+0 _.)4 | c{?ﬂ" .
T 2= tan (32)
” -;—'- L T - b g
| dx [' ;4 o - r -
A0+ 1424 e ok
i i y
4 -
cot ™ ydy tan” y dy 32 - 5 33
f S | {1+z7)(1=2)
I 75 — oz -
[ 1+71+) p
J y
//<' - Integration by parts ¥
>
il “a
‘\ .:2d: [ u’:i
J I J1%2
w =z

z= 1an (w)

‘ dw dw




Heuristic Function

Suppose we have some “guess” for the distance from every node to the goal.
Can we leverage it to accelerate the search?




Heuristic Function

Having a heuristic function that accurately predict the distance might be impossible.
However, some function that correlates with the true distance may be easy to find.




Greedy Best-First Search

Suppose we have a heuristic function h(s).

Frontier « {initial_state }
While Frontier is not empty:

Pop a node s from Frontier «—— Choose the one with smallest h(s)

For all action a:
s’ « succ(s, a)
If not Reached|s’]:
If s’ is a goal state, then terminate
Push s’ to Frontier
Reached[s'] « True




Greedy Best-First Search

e |f the heuristic is good
e Take us directly to the goal
e Like a nicely-guided DFS

e |n the worst case

e Take us to the wrong way
e Like a badly-guided DFS




A* Search: Combining Greedy and UCS

Suppose we have a heuristic function h(s). Backward cost  Forward cost
/
Frontier « {initial_state }
While Frontier is not empty:

Pop a node s from Frontier «<— Choose the one with smallest g(s) + h(s)
If s Is a goal state, then terminate

UCS is a special case with h(s) =0

For all action a:
s’ « succ(s, a)
If not Reached|s’]:
Push s’ to Frontier
Reached[s'] « True

g(s) «min{g(s"),g(s) + cost(s,a) }




A* Search

Evaluation functions:

Greedy (Greedy Best-First) Search: h(s)

Uniform Cost Search: g(s)

A* Search: g(s) + h(s)

Weighted A* Search: g(s) + w - h(s) for some w € (0, )



CeS*(S—QSr) = Co;-t(f,&-] where S‘=_Sq:,(,(_)',a>

A* Search

A* Search = Uniform Cost Search with modified cost

cost(s,a) = cost(s,a) + h(s") — h(s)

Proof 3
Let §(s) be the values of UCS with the modified loss

g(s) = co\s_tw) + cost(s, = s3) + -+ + cost(s,;;, = S)

= [cost(s; = s5) + h@) — h(s1)] + [cost(s, 2 s3) + h(sg) — hisy)] + -+ O\
+[cost(sy, = 5) +&(;L9)/— his,,)]

=@E)+ h(s) — hsy)

Initial state



UCS vs. A*

St
.Goa .;oal
UCS A*




UCS / Greedy Best-First / A* ?




UCS / Greedy Best-First / A* ?




UCS / Greedy Best-First / A* ?




Comparison

SCORE: 0 SCORE: 0 SCORE: 0

Greedy UCS A*



The Optimality of A* Corts

R
'/9

Definitions

A heuristic function h is called consistent if for all s and s’

h(s) < h(s") + cost(s — s') (triangle inequality)
and h(G) = 0 for any goal state G.




The Optimality of A*

Theorem

If the heuristic function Is consistent, then A* returns minimum-cost solution.

Proof A*is equivalent to UCS with cost(s = s"): = cost(s = s") + h(s") — h(s) = O
Total modified cost of any path s; > s, = - > s, > G iS Gusisfeuy

cost(s; = s,) + cost(s, = s3) + -+ + cost(s,, > G)

= |cost(s; = s,) + h(sy) — h(sy)] + [cost(s, = s3) + h(s3) — h(sy)] + -+
+|cost(s,;, = G) + h(G) — h(s,,)]

= cost(s; = s,) + cost(s, = s3) + -+ + cost(s,, = G) — h(sy) +h(G)

Since cost(s — s") = 0 by the consistency of h, A*’s optimality follows
UCS's optimality under non-negative cost.



The Optimality of A*

Definitions

A heuristic function h Is called admissible if for all s
0 < h(s) < h*(s)

where h*(s) is the true minimum distance from s to goal.

Theorems

If h IS consistent, then it is also admissible.

If the heuristic function is admissible and the graph is a tree, then A*
returns minimum-cost solution.




The Optimality of A*

For general graphs, we can treat it like a tree by omitting the condition “if not
Reached[s’]” in the graph search algorithm (like what we did for memory-
efficient DFS).

This allows us to apply the theorem in the previous page.




Admissible but not Consistent
b < 3 ) th(c)




Admissible but not Consistent

S (0+2)

Expanded = {}



Admissible but not Consistent

A (1+4) B(1+1)

Expanded = {S}



Admissible but not Consistent

S (0+2)

>

A (1+4) B(1+1)

|

C (3+1)

Expanded = {S, B}



Admissible but not Consistent

S (0+2)

>

A (1+4) B(1+1)

|

C (3+1)

l

G (6+0)

Expanded = {S, B, C}



Admissible but not Consistent

A (1+4) B (1+1)

o

-2+ C(3+1)

l

G (6+0)

Expanded = {S, B, C}



The Optimality of A*

Assume dist(s, G,) < dist(s, G,)

If admissible + tree, then A*

returns minimume-cost solution.

Proof by contradiction

> Path returned by A*
—_— - > Optlmal Path

By the tree structure, every node can only be
reached by its unique predecessor

§

n expanded earlier than G,

a, expanded earlier than G,

¢ f(a)) =[g(ay) + h(ay)J< g(ay) + h* (ay)

= dist(s, G,) < dist(s,G{) < = f(G1)
a, expanded earlier than G,

v f(az) = g(ay) + h(ay) < g(az) + h*(ay)
= dist(s, G,) < f(G;)

a,—1 €xpanded earlier than G,

G, expanded earlier than G4



Why “Admissibility”? (with an example)

h=6

We hope that the nodes on the shortest path are expanded before G is expanded.

"\ f
9(A) + h(A) < g(A) + h*(A) 9(G)
Shortest path length from Sto G Some path length from S to G

Admissibility ensures g(A) + h(A) < g(G)



Creating Admissible/Consistent Heuristics

e Most of the work in solving hard search problems is in coming up with
admissible/consistent heuristics.

e Often, admissible/consistent heuristics are solutions to relaxed problems,
where new actions are available.

e |Inadmissible heuristics are often useful too.



Example: 8 Puzzles

p2
>

Goal State

Start State

Average nodes expanded when the
optimal path has...

...4 steps |...8 steps ...12 steps
UCS 112 6,300 3.6 x 10°
#wrong tile 13 39 227
Manhattan 12 25 /3




Homework 1
Xuhui Kang, Haolin Liu

Deadline: 11:59PM, September 16



Homework 1

1. Choice Questions (10 points)
a. 14 questions.
b. Choice questions are 10 points in total and distributed evenly

2. Program Questions (25 points)



Homework 1: Choice Questions

o Each question may be either single-choice or multiple-choice. Read
carefully and select your answers accordingly.
e Grading:
o Full Credit: If all correct options are selected.
o Partial Credit: If only some correct options are selected, with no wrong options

chosen.
o No Credit: If any incorrect options are selected.

o Submission: Please answer directly on Gradescope. No need to submit a
separate PDF.

e Scores and correct answers will not be released immediately after
submission.



Homework 1: Coding

In this problem, you are going to help Pacman find paths in a maze world by
focusing on implementing search algorithms.

Autograder is given both offline and online in GradeScope. Your grade in
gradescope is the final grade.

SCORE: 922



Homework 1: Coding

Question 1 -- 4: Implement Depth First Search, Breadth First Search, Uniform
Cost Search, and A* algorithm. Your goal is to reach a target area.

# 5188 Pacman - X

SCORE: -108



Homework 1: Coding

Question 5 : The goal of this question is to visit all four corners rather than
reaching a destination state.

Question 6: In the corner search problem, you need to implement an
admissible heuristic function for A* algorithm.

You may need to consider
more complex state space,
which not only contain
possible coordinate of the Pac-
Man, but tracking the
visitation of corners as well.




Homework 1: Coding

Question 7 : The goal of this question is to find a way to eat all of the pellets
in the maze. The position of the pellets is known to the pacman.




Homework 1: Coding

Question 8 : The goal of this question is to eat the closest dot (pellet) by
finding the path to it.

SCORE: 877
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