Search

Chen-Yu Wei

~

Question

A farmer wants to get his cabbage, goat, and wolf across a river. He has a boat that only holds two. He cannot leave the cabbage and goat alone or the goat and wolf alone. How many river crossings does he need?

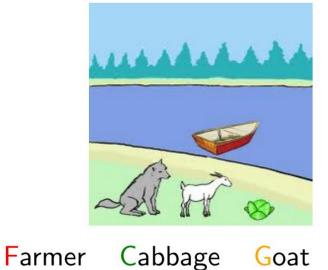
- 4 - 5 - 6 - 7

- no solution

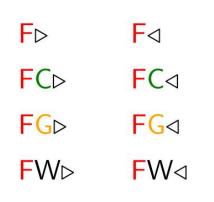
https://stanford-cs221.github.io/autumn2023-extra/modules/search/modeling.pdf

Model the Problem

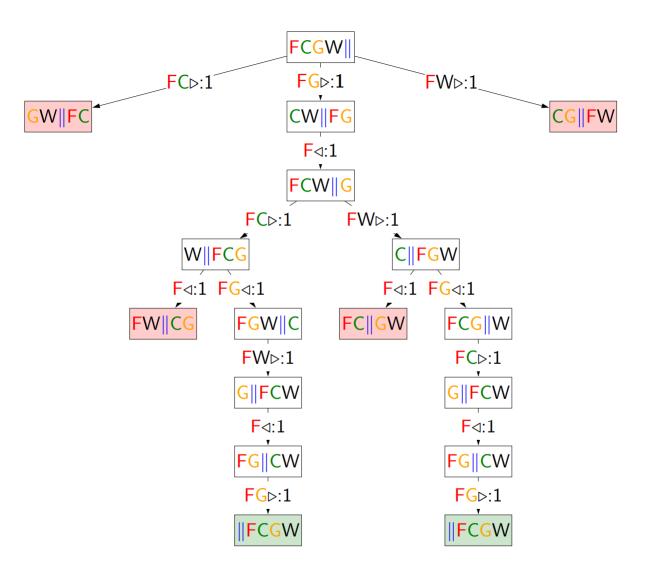
How many different "states"? How many different "actions"?



Goat Wolf



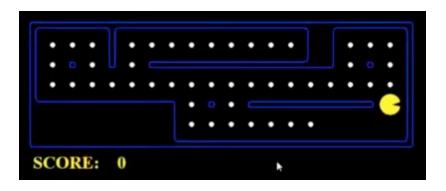
Build a Search Tree



Search Problem

- State space
- Initial state
- Goal test: Given a state, return whether the state is a goal
- Action
- Successor function: Given current state and action, return the new state
- (The cost of an action)

Example: PACMAN



Eat all dots

States: {(x,y), dot booleans}

Actions: NSEW

Successor: update location and possibly a dot boolean Goal test: dots all false

Go to some destination

States: (x,y) location Actions: NSEW Successor: update location only Goal test: is (x,y)=END

Example: SAINT (Slagle, 1961)

Symbolic Integrator

$$\int \frac{x^4}{(1-x^2)^{5/2}} dx = \frac{1}{3} \tan^3(\arcsin x) - \tan(\arcsin x) + \arcsin x$$

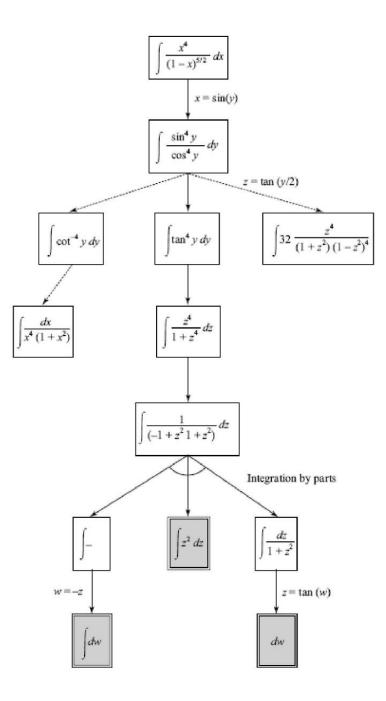
States: symbolic expression

Actions: "common techniques"

Successor: the new expression after applying the technique Goal test: whether the expression is in "standard form"

"common technique" examples:

- $\int c f(x) dx = c \int f(x) dx$
- $\int f(\tan x) dx = \int \frac{f(y)}{1+y^2} dy$
- If seeing $1 x^2$, then substitute $x = \sin y$



Example: Machine translation

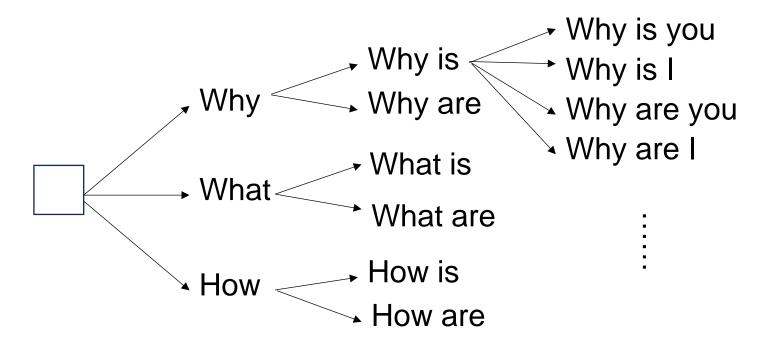
Translate "你好嗎" to English

States: current word sequence

Actions: the next word

Successor: the concatenation of current sequence and next word

Goal test: whether the current sequence means the same as 你好嗎

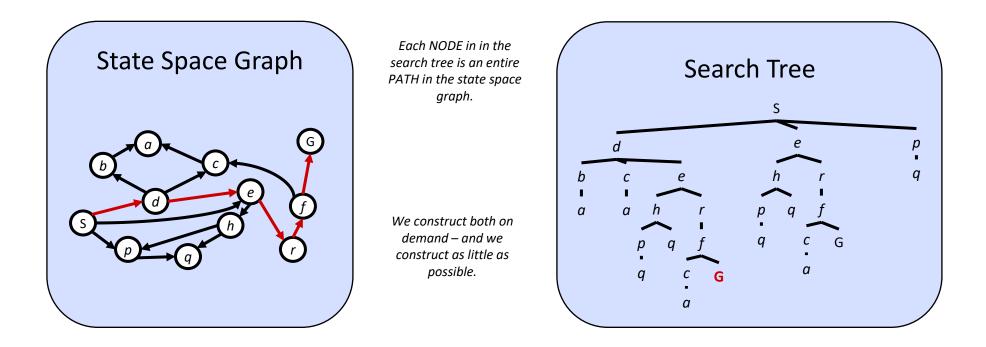


Topics

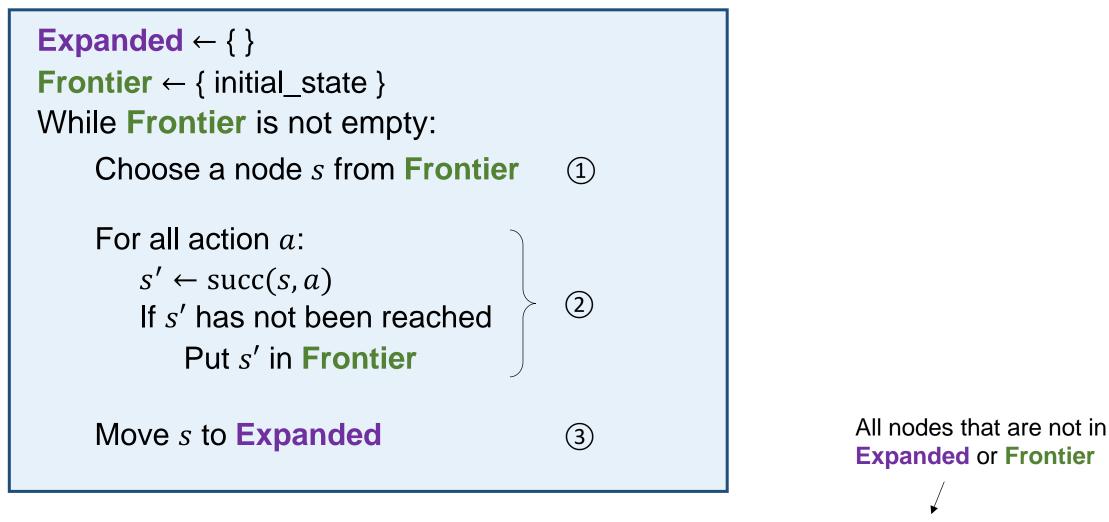
- BFS
- DFS
- UCS (Dijkstra Algorithm)
- Difference with DSA2:
 - The state space is exponentially large, and it's unlikely we'll store the whole state space in memory

General Framework

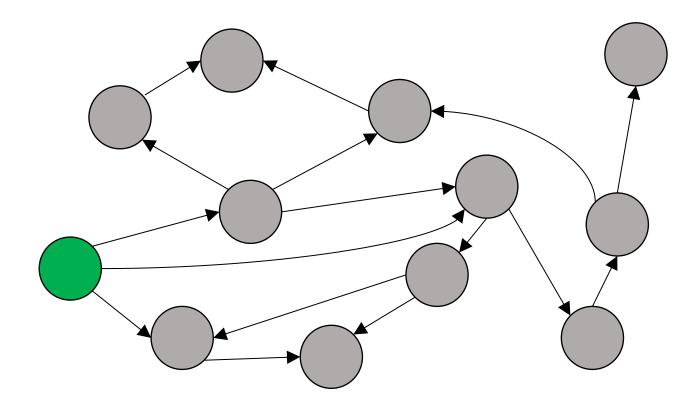
State Space and Search Tree

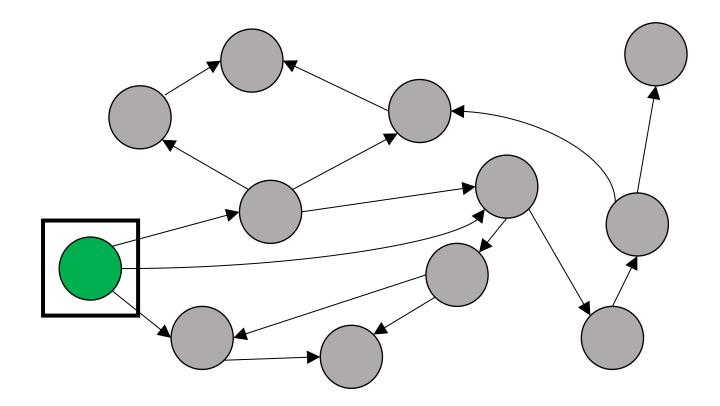


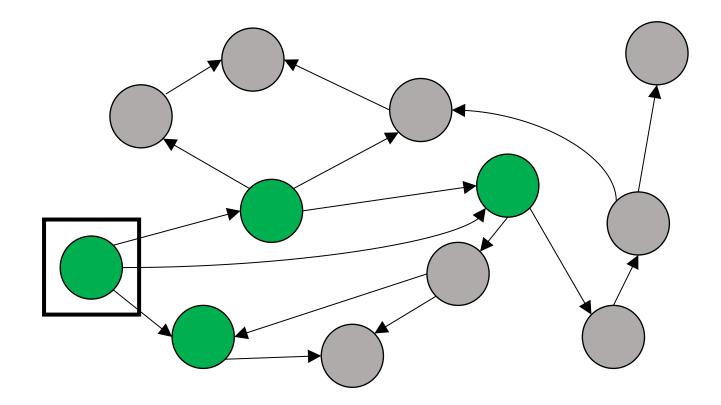
A General Framework

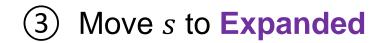


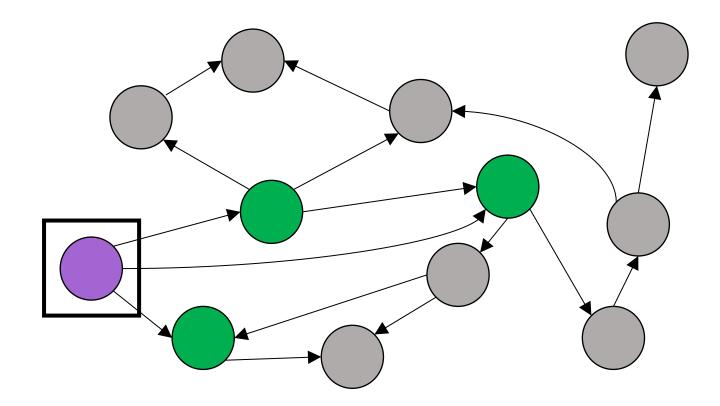
Nodes are divided into 3 groups: Expanded, Frontier, and Unreached.

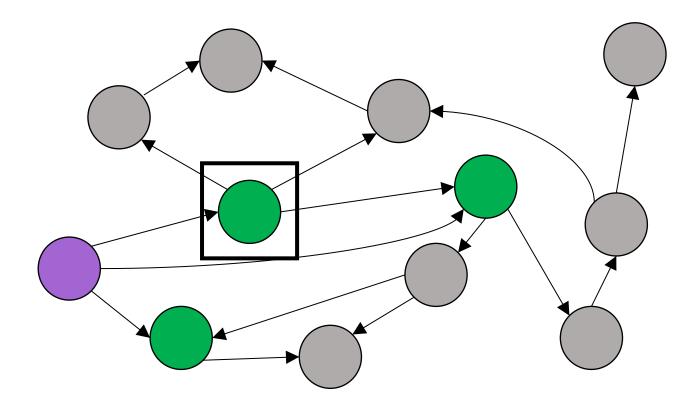


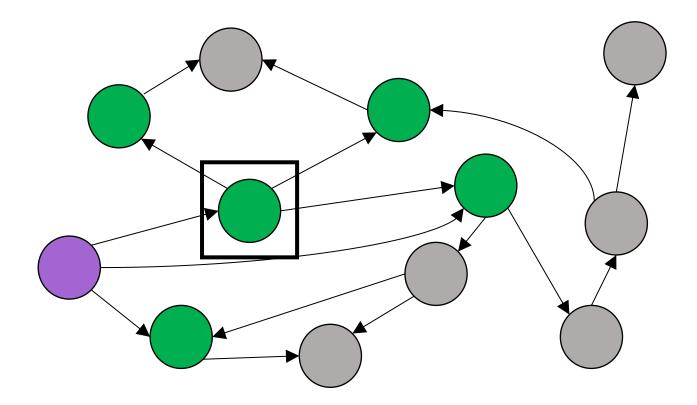


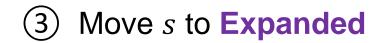


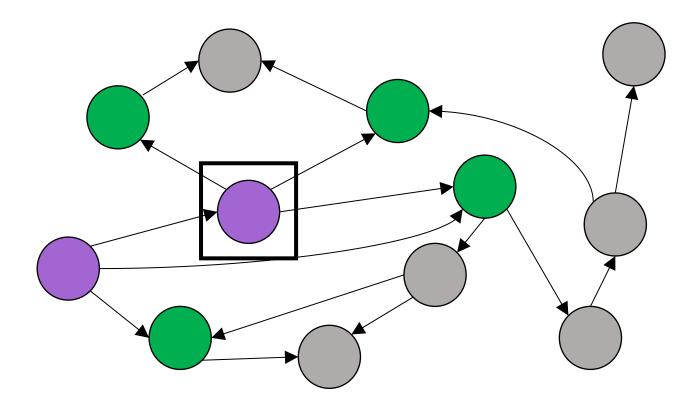


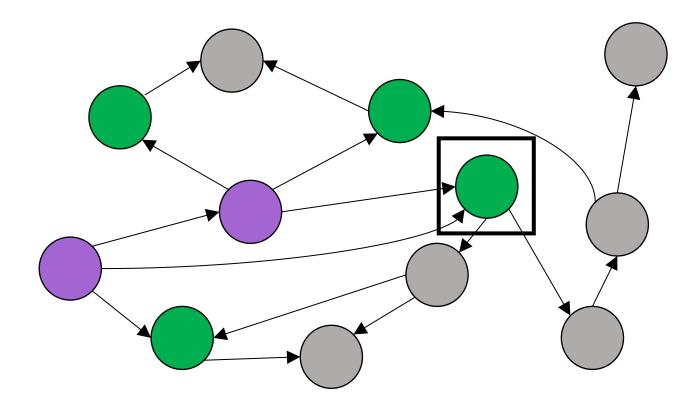


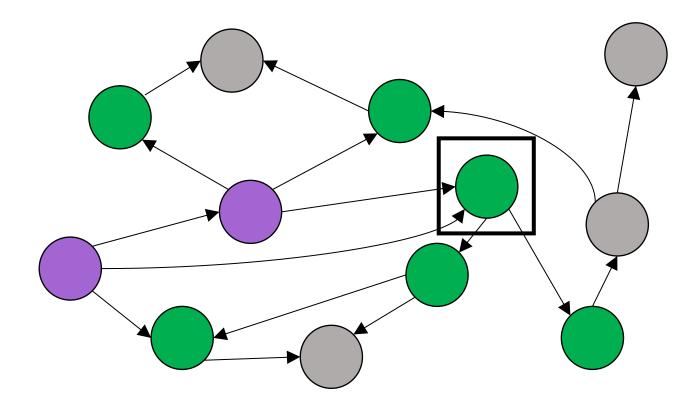


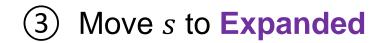


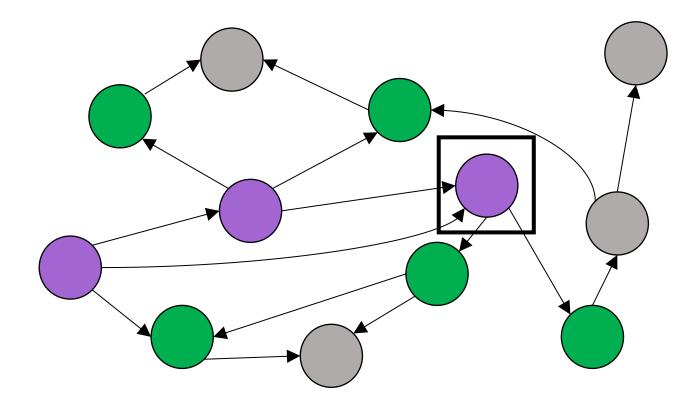


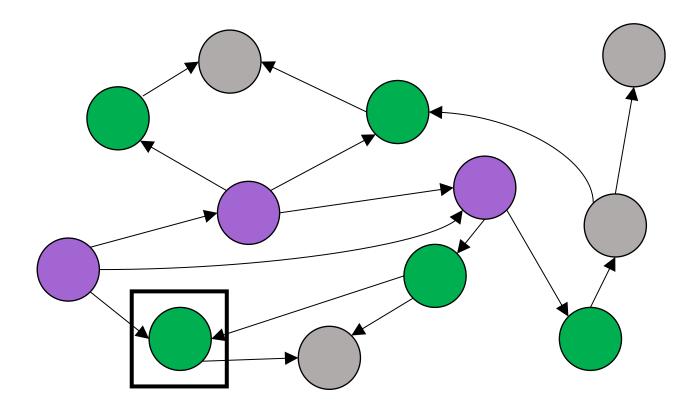


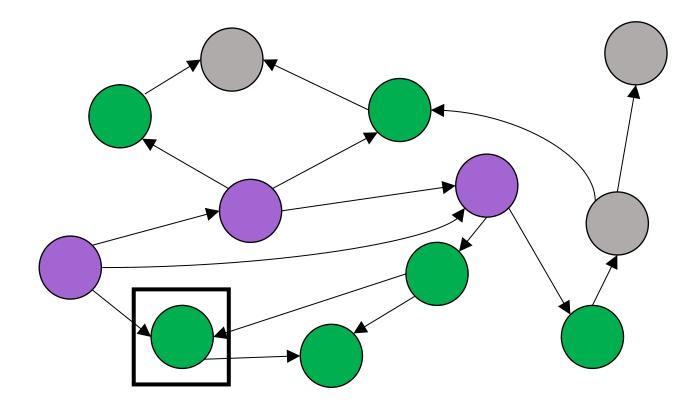


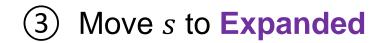


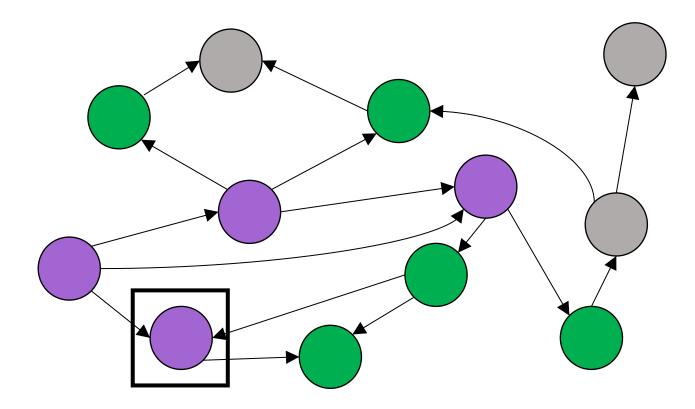












Implementation

Choose and then remove it

Expanded \leftarrow { } Frontier \leftarrow { initial_state } While Frontier is not empty: Choose a node *s* from Frontier For all action *a*: $s' \leftarrow \operatorname{succ}(s, a)$ If *s'* has not been reached: Put *s'* in Frontier

Move *s* to **Expanded**

Frontier ← { initial_state }
While Frontier is not empty:
 Pop a node s from Frontier

For all action a: $s' \leftarrow \operatorname{succ}(s, a)$ If not **Reached**[s']: Put s' in **Frontier Reached**[s'] \leftarrow True

Termination When Goal is Encountered

Frontier \leftarrow { initial_state } While **Frontier** is not empty: Pop a node *s* from **Frontier** If s is a goal state, terminate For all action *a*: $s' \leftarrow \operatorname{succ}(s, a)$ If not Reached[s']: Put s' in **Frontier** Reached[s'] \leftarrow True

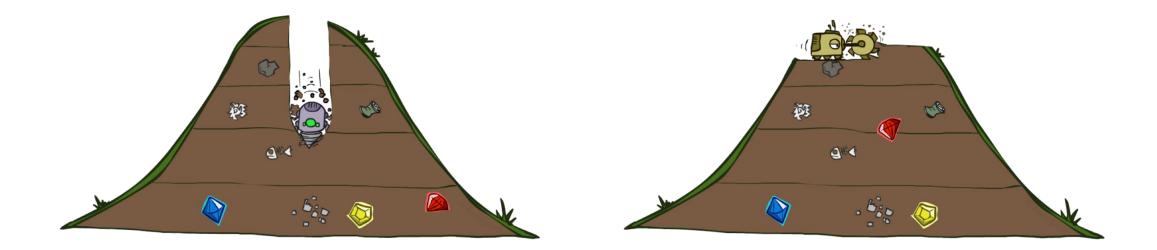
```
Frontier \leftarrow { initial_state }
While Frontier is not empty:
     Pop a node s from Frontier
     For all action a:
         s' \leftarrow \operatorname{succ}(s, a)
         If not Reached[s']:
             If s' is a goal state, terminate
             Push s' to Frontier
             Reached[s'] \leftarrow True
```

Termination When Goal is Encountered

- Early Goal Test allows quicker termination when a goal is found.
 - Breadth First Search
 - Depth First Search
- However, when actions are associated with costs and we want to find a minimum cost solution (i.e., cost-sensitive), we may have to use the Late Goal Test.
 - Uniform Cost Search (Dijkstra Algorithm)

Uninformed Search

DFS and BFS



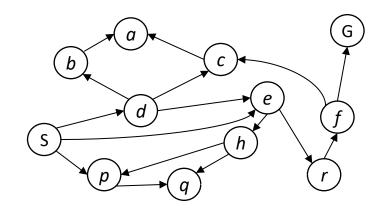
Depth First Search

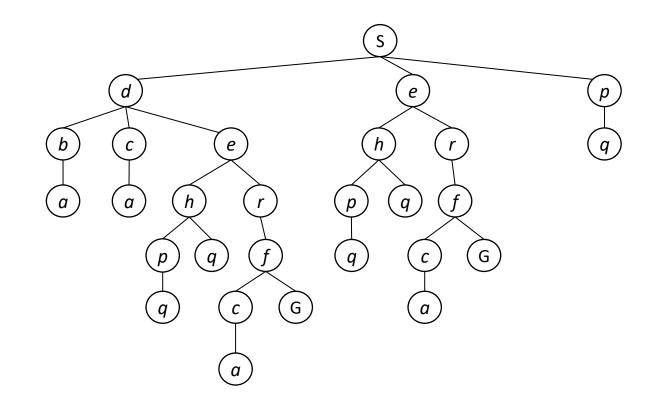
Breadth First Search

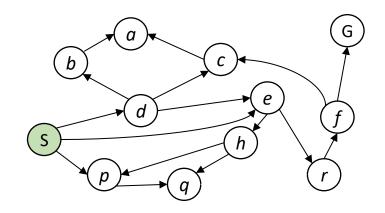
DFS and BFS

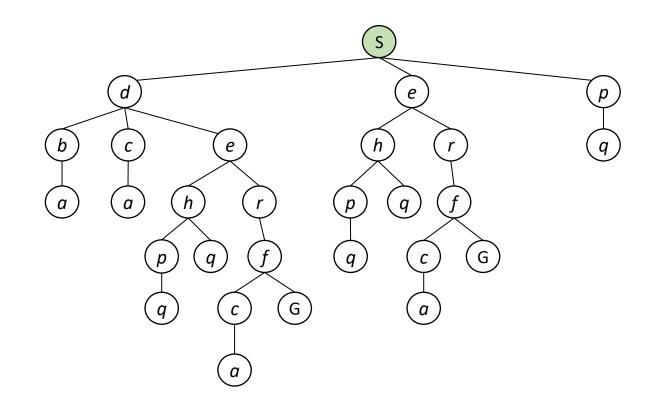
```
Frontier \leftarrow { initial_state }
While Frontier is not empty:
     Pop a node s from Frontier differ here
     For all action a:
         s' \leftarrow \operatorname{succ}(s, a)
         If not Reached[s']:
             If s' is a goal state, terminate
             Push s' to Frontier
             Reached[s'] \leftarrow True
```

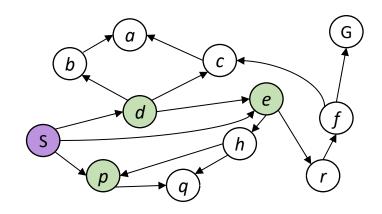
```
Frontier ← { initial_state }
While Frontier is not empty:
     Pop the newest node s from Frontier
     For all action a:
        s' \leftarrow \operatorname{succ}(s, a)
        If not Reached[s']:
            If s' is a goal state, terminate
            Push s' to Frontier
            Reached[s'] \leftarrow True
```

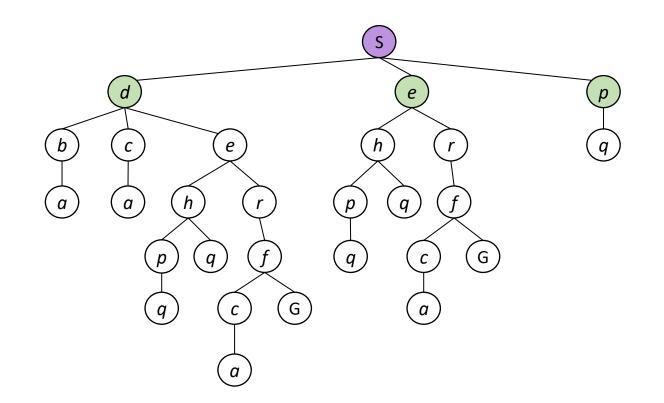


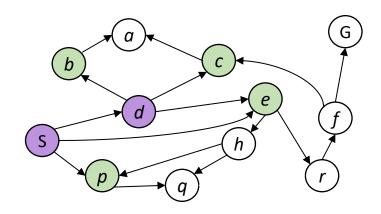


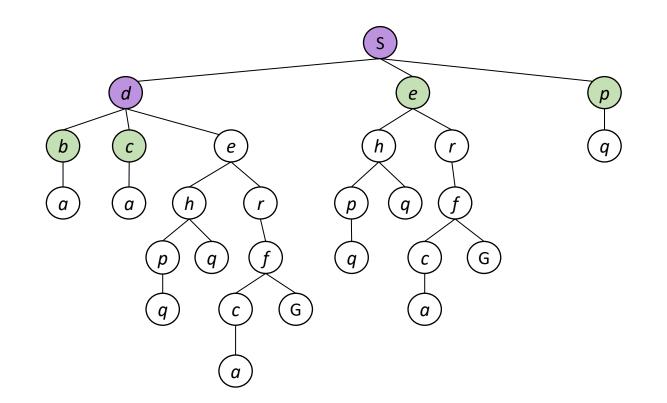


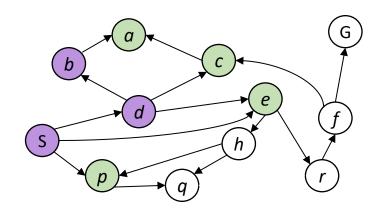


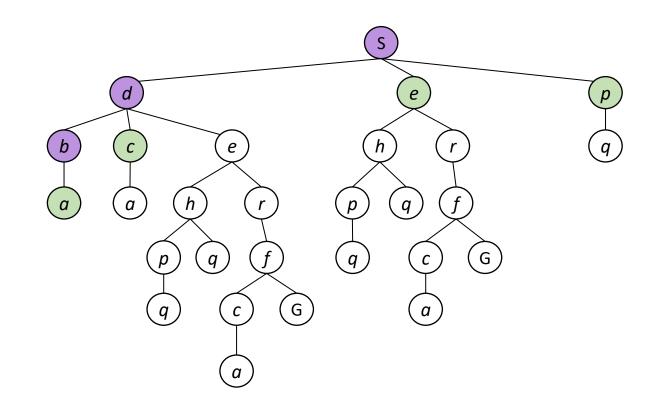


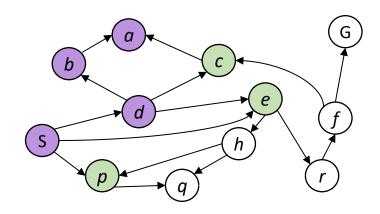


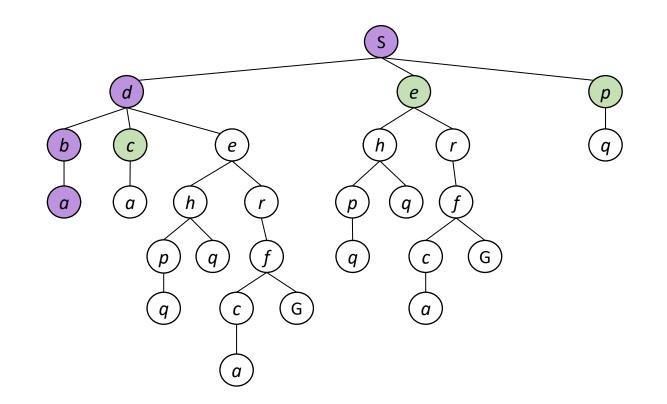


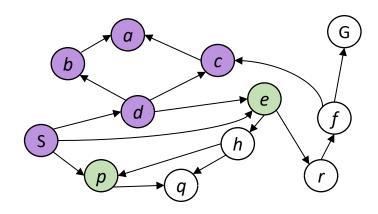


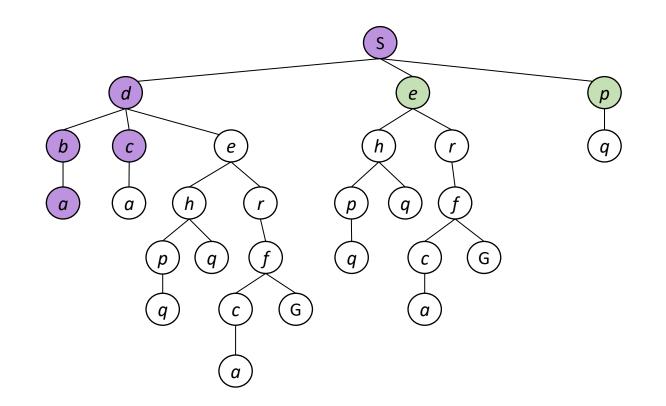


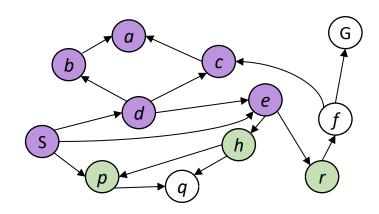


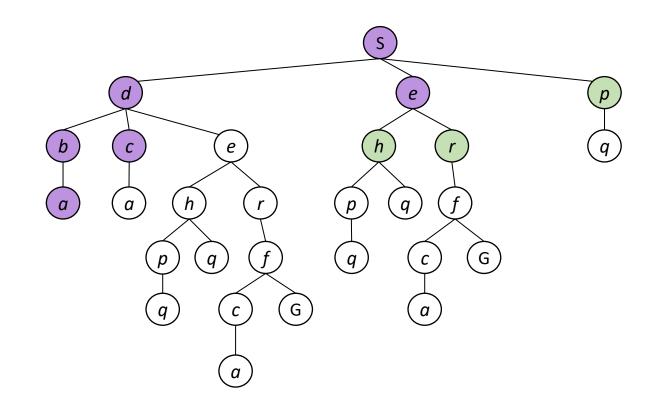


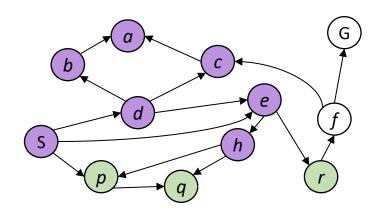


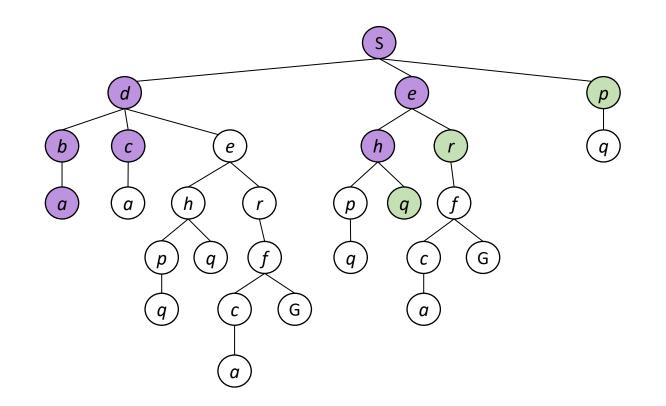


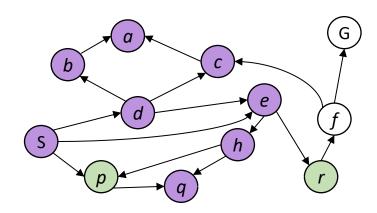


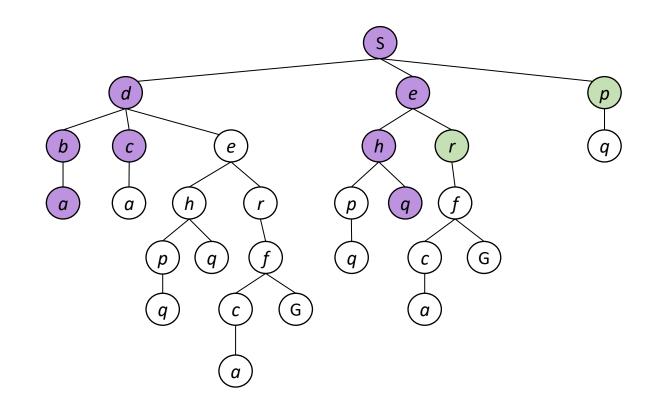


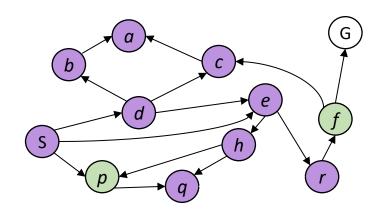


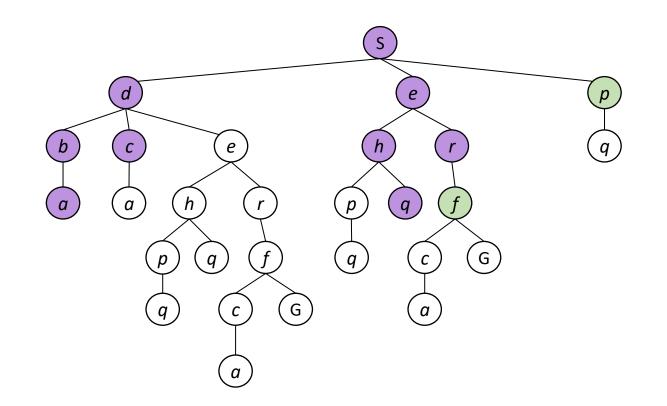


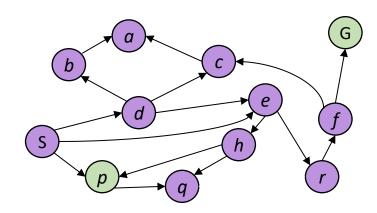


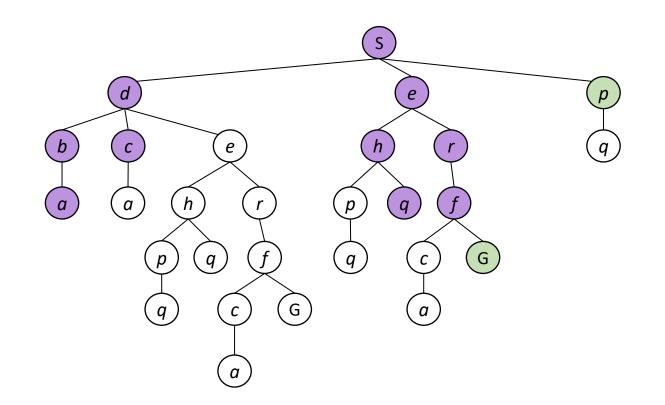




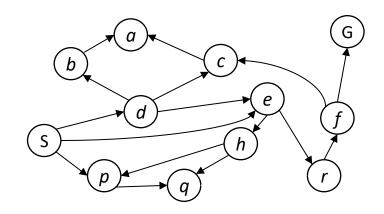


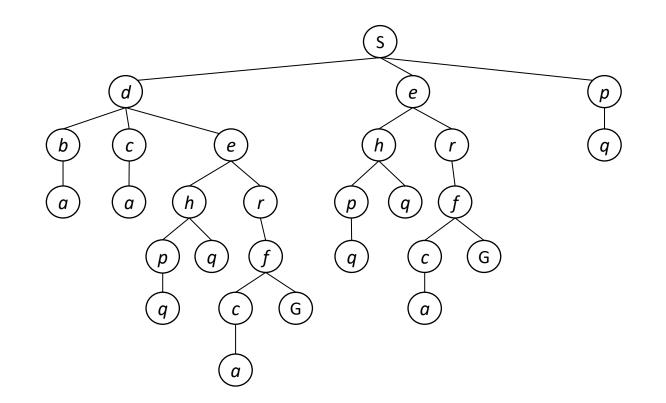


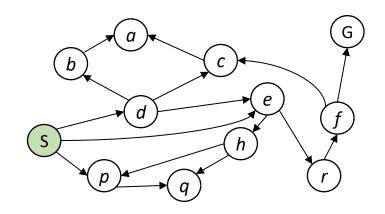


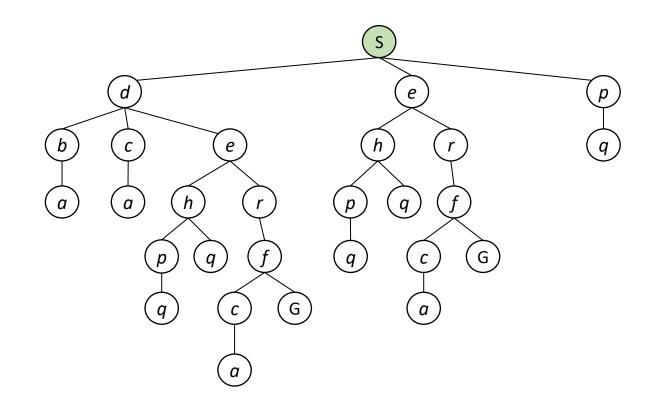


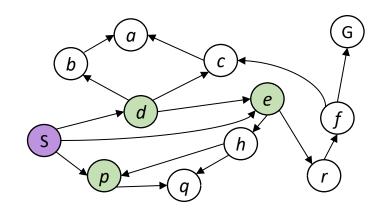
```
Frontier ← { initial_state }
While Frontier is not empty:
     Pop the oldest node s from Frontier
     For all action a:
        s' \leftarrow \operatorname{succ}(s, a)
         If not Reached[s']:
            If s' is a goal state, terminate
            Push s' to Frontier
            Reached[s'] \leftarrow True
```

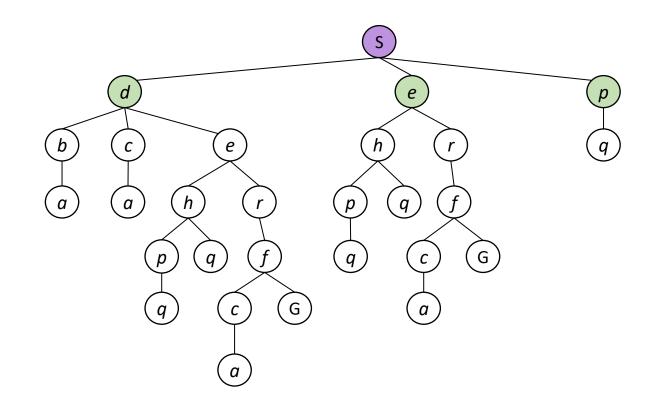


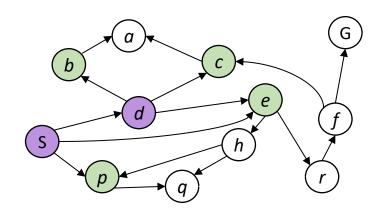


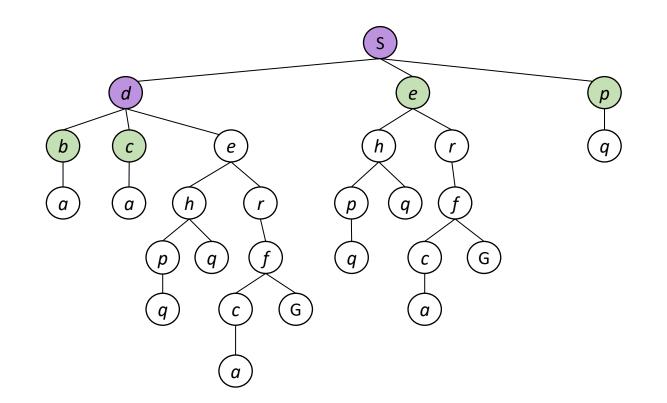


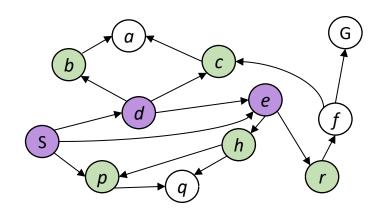


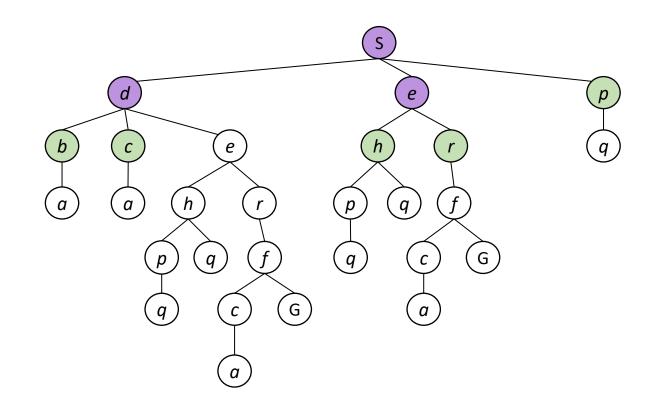


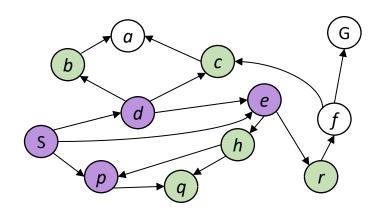


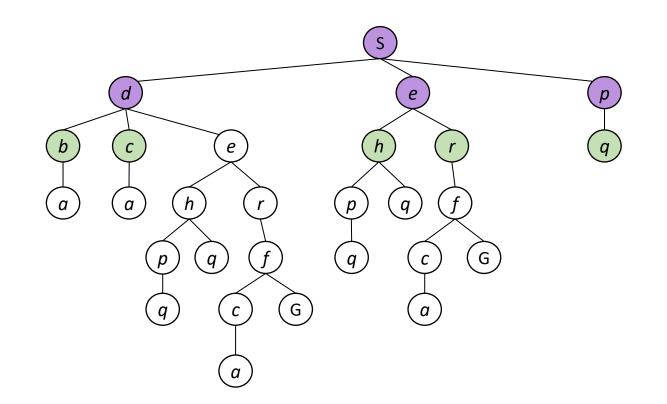


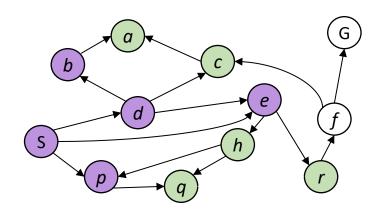


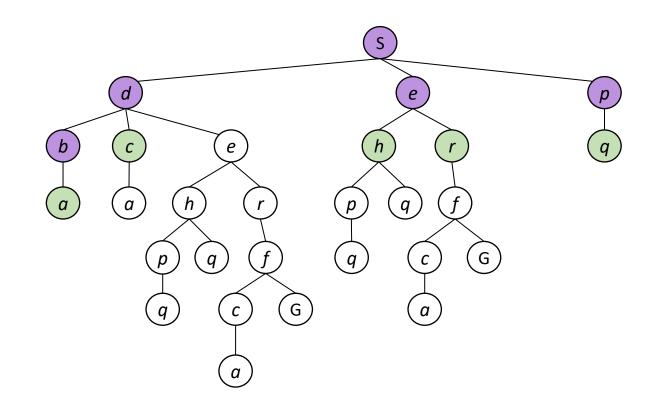


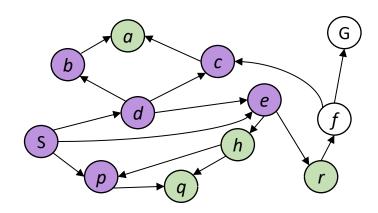


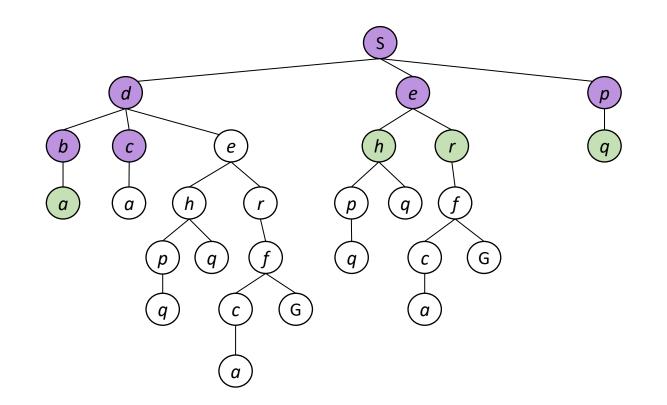


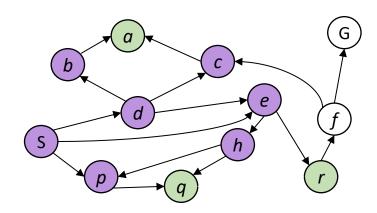


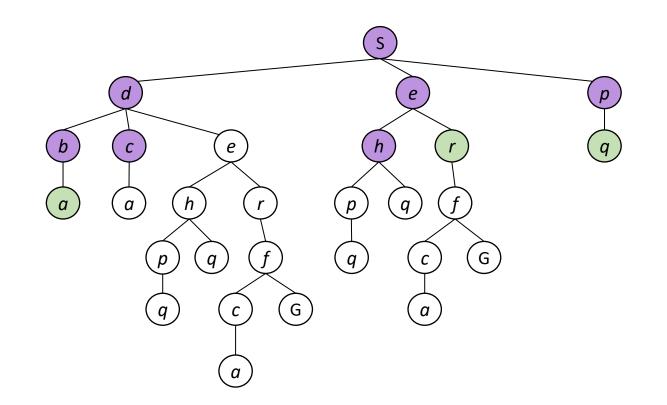


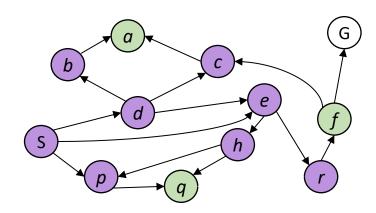


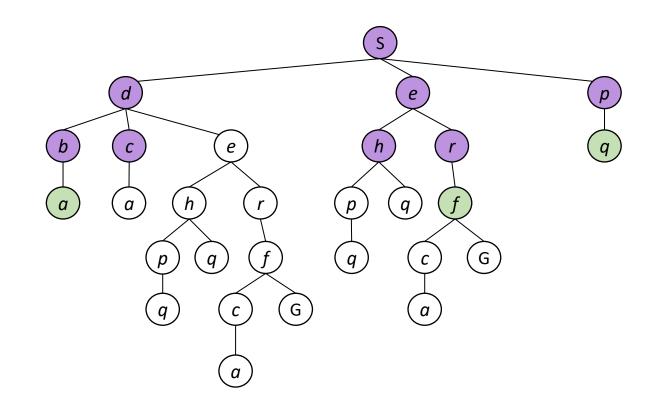


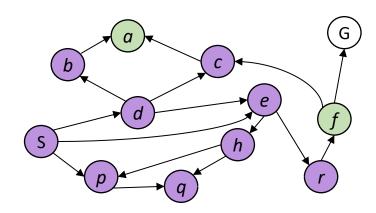


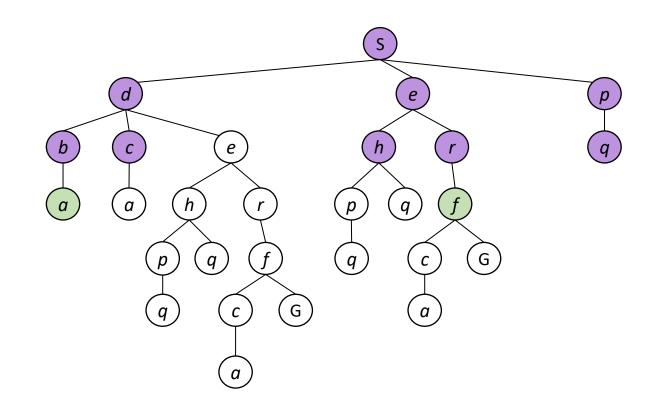


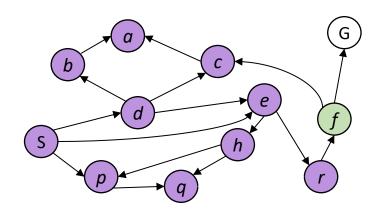


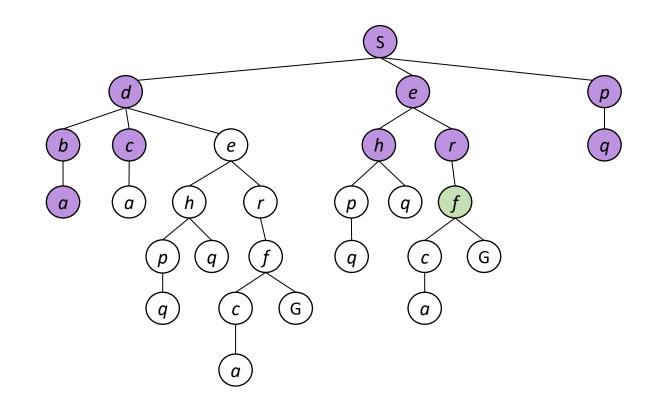


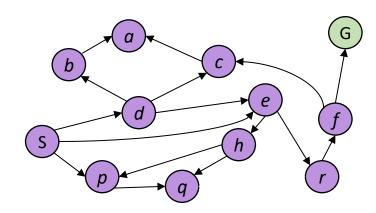


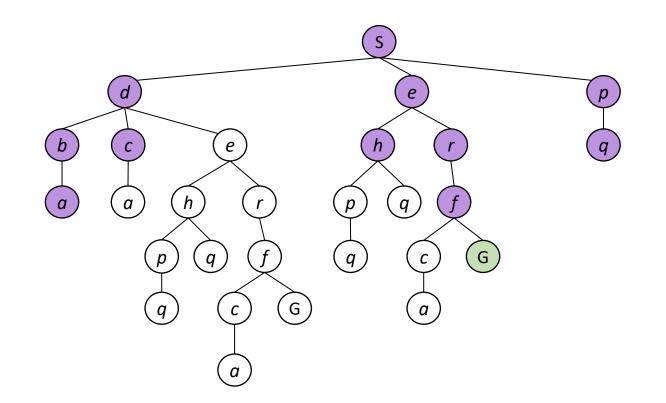






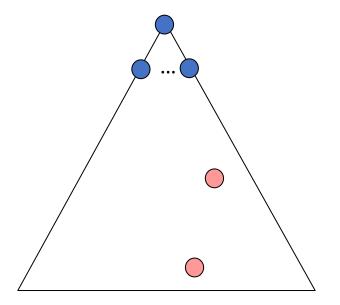






In what cases is DFS quicker to find the goal? In what cases is BFS quicker to find the goal?

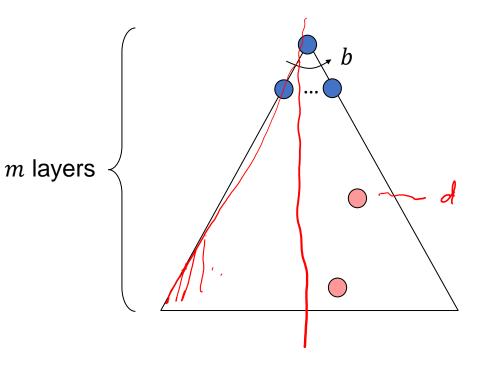
Does DFS / BFS find the goal with the smallest depth?



Suppose there exists a goal at layer $\leq d$. What is the time complexity for DFS / BFS to find a goal?

$$BFS: O\left(b + b^{2} + \cdots + b^{d-1}\right) = O\left(b^{d}\right)$$
expand loger 1

 $DFS: O(b^m)$

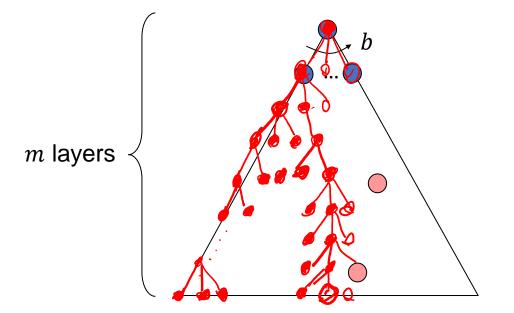


b: branching factorm: maximum depthGoals at various depths

What's the maximum possible size of **Frontier** in DFS / BFS?

$$BFS: 6(b^d)$$

$$PFS: 6(bm)$$



b: branching factorm: maximum depthGoals at various depths

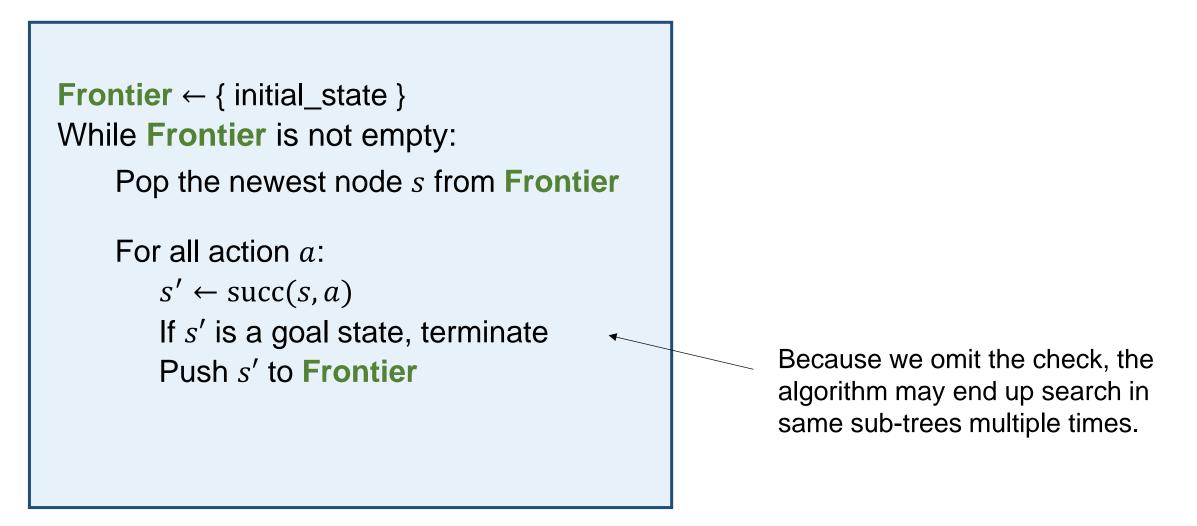
DFS vs. BFS	m = d
-------------	-------

	Time	Frontier Size
DFS	b ^m	bm
BFS	bd	bol

So DFS can be more memory-efficient than BFS?

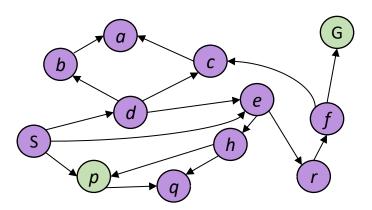
Yes ... but not with our current implementation

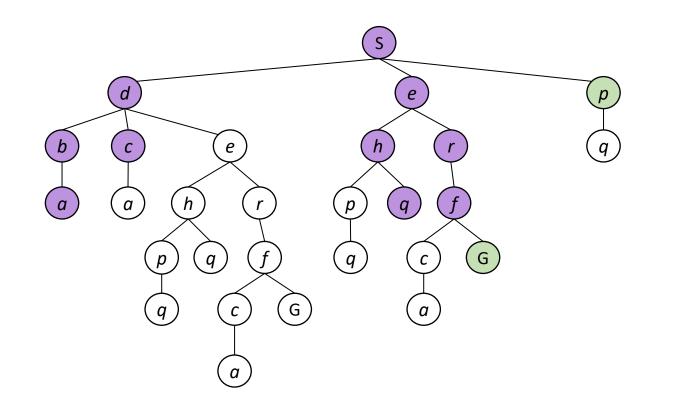
```
Frontier ← { initial_state }
While Frontier is not empty:
     Pop the newest node s from Frontier
     For all action a:
        s' \leftarrow \operatorname{succ}(s, a)
        If not Reached[s']:
            If s' is a goal state, terminate
            Push s' to Frontier
            Reached[s'] \leftarrow True
```



A Memory Efficient Version of DFS for Acyclic Graphs

Previous DFS Example

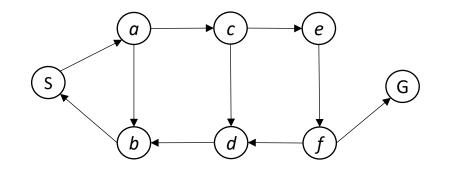




```
Frontier \leftarrow { initial_state }
While Frontier is not empty:
     Pop the newest node s from Frontier
     For all action a:
         s' \leftarrow \operatorname{succ}(s, a)
         If s' is not an ancestor of s:
             If s' is a goal state, terminate
             Push s' to Frontier
```

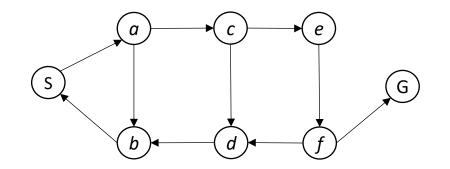

A Memory Efficient Version of DFS for Cyclic Graphs

handling cycles



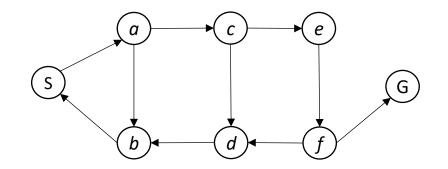
S

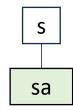
handling cycles



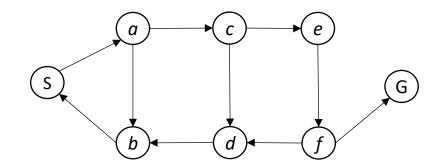
S

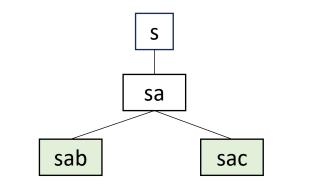
handling cycles



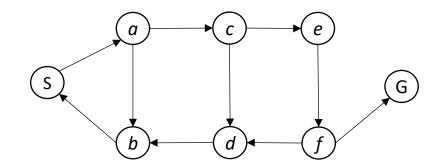


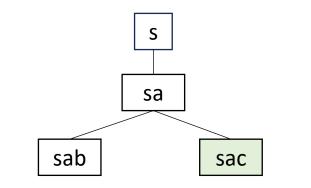
handling cycles

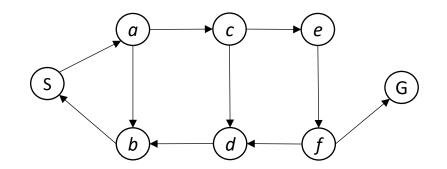


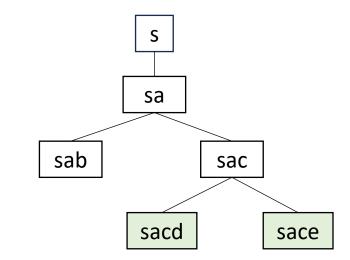


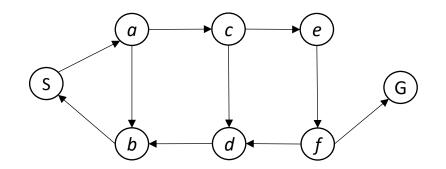
handling cycles

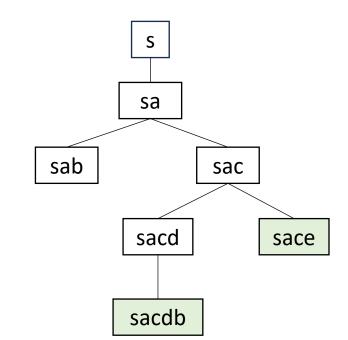


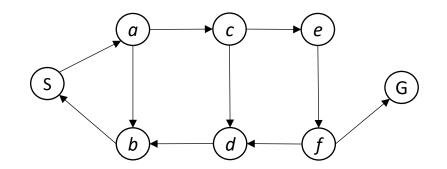


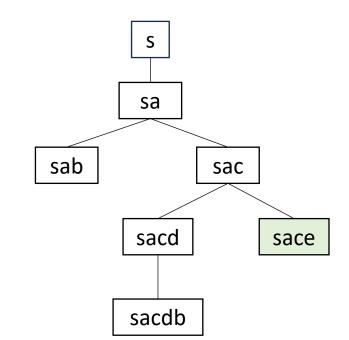


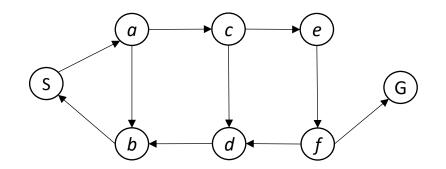


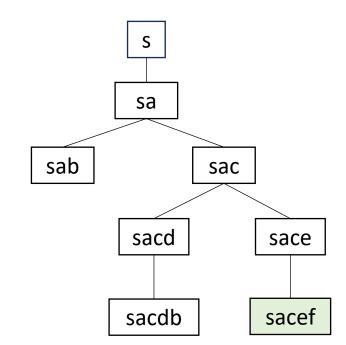


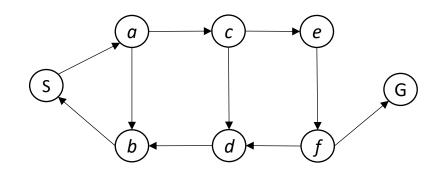


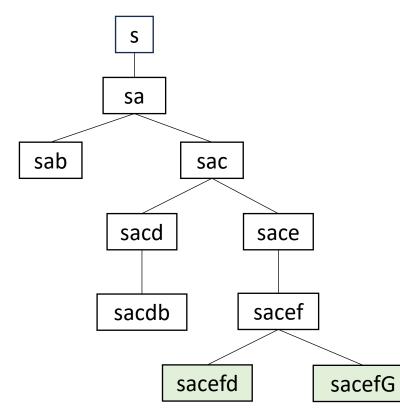


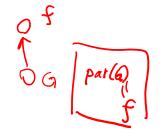












DFS vs. BFS

	Time	Space
DFS (memory-efficient version)	m. fm	bm²
BFS	bol	bd
IDS	$O\left(\sum_{i=1}^{d} i \cdot b^{i}\right) \leq O\left(d \cdot \sum_{i=1}^{d} b^{i}\right)$	6d ²
	$\leq o(d \cdot b^d)$	

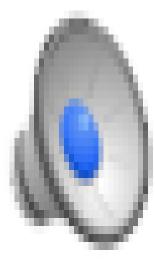
Iterative Deepening Search (IDS)

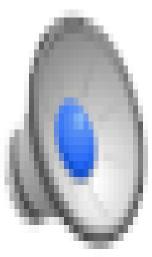
Idea: get DFS's space advantage with BFS's time advantage

10

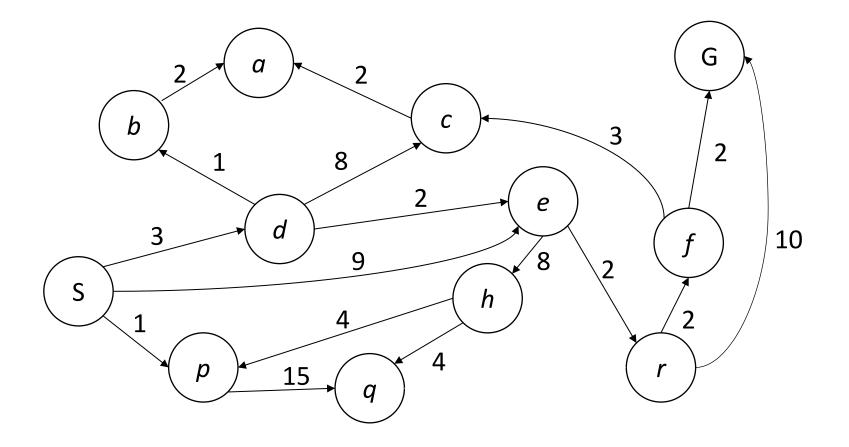
- Run a DFS with depth limit 1. If no solution...
- Run a DFS with depth limit 2. If no solution...
- Run a DFS with depth limit 3.
- Isn't that wastefully redundant?
 - Generally most work happens in the last level
 - Branching factor 10, solution 5 deep:
 - BFS: 10 + 100 + 1,000 + 10,000 + 100,000 = 111,110
 - IDS: 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450

Which One is DFS/BFS?



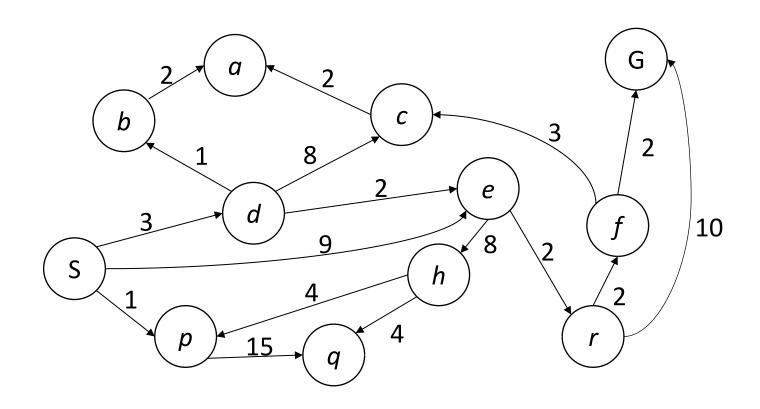


Cost-Sensitive Search Problem

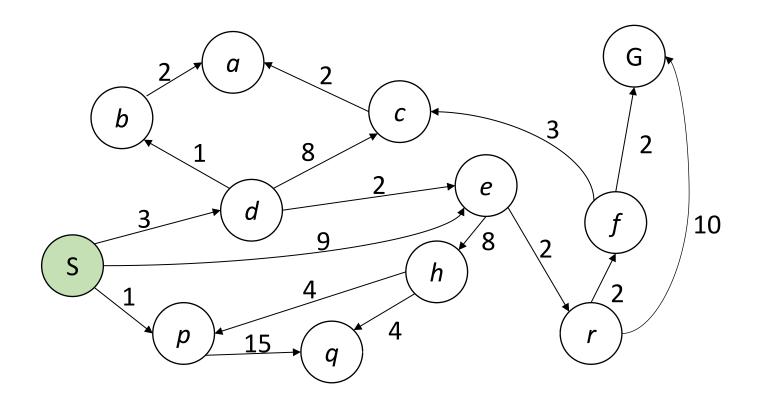


Uniform Cost Search (Dijkstra)

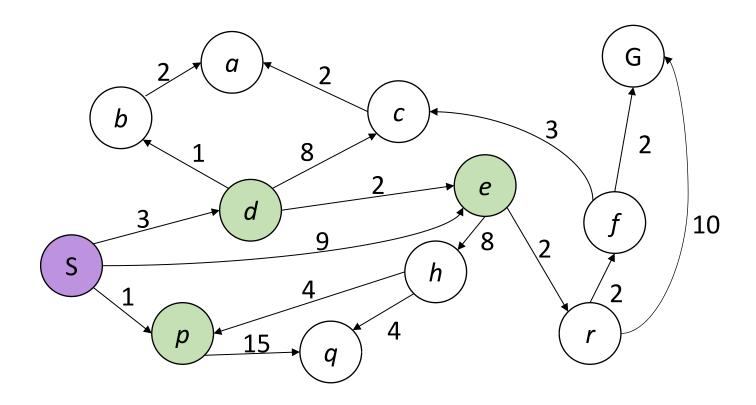
```
Frontier \leftarrow { initial_state }
While Frontier is not empty:
     Pop a node s from Frontier \leftarrow Choose the one with smallest g(s)
     If s is a goal state, then terminate
     For all action a:
         s' \leftarrow \operatorname{succ}(s, a)
         If not Reached[s']:
             Put s' in Frontier
             Reached[s'] \leftarrow True
         g(s') \leftarrow \min \{ g(s'), g(s) + \operatorname{cost}(s, a) \}
```



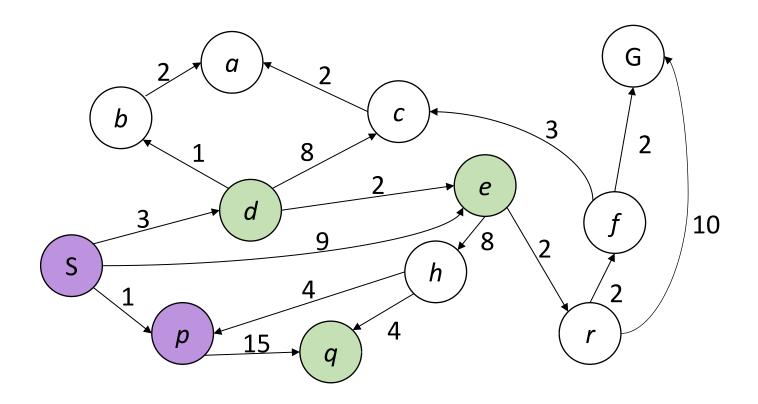
x	g(x)
S	
а	
b	
С	
d	
е	
f	
h	
р	
q	
r	
G	



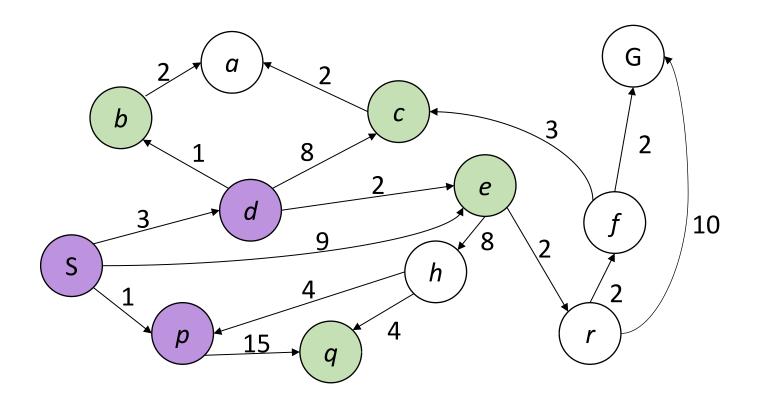
x	g(x)
S	0
а	8
b	∞
С	∞
d	∞
е	∞
f	∞
h	∞
р	∞
q	8
r	8
G	8



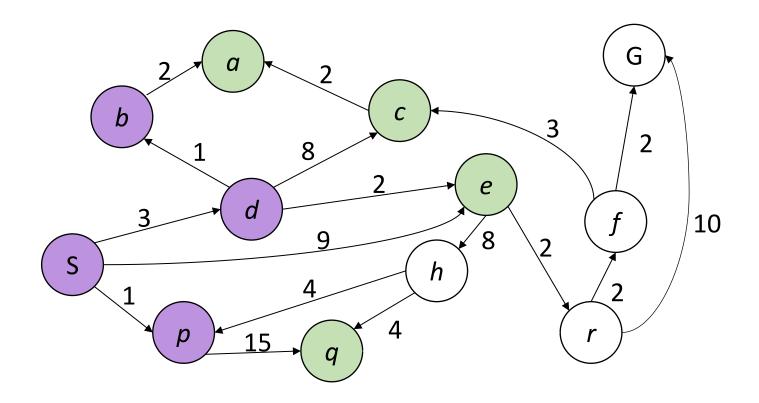
x	g(x)
S	0
а	∞
b	∞
С	∞
d	3
е	9
f	∞
h	∞
р	1
q	8
r	Ø
G	∞



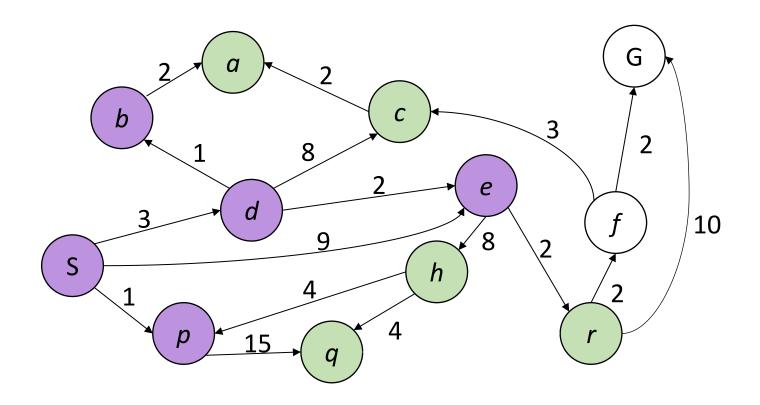
x	g(x)
S	0
а	8
b	∞
С	∞
d	3
е	9
f	∞
h	8
р	1
q	16
r	8
G	8



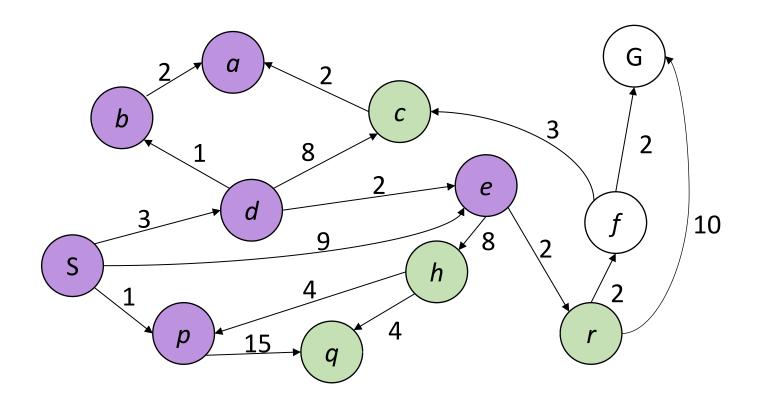
x	<i>g</i> (<i>x</i>)
S	0
а	∞
b	4
С	11
d	3
е	5
f	∞
h	8
р	1
q	16
r	8
G	∞



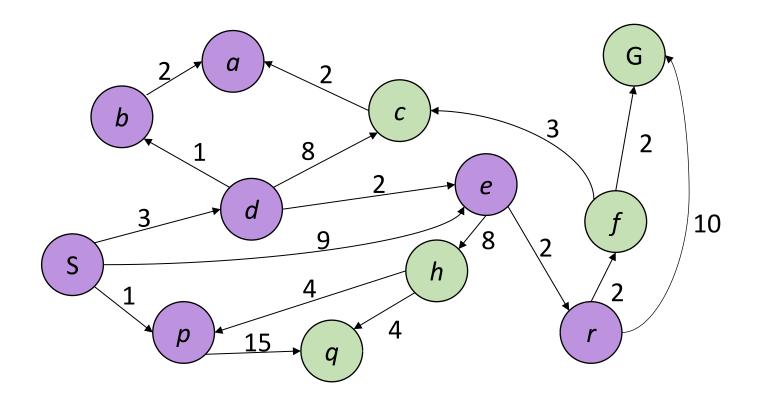
x	g(x)
S	0
а	6
b	4
С	11
d	3
е	5
f	8
h	8
р	1
q	16
r	8
G	8



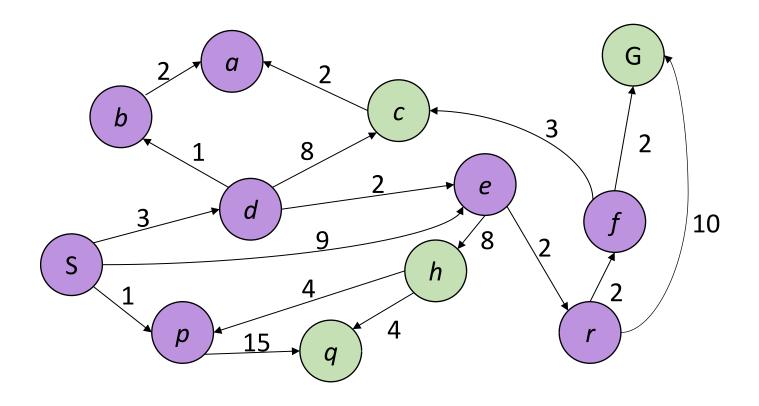
x	g(x)
S	0
а	6
b	4
С	11
d	3
е	5
f	8
h	13
р	1
q	16
r	7
G	8



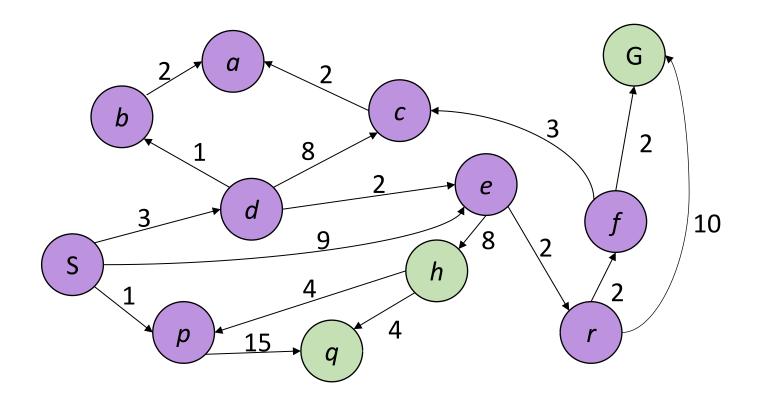
x	g(x)
S	0
а	6
b	4
С	11
d	3
е	5
f	∞
h	13
р	1
q	16
r	7
G	∞



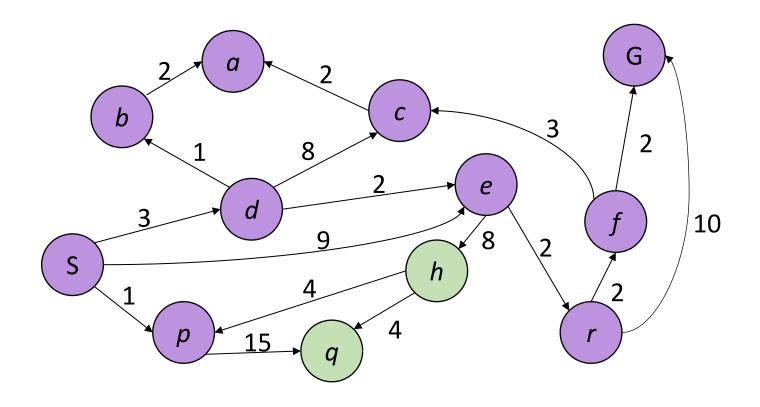
x	g(x)
S	0
а	6
b	4
С	11
d	3
е	5
f	9
h	13
р	1
q	16
r	7
G	17



x	g(x)
S	0
а	6
b	4
С	11
d	3
е	5
f	9
h	13
р	1
q	16
r	7
G	11



x	<i>g</i> (<i>x</i>)
S	0
а	6
b	4
С	11
d	3
е	5
f	9
h	13
р	1
q	16
r	7
G	11

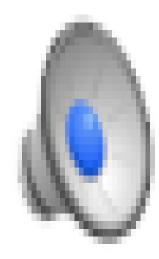


x	g(x)
S	0
а	6
b	4
С	11
d	3
е	5
f	9
h	13
р	1
q	16
r	7
G	11

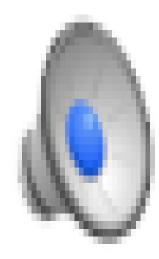
DFS/BFS/UCS? (Deep/light blue → high/low cost)



DFS/BFS/UCS? (Deep/light blue → high/low cost)

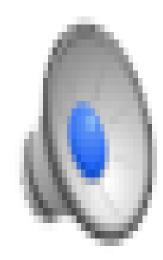


DFS/BFS/UCS? (Deep/light blue → high/low cost)

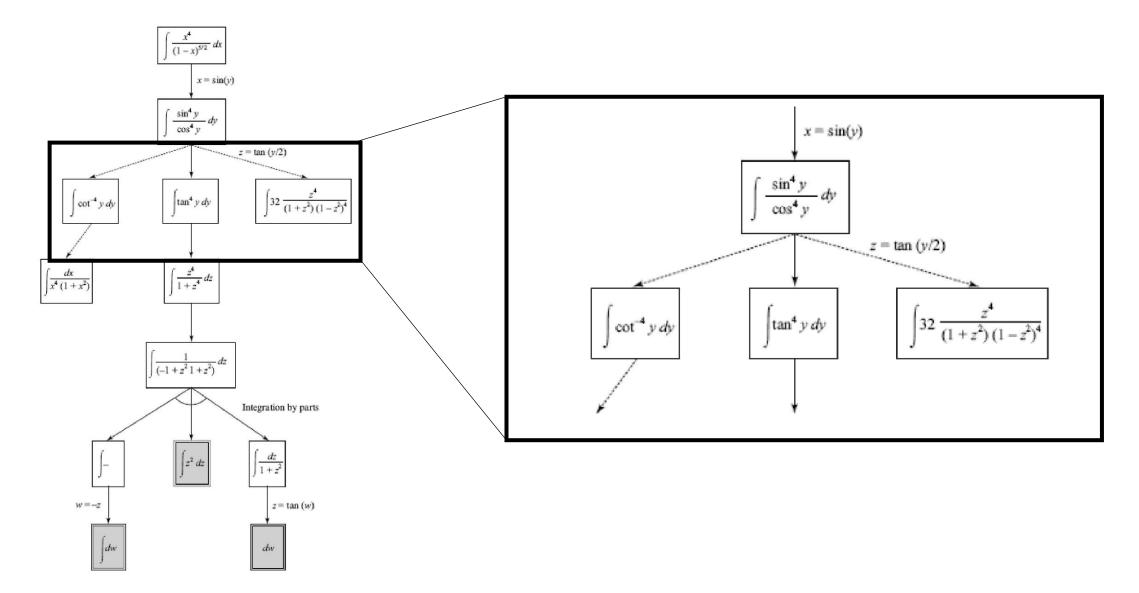


Informed Search

Inefficiency of the Search Algorithms We See So Far

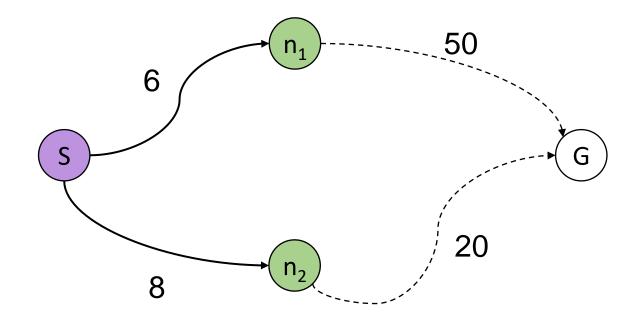


Inefficiency of the Search Algorithms We See So Far



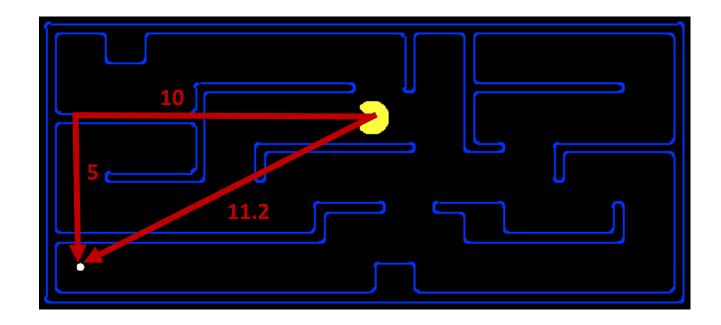
Heuristic Function

Suppose we have some "guess" for the distance from every node to the goal. Can we leverage it to accelerate the search?



Heuristic Function

Having a heuristic function that accurately predict the distance might be impossible. However, some function that **correlates** with the true distance may be easy to find.



Greedy Best-First Search

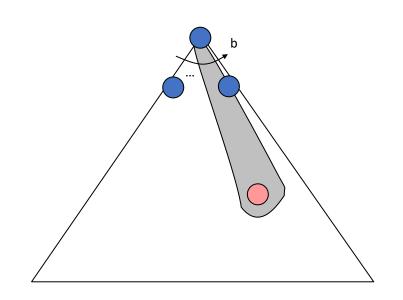
Suppose we have a heuristic function h(s).

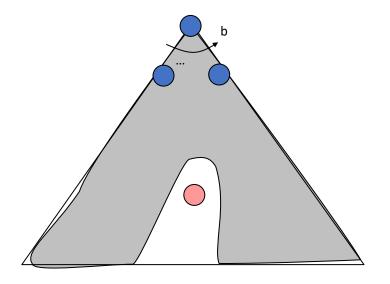
```
Frontier \leftarrow { initial_state }
While Frontier is not empty:
    Pop a node s from Frontier \leftarrow Choose the one with smallest h(s)
     For all action a:
        s' \leftarrow \operatorname{succ}(s, a)
         If not Reached[s']:
             If s' is a goal state, then terminate
             Push s' to Frontier
             Reached[s'] \leftarrow True
```

Greedy Best-First Search

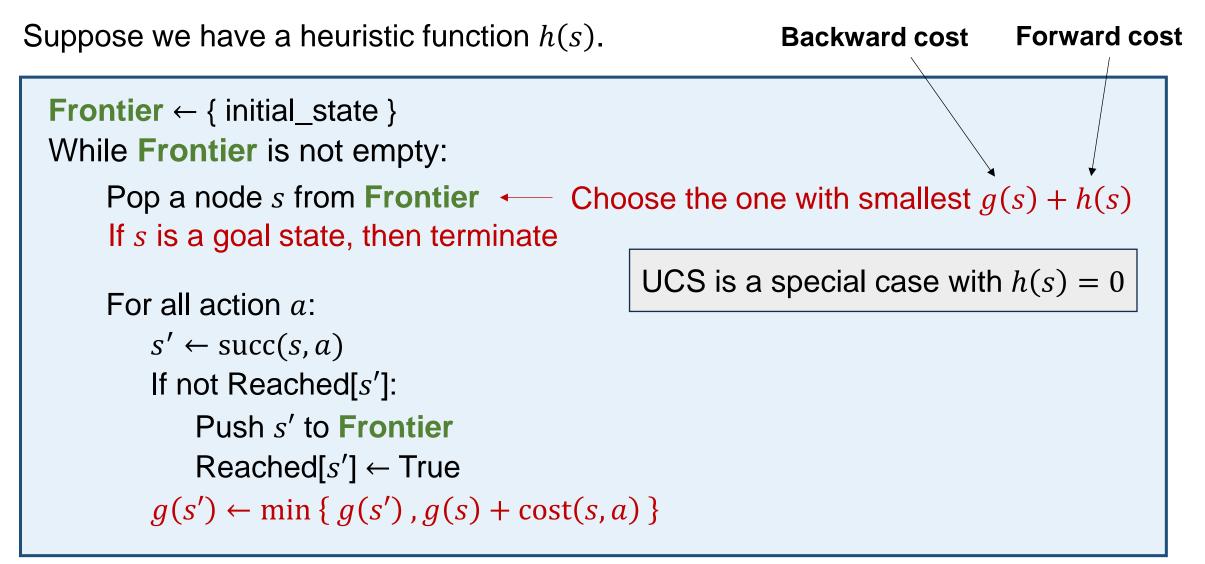
- If the heuristic is good
 - Take us directly to the goal
 - Like a nicely-guided DFS

- In the worst case
 - Take us to the wrong way
 - Like a badly-guided DFS





A* Search: Combining Greedy and UCS



A* Search

Evaluation functions:

- Greedy (Greedy Best-First) Search: h(s)
- Uniform Cost Search: g(s)
- A* Search: g(s) + h(s)
- Weighted A* Search: $g(s) + w \cdot h(s)$ for some $w \in (0, \infty)$

cost (S-)s') = cost (s, c) where s'= succ (s,a)

С

C

C = C + h(s') - h(s) < Cgood h: h(s') < h(s)

> • (1

A* Search

A* Search = Uniform Cost Search with modified cost

$$\widetilde{cost}(s,a) = cost(s,a) + h(s') - h(s)$$

Proof

Let $\tilde{g}(s)$ be the values of UCS with the modified loss

$$\tilde{g}(s) = \tilde{cost}(s_1 \rightarrow s_2) + \tilde{cost}(s_2 \rightarrow s_3) + \dots + \tilde{cost}(s_m \rightarrow s)$$

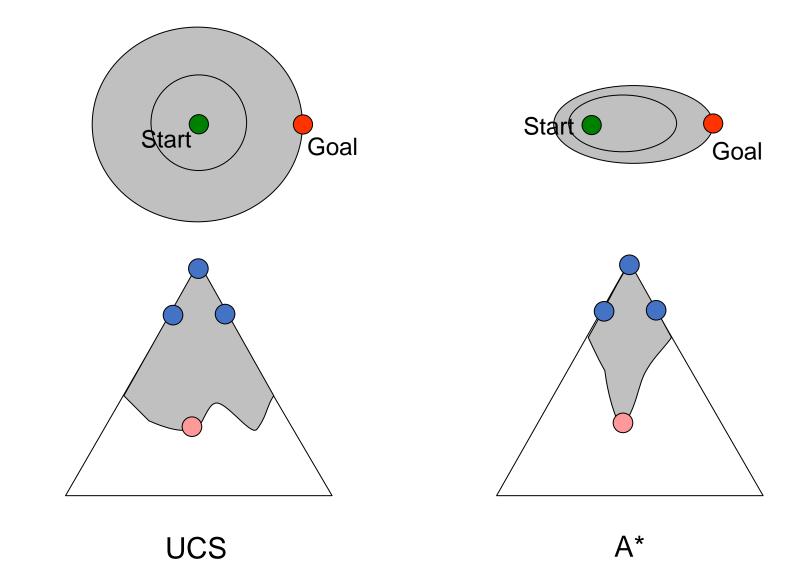
$$= [\underline{cost}(s_1 \rightarrow s_2) + h(s_2) - h(s_1)] + [\underline{cost}(s_2 \rightarrow s_3) + h(s_3) - h(s_2)] + \dots$$

$$+ [\underline{cost}(s_m \rightarrow s) + h(s) - h(s_m)]$$

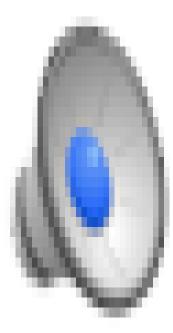
$$= g(s) + h(s) - h(s_1)$$

$$s_1 \rightarrow s_2 \rightarrow s_3 - \dots \rightarrow s_m \rightarrow s$$
initial state

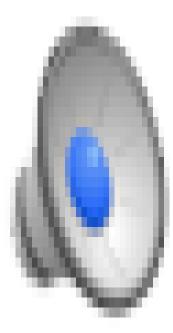
UCS vs. A*



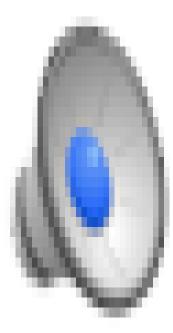
UCS / Greedy Best-First / A* ?

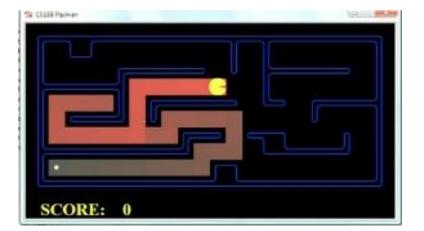


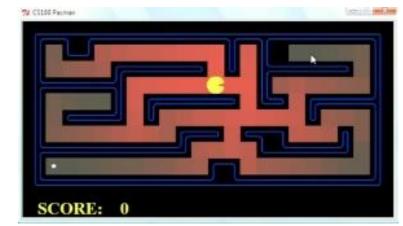
UCS / Greedy Best-First / A* ?

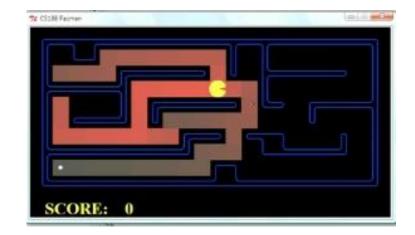


UCS / Greedy Best-First / A* ?



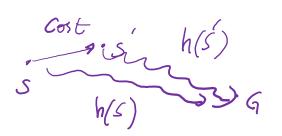






Greedy

Definitions



A heuristic function h is called **consistent** if for all s and s'

 $h(s) \le h(s') + \cos(s \to s')$ (triangle inequality)

and h(G) = 0 for any goal state G.

Theorem

If the heuristic function is **consistent**, then A* returns minimum-cost solution.

Proof A* is equivalent to UCS with $\widetilde{cost}(s \to s') := \underline{cost}(s \to s') + h(s') - h(s) \ge \bigcirc$ Total modified cost of any path $s_1 \to s_2 \to \cdots \to s_m \to G$ is

$$\begin{split} \widetilde{\operatorname{cost}}(s_1 \to s_2) &+ \widetilde{\operatorname{cost}}(s_2 \to s_3) + \dots + \widetilde{\operatorname{cost}}(s_m \to G) \\ &= [\operatorname{cost}(s_1 \to s_2) + h(s_2) - h(s_1)] + [\operatorname{cost}(s_2 \to s_3) + h(s_3) - h(s_2)] + \dots \\ &+ [\operatorname{cost}(s_m \to G) + h(G) - h(s_m)] \\ &= \operatorname{cost}(s_1 \to s_2) + \operatorname{cost}(s_2 \to s_3) + \dots + \operatorname{cost}(s_m \to G) - h(s_1) + h(G) \end{split}$$

Since $\widetilde{cost}(s \rightarrow s') \ge 0$ by the consistency of *h*, A*'s optimality follows UCS's optimality under non-negative cost.

Definitions

A heuristic function *h* is called **admissible** if for all *s*

 $0 \le h(s) \le h^\star(s)$

where $h^*(s)$ is the true minimum distance from s to goal.

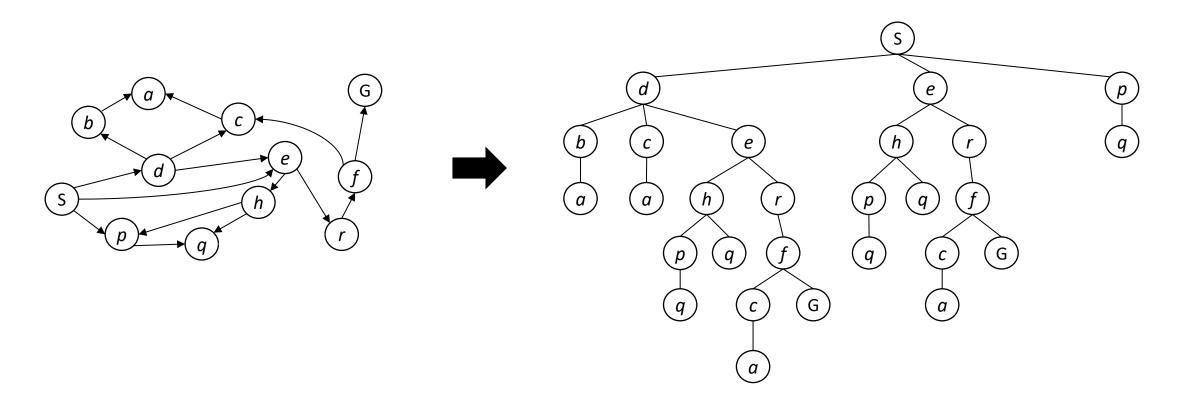
Theorems

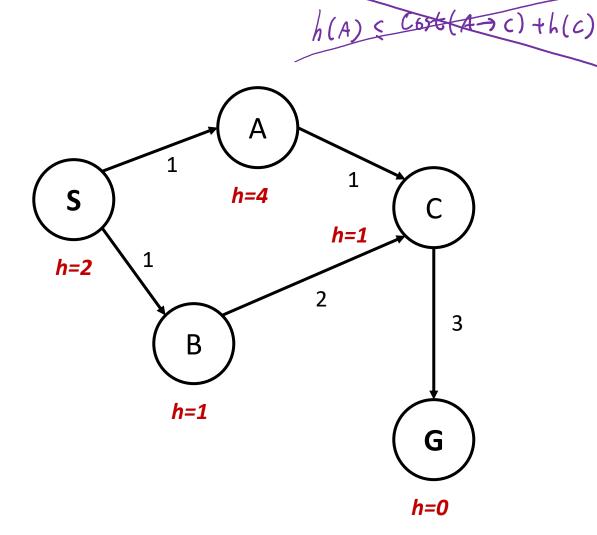
If *h* is consistent, then it is also admissible.

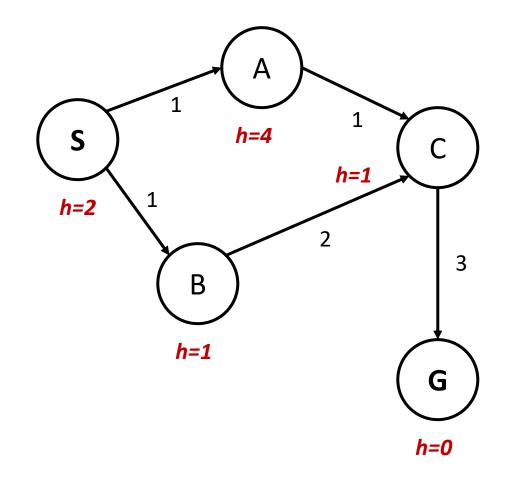
If the heuristic function is **admissible** and **the graph is a tree**, then A* returns minimum-cost solution.

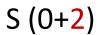
For general graphs, we can **treat it like a tree** by omitting the condition "**if not Reached[s']**" in the graph search algorithm (like what we did for memory-efficient DFS).

This allows us to apply the theorem in the previous page.

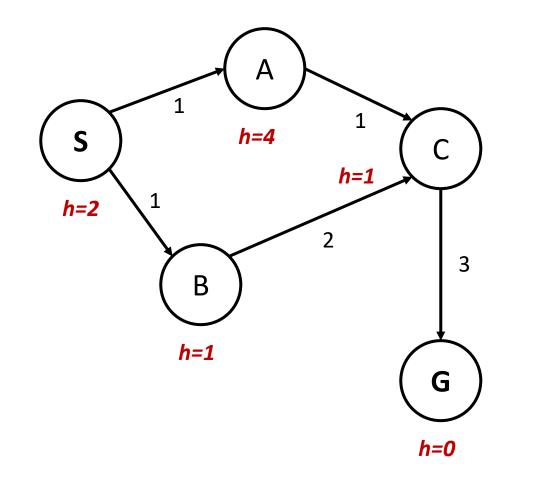


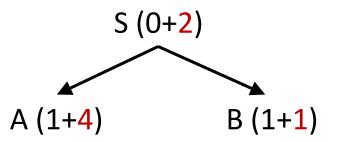




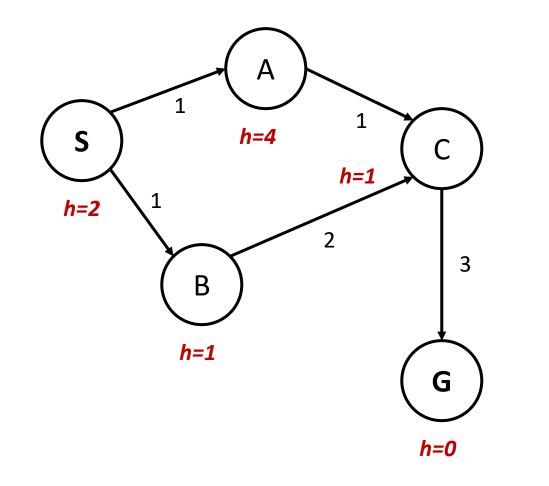


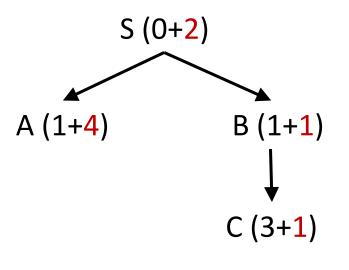
Expanded = { }



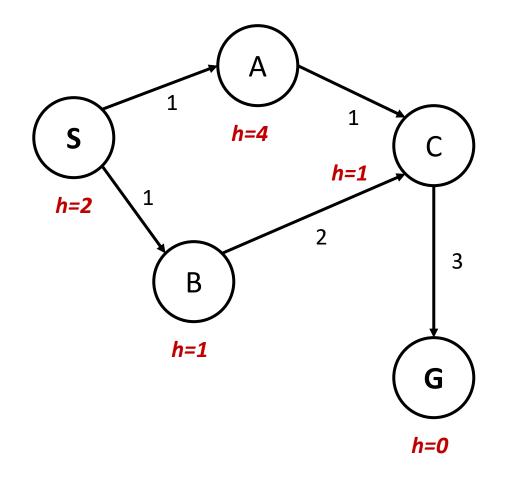


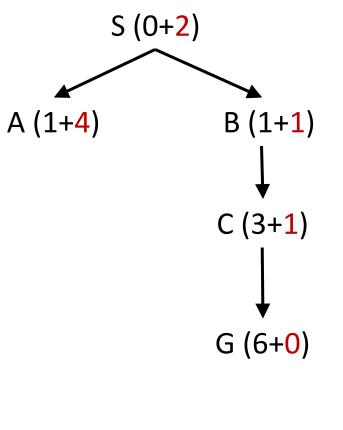
Expanded = { S }





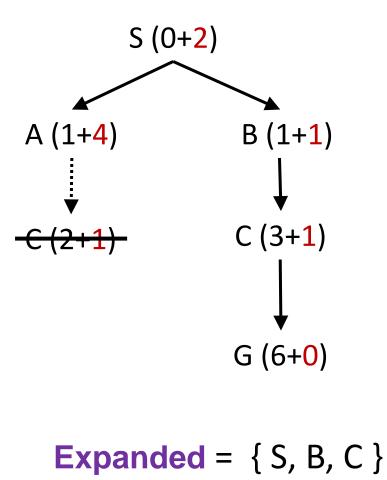
Expanded = { S, B }





Expanded = { S, B, C }

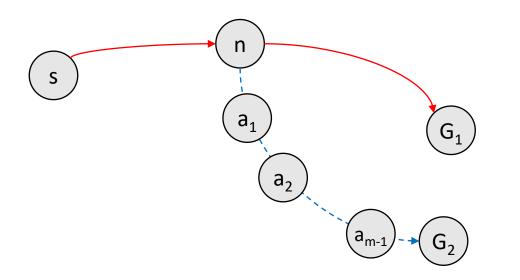




If **admissible** + **tree**, then A* returns minimum-cost solution.

Proof by contradiction





Assume $dist(s, G_2) < dist(s, G_1)$

By the tree structure, every node can only be reached by its unique predecessor

- n expanded earlier than G_1
- $a_1 \text{ expanded earlier than } G_1$ $f(a_1) = g(a_1) + h(a_1) \leq g(a_1) + h^*(a_1)$ $= \operatorname{dist}(s, G_2) < \operatorname{dist}(s, G_1) \leq g(G_1) = f(G_1)$
- a_2 expanded earlier than G_1

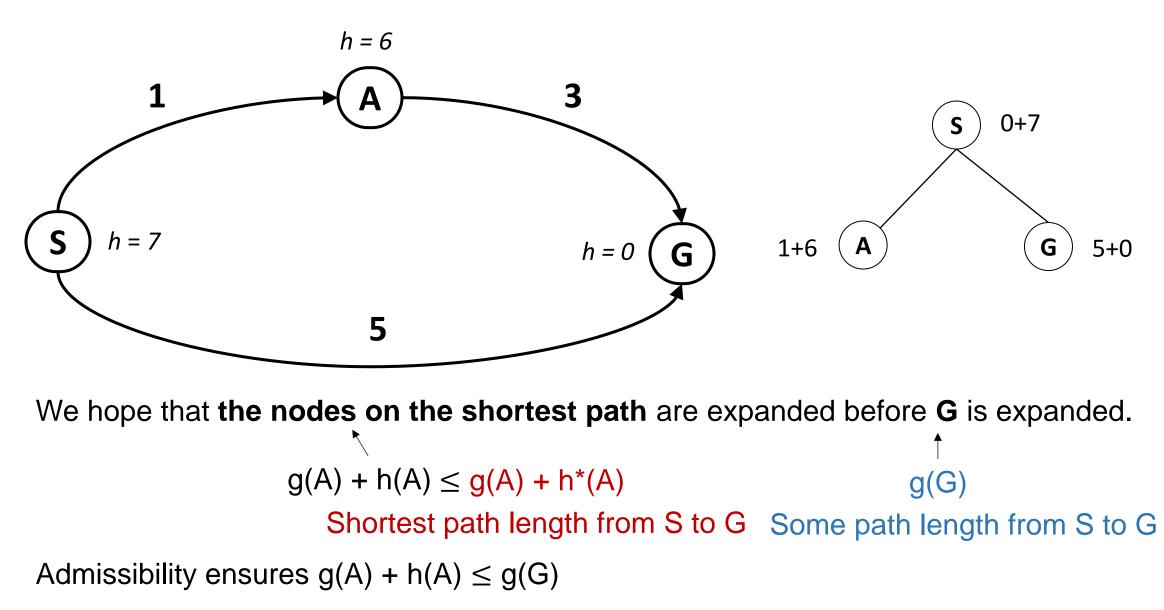
$$f(a_2) = g(a_2) + h(a_2) \le g(a_2) + h^*(a_2)$$

= dist(s, G₂) < f(G₁)

$$a_{m-1}$$
 expanded earlier than G_1

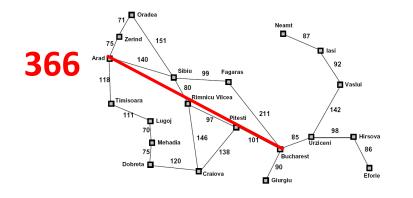
• G_2 expanded earlier than G_1

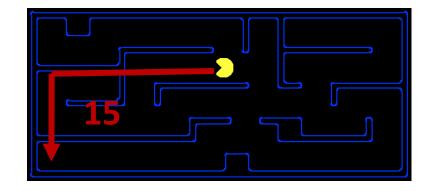
Why "Admissibility"? (with an example)



Creating Admissible/Consistent Heuristics

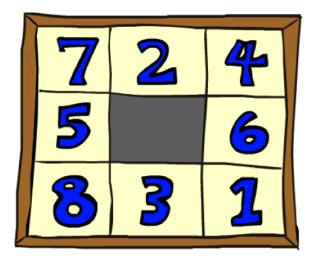
- Most of the work in solving hard search problems is in coming up with admissible/consistent heuristics.
- Often, admissible/consistent heuristics are solutions to *relaxed problems*, where new actions are available.



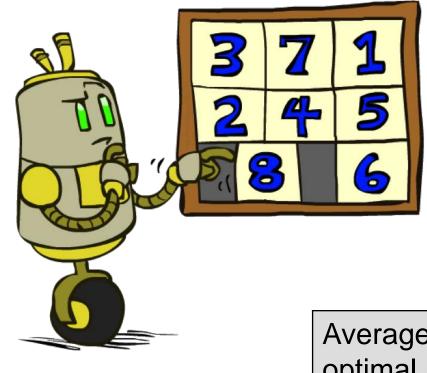


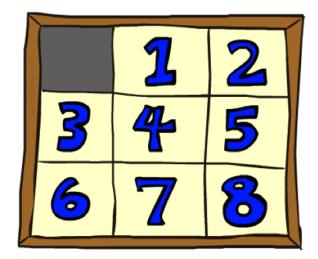
• Inadmissible heuristics are often useful too.

Example: 8 Puzzles



Start State





Goal State

Average nodes expanded when the optimal path has...

	4 steps	8 steps	12 steps
UCS	112	6,300	3.6 x 10 ⁶
#wrong tile	13	39	227
Manhattan	12	25	73

Homework 1

Xuhui Kang, Haolin Liu

Deadline: 11:59PM, September 16

Homework 1

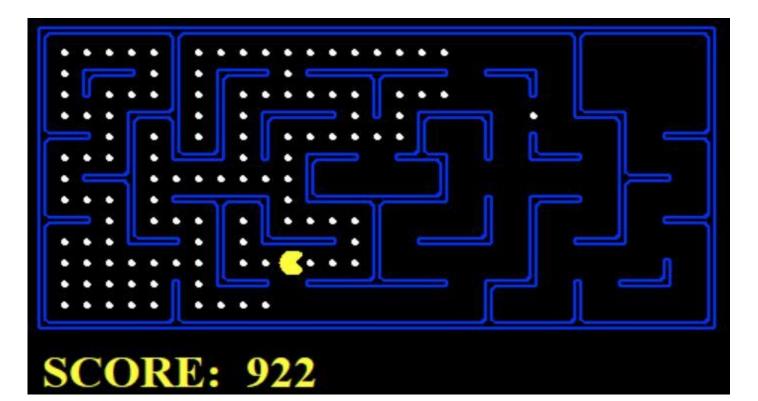
- 1. Choice Questions (10 points)
 - a. 14 questions.
 - b. Choice questions are 10 points in total and distributed evenly
- 2. Program Questions (25 points)

Homework 1: Choice Questions

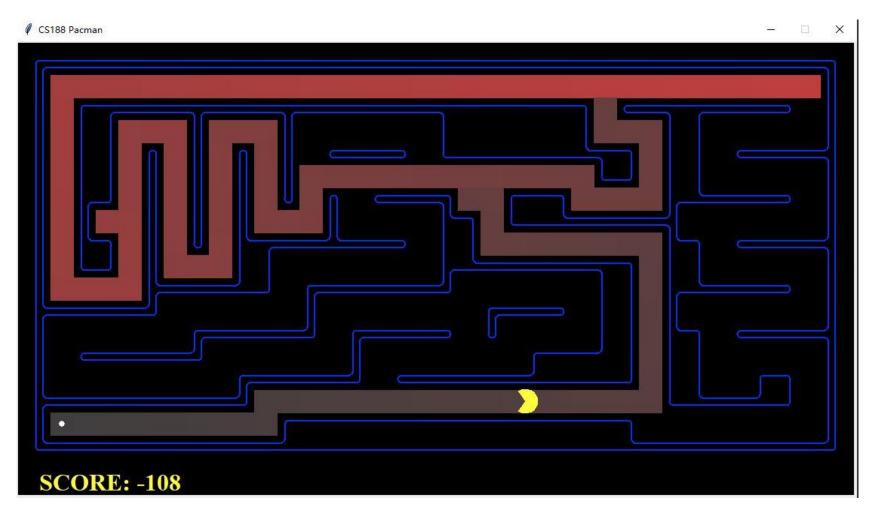
- Each question may be either single-choice or multiple-choice. Read carefully and select your answers accordingly.
- Grading:
 - Full Credit: If all correct options are selected.
 - Partial Credit: If only some correct options are selected, with no wrong options chosen.
 - No Credit: If any incorrect options are selected.
- Submission: Please answer directly on Gradescope. No need to submit a separate PDF.
- Scores and correct answers will not be released immediately after submission.

In this problem, you are going to help Pacman find paths in a maze world by focusing on implementing search algorithms.

Autograder is given both offline and online in GradeScope. Your grade in gradescope is the final grade.



Question 1 -- 4: Implement Depth First Search, Breadth First Search, Uniform Cost Search, and A* algorithm. Your goal is to reach a target area.



Question 5 : The goal of this question is to visit all four corners rather than reaching a destination state.

Question 6: In the corner search problem, you need to implement an admissible heuristic function for A* algorithm.



You may need to consider more complex state space, which not only contain possible coordinate of the Pac-Man, but tracking the visitation of corners as well.

Question 7 : The goal of this question is to find a way to eat all of the pellets in the maze. The position of the pellets is known to the pacman.

• • • • •	

Question 8 : The goal of this question is to eat the **closest** dot (pellet) by finding the path to it.

