
Search Adversarial Search

Constraint Satisfaction Logic



Goal

…

State of a game

Assignment for variables

Knowledge base

The techniques we learned help the computer to more efficiently search in a 

(exponentially) large state space. 

pruning, decision ordering

The problems we have dealt with are overall complex (large state space), 

but the rules are usually deterministic and known and simple. 



Deterministic vs. Random / Uncertain

State
Action

Next state

Breeze ⇒ Pit in adjacent squares 

Toothache ⇒ Cavity ∨ Gum Problem ∨ Abscess …

0.3 0.1 0.05

Randomness / uncertainty usually come from ignorance: Not all 

the necessary information has been or can be gathered

→ Probabilistic modeling



Known vs. Unknown

Ghost takes uniformly 

random actions

What is the state distribution if 

taking a certain action? 

Breeze ⇒ Pit in adjacent squares 

Toothache ⇒ Cavity ∨ Gum Problem ∨ Abscess …

0.3 0.1 0.05

Often times, the outcome of an action or the underlying state 

given observations has to be learned from experiences

→ Machine Learning



Simple (Easily Explainable) vs. Complicated

State = Pacman position

Action = NSEW

Next state = State applying Action 

Heuristic = Distance to goal 

Heuristic = ?

States that summarize the “meaning” of the 
English sentence, and the current progress of 
the translation

To perform the task well, we may need a good way to encode 

states (instead of its original form) and/or actions. 

→ Representation Learning (Deep Learning)

→ Human designed features, or



Roadmap

● Search in deterministic models (finished)

● Probabilistic modeling

● Machine learning / deep learning:  learning the model parameters and state 

representations from data

● Reinforcement learning ≈ performing search and learning simultaneously or 

interleavingly

● Reminder:  this course is unable to give you a full picture of ML/DL/RL. If 

you’re interested in any of them, you should take dedicated courses in the 

future. 

(Most techniques were developed before 1990)

(Most techniques were developed after 1990)



Probability
Chen-Yu Wei



Uncertainty

● General situation:

● Observed variables (evidence):  Agent knows certain things about the state of the 

world (toothache)

● Unobserved variables: Agent needs to reason about other aspects (condition?)

● Model:  Agent knows something about how the known variables relate to the 

unknown variables (the probability of cavity given toochache)

● Uncertainty modeling is a way to incorporate our beliefs and knowledge

● Can generalize CSP and logic that we discussed before



Random Variables

● A random variable is some aspect of the world which we (may) have 
uncertainty about
● R = Is it raining?

● T = Is it hot or cold?

● D = How long will it take to drive to work?

● L = Where is the ghost?

● Like variables in a CSP, random variables have domains
● R in {true, false}   (often write as {+r, -r})

● T in {hot, cold}

● D in [0, )

● L in possible locations, maybe {(0,0), (0,1), …}



Probability Distributions

● Associate a probability with each value

● Temperature:

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0

▪ Weather: 



Probability Distributions

● Unobserved random variables have distributions

● A distribution is a TABLE of probabilities

● A probability (lower case value) is a single number

● Must have:                                                 

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0

Shorthand notation:

 OK if all domain entries are unique

and



Joint Distributions

● A joint distribution over a set of random variables:

 specifies a real number for each assignment (or outcome):

● Must obey:

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3



Probabilistic Models

● Probabilistic models (a joint distribution):

● Random variables with domains 

● Joint distributions: say whether assignments 

(outcomes) are likely

● Constraint satisfaction problems:

● Variables with domains

● Constraints: specify whether assignments are 

possible

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun T

hot rain F

cold sun F

cold rain T

Distribution over T,W

Constraint over T,W



Events

● An event is a set E of outcomes

● From a joint distribution, we can calculate the probability of any event

● Probability that it’s hot AND sunny?

● Probability that it’s hot?

● Probability that it’s hot OR sunny?

● Typically, the events we care about are partial assignments, like P(T=hot)

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3



Quiz: Events

● P(+x, +y) ?

● P(+x) ?

● P(-y OR +x) ?

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1



Marginal Distributions

● Marginal distributions are sub-tables which eliminate variables 

● Marginalization (summing out): Combine collapsed rows by adding

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4



Quiz: Marginal Distributions

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

X P

+x

-x

Y P

+y

-y



Conditional Probabilities

● Relation between joint and conditional probabilities

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

P(b)P(a)

P(a,b)



Quiz: Conditional Probabilities

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

● P(+x | +y) = ?

● P(-x | +y) = ?

● P(-y | +x) = ?

 



Conditional Distributions

● Conditional distributions are probability distributions over 

some variables given fixed values of others

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun 0.8

rain 0.2

W P

sun 0.4

rain 0.6

Conditional Distributions
Joint Distribution



Conditional Distributions

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun 0.4

rain 0.6



SELECT the joint 
probabilities 
matching the 

evidence

Normalization Trick

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun 0.4

rain 0.6

T W P

cold sun 0.2

cold rain 0.3

NORMALIZE the 
selection

(make it sum to one)



Quiz: Normalization Trick

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

SELECT the joint 
probabilities 
matching the 

evidence

● P(X | Y=-y) ?

NORMALIZE the 
selection

(make it sum to one)



Probabilistic Inference

● Probabilistic inference: compute a desired 

probability from other known probabilities

● We generally compute conditional probabilities 

● P(on time | no reported accidents) = 0.90

● These represent the agent’s beliefs given the evidence

● Probabilities change with new evidence:

● P(on time | no accidents, 5 a.m.) = 0.95

● P(on time | no accidents, 5 a.m., raining) = 0.80

● Observing new evidence causes beliefs to be updated



● General case:
● Evidence variables: 

● Query* variable:

● Hidden variables:
All variables

* Works fine with 
multiple query 
variables, too

▪ We want:

▪ Step 1: Select the 
entries consistent 
with the evidence

▪ Step 2: Sum out H to get joint 
of Query and evidence

▪ Step 3: Normalize

Inference by Enumeration



Inference by Enumeration

● P(W)?

● P(W | winter)?

● P(W | winter, hot)?

S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20



▪ Obvious problems:

▪ Worst-case time complexity O(dn) 

▪ Space complexity O(dn) to store the joint distribution

Inference by Enumeration



The Product Rule

● Sometimes have conditional distributions but want the joint



The Product Rule

● Example:

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3

D W P

wet sun 0.08

dry sun 0.72

wet rain 0.14

dry rain 0.06



The Chain Rule

● More generally, can always write any joint distribution as 
an incremental product of conditional distributions

● Why is this always true?



Bayes’ Rule

● Two ways to factor a joint distribution over two 
variables:

● Dividing, we get:

● Why is this at all helpful?

● Lets us build one conditional from its reverse

● Often one conditional is tricky but the other one is simple

● Foundation of many systems we’ll see later



Inference with Bayes’ Rule

● Example: Diagnostic probability from causal probability:



Quiz: Bayes’ Rule

● Given:

● What is P(W | dry) ? 

W P

Sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3



Recap

● Probabilistic modeling

● Marginal distribution

● Conditional distribution

● Probabilistic Inference 

● Bayes rule     

𝑃(𝑋1, 𝑋2, … 𝑋𝑛) 

𝑃 𝑋1, 𝑋2, 𝑋3  →  𝑃 𝑋1 =? 

𝑃 𝑋|𝑌

Given evidence 𝐸1 = 𝑒1,…, 𝐸𝑘 = 𝑒𝑘 and query 𝑄 

Find 𝑃(𝑄|𝑒1, … , 𝑒𝑘) 

𝑃 𝑥 𝑦 =
𝑃 𝑦 𝑥 𝑃 𝑥

𝑃(𝑦)
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