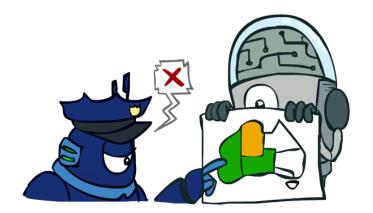


Search

Adversarial Search



Constraint Satisfaction

 1
 2
 3
 4

 4
 2
 **/*
 Pit

 3
 **/*
 Pit
 **/*

 2
 **/*
 **/*

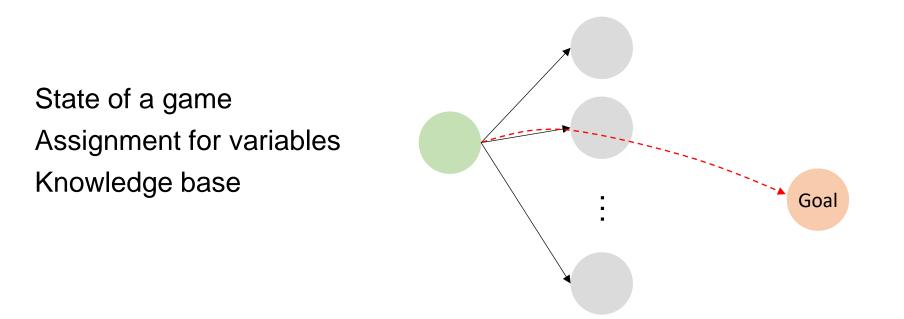
 3
 **/*
 **/*

 4
 **/*
 **/*

 1
 **/*
 **/*

 1
 **/*
 **/*

Logic

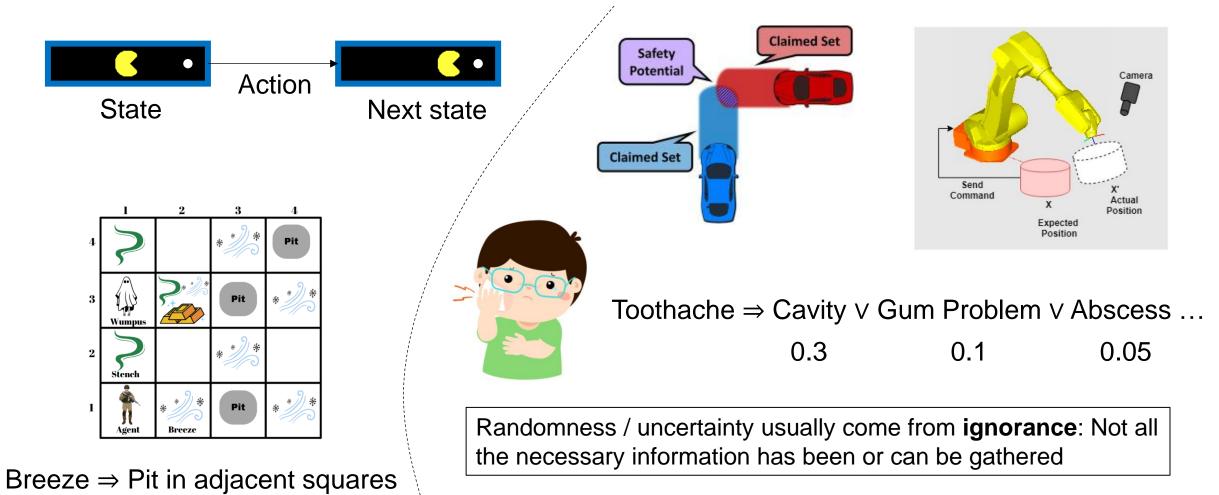


pruning, decision ordering

The techniques we learned help the computer to more efficiently search in a (exponentially) large state space.

The problems we have dealt with are overall complex (large state space), but the **rules** are usually **deterministic** and **known** and **simple**.

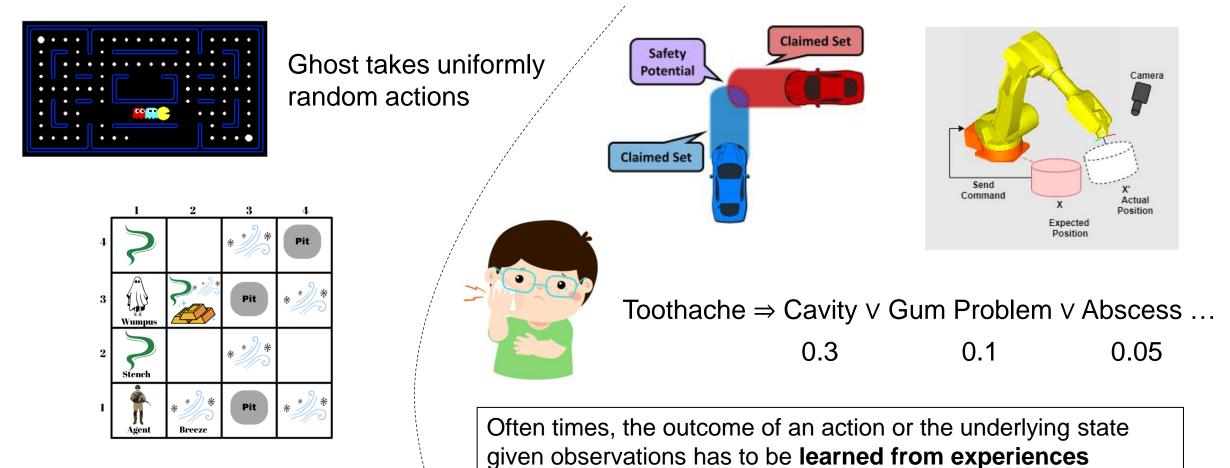
Deterministic vs. Random / Uncertain



→ Probabilistic modeling

Known vs. Unknown

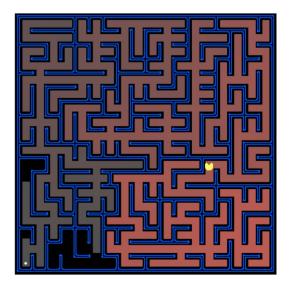
What is the **state distribution** if taking a certain action?



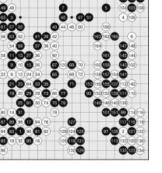
Breeze \Rightarrow Pit in adjacent squares

→ Machine Learning

Simple (Easily Explainable) vs. Complicated

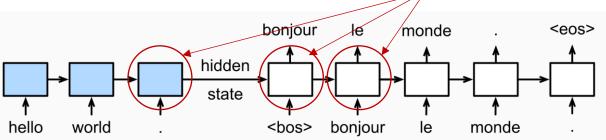


State = Pacman position Action = NSEW Next state = State applying Action Heuristic = Distance to goal



Heuristic = ?

States that summarize the "meaning" of the English sentence, and the current progress of the translation



To perform the task well, we may need a good way to **encode** states (instead of its original form) and/or actions.

- \rightarrow Human designed features, or
- → Representation Learning (Deep Learning)

Roadmap

- Search in deterministic models (finished) (Most techniques were developed before 1990)
- Probabilistic modeling
- Machine learning / deep learning: learning the model parameters and state representations from data (Most techniques were developed after 1990)
- Reinforcement learning ≈ performing search and learning simultaneously or interleavingly
- **Reminder:** this course is unable to give you a full picture of ML/DL/RL. If you're interested in any of them, you should take dedicated courses in the future.

Probability

Chen-Yu Wei

Uncertainty

- General situation:
 - **Observed variables (evidence)**: Agent knows certain things about the state of the world (toothache)
 - Unobserved variables: Agent needs to reason about other aspects (condition?)
 - **Model**: Agent knows something about how the known variables relate to the unknown variables (the probability of cavity given toochache)
- Uncertainty modeling is a way to incorporate our beliefs and knowledge
 - Can generalize CSP and logic that we discussed before

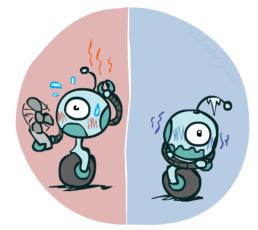
Random Variables

- A random variable is some aspect of the world which we (may) have uncertainty about
 - R = Is it raining?
 - T = Is it hot or cold?
 - D = How long will it take to drive to work?
 - L = Where is the ghost?
- Like variables in a CSP, random variables have domains
 - R in {true, false} (often write as {+r, -r})
 - T in {hot, cold}
 - D in [0, ∞)
 - L in possible locations, maybe {(0,0), (0,1), ...}

Probability Distributions

- Associate a probability with each value
 - Temperature:

• Weather:



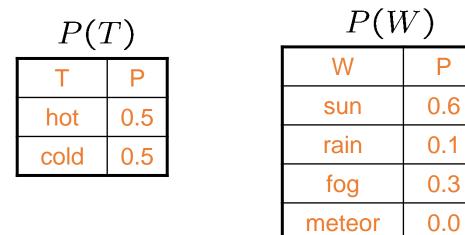
-	P(T)		
	Т	Р	
	hot	0.5	
	cold	0.5	

P(W)

W	Ρ
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Probability Distributions

• Unobserved random variables have distributions



Shorthand notation:
P(hot) = P(T = hot),
P(cold) = P(T = cold),
P(rain) = P(W = rain),
• • •
OK <i>if</i> all domain entries are unique

- A distribution is a TABLE of probabilities
- A probability (lower case value) is a single number P(W = rain) = 0.1
- Must have: $\forall x \ P(X = x) \ge 0$ and $\sum P(X = x) = 1$

Joint Distributions

• A *joint distribution* over a set of random variables: $X_1, X_2, ..., X_n$ specifies a real number for each assignment (or *outcome*):

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

 $P(x_1, x_2, \dots, x_n)$

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

• Must obey:

$$P(x_1, x_2, \dots, x_n) \ge 0$$

 $\sum_{(x_1, x_2, \dots, x_n)} P(x_1, x_2, \dots, x_n) = 1$

Probabilistic Models

- Probabilistic models (a joint distribution):
 - Random variables with domains
 - Joint distributions: say whether assignments (outcomes) are likely
- Constraint satisfaction problems:
 - Variables with domains
 - Constraints: specify whether assignments are possible

Distribution over T,W

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Constraint over T,W

Т	W	Р
hot	sun	Т
hot	rain	F
cold	sun	F
cold	rain	Т

Events

• An event is a set E of outcomes

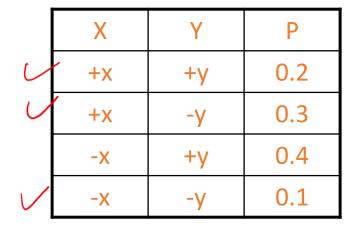
$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- From a joint distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny? 0, 4
 - Probability that it's hot? $\circ, 5$
 - Probability that it's hot OR sunny? 0.7
- Typically, the events we care about are *partial assignments*, like P(T=hot)

Quiz: Events

• P(+x, +y) ? 6,2



• P(+x)? 6,2+0,3=0.5

• P(-y OR +x)? 0,2+0,3+0,1=0,6

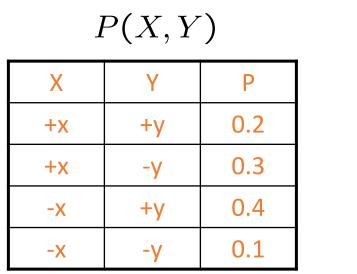
Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

P(T)

1	P(T, W	()		Т	Р
т	W	Р		hot	0.5
hot	sun	0.4	$P(t) = \sum P(t,s)$	cold	0.5
hot	rain	0.1	S	P(W)
cold	sun	0.2		W	Р
cold	rain	0.3		sun	0.6
			$P(s) = \sum_{t} P(t,s)$	rain	0.4

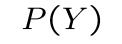
Quiz: Marginal Distributions



$$P(x) = \sum_{y} P(x, y)$$

$$P(y) = \sum_{x} P(x, y)$$

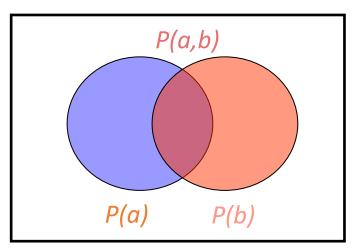
P(X) X Р +x 6.5 -x 0.5



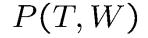
Y	Р
+y	0,6
-y	0,4

Conditional Probabilities

• Relation between joint and conditional probabilities



 $P(a|b) = \frac{P(a,b)}{P(b)}$



Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$
$$= P(W = s, T = c) + P(W = r, T = c)$$
$$= 0.2 + 0.3 = 0.5$$

Quiz: Conditional Probabilities

P(X,	Y)
------	----

$$P(+x | +y) = ?$$
 $\frac{p(+x, +y)}{p(+y)} = \frac{0.2}{0.6}$

Х	Y	Р
+x	+y	0.2
+x	-y	0.3
-X	+y	0.4
-X	-y	0.1

P(-x | +y) =?
$$\frac{p(-x, +y)}{p(+y)} = \frac{0, 4}{0.6}$$

• P(-y | +x) = ? $\frac{P(+x, -y)}{P(+x)} = \frac{6.3}{0.5}$

Conditional Distributions

• Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

P(W T = hot)			
	W	Р	
	sun	0.8	
	rain	0.2	

$$P(W|T = cold)$$

W	Р
sun	0.4
rain	0.6

Joint Distribution

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Conditional Distributions

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

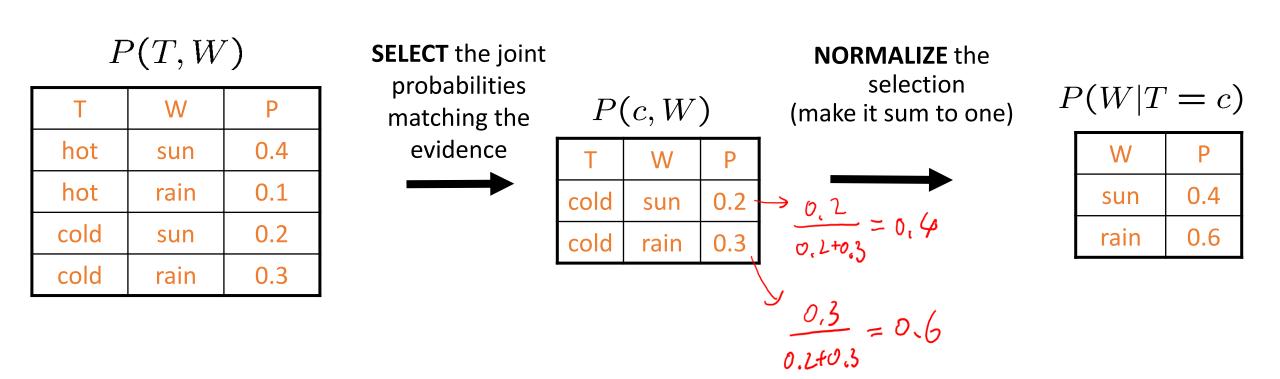
= $\frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$
= $\frac{0.2}{0.2 + 0.3} = 0.4$
$$P(W | T = c)$$

$$P(W | T = c)$$

= $\frac{P(W = r, T = c)}{P(T = c)}$
= $\frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$
= $\frac{0.3}{0.2 + 0.3} = 0.6$

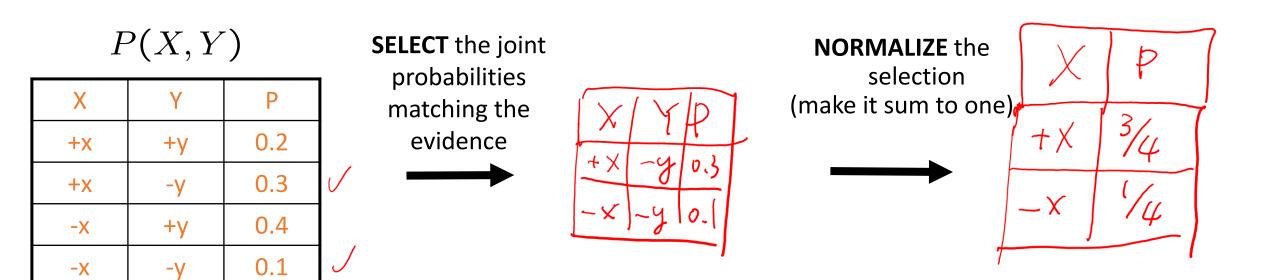
Т	W	Ρ
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Normalization Trick



Quiz: Normalization Trick

• P(X | Y=-y) ?



Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities
- We generally compute conditional probabilities
 - P(on time | no reported accidents) = 0.90
 - These represent the agent's beliefs given the evidence
- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated

Inference by Enumeration

• General case:

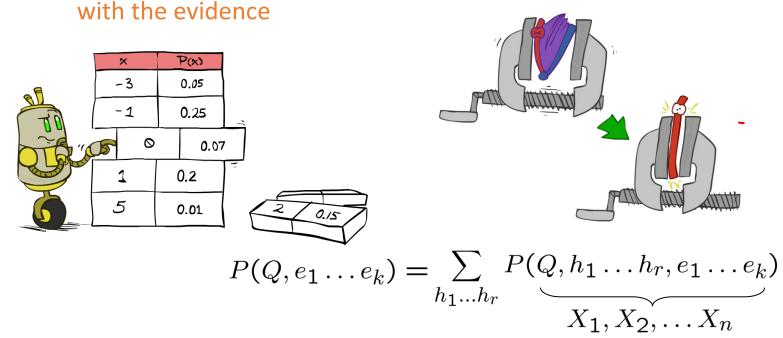
Step 1: Select the

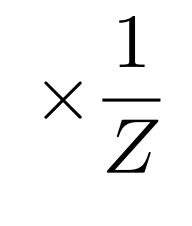
entries consistent

- $\begin{array}{c} E_1 \dots E_k = e_1 \dots e_k \\ Q \\ H_1 \dots H_r \end{array} \end{array} \begin{array}{c} X_1, X_2, \dots X_n \\ All \text{ variables} \end{array}$ • Evidence variables:
- Query* variable:
- Hidden variables:
 - Step 2: Sum out H to get joint of Query and evidence

Step 3: Normalize

- * Works fine with *multiple query* variables, too
- We want:



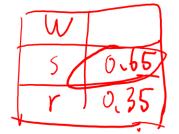


 $P(Q|e_1\ldots e_k)$

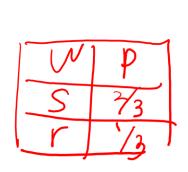
 $Z = \sum_{q} P(Q, e_1 \cdots e_k)$ $P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$

Inference by Enumeration

• P(W)?



- P(W | winter)? $\begin{array}{c|c}
 \hline W & P \\
 \hline 5 & 0,25 \\
 \hline Y & 0,25 \\
 \end{array}
 \begin{array}{c|c}
 \hline W & P \\
 \hline S & 0,5 \\
 \hline Y & 0,5 \\
 \end{array}$
- P(W | winter, hot)?



S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Inference by Enumeration

Obvious problems:

size of domain
$$= d$$

of variable = n

$$d \times d \times \cdots \times d = d^n$$

- Worst-case time complexity O(dⁿ)
- Space complexity O(dⁿ) to store the joint distribution

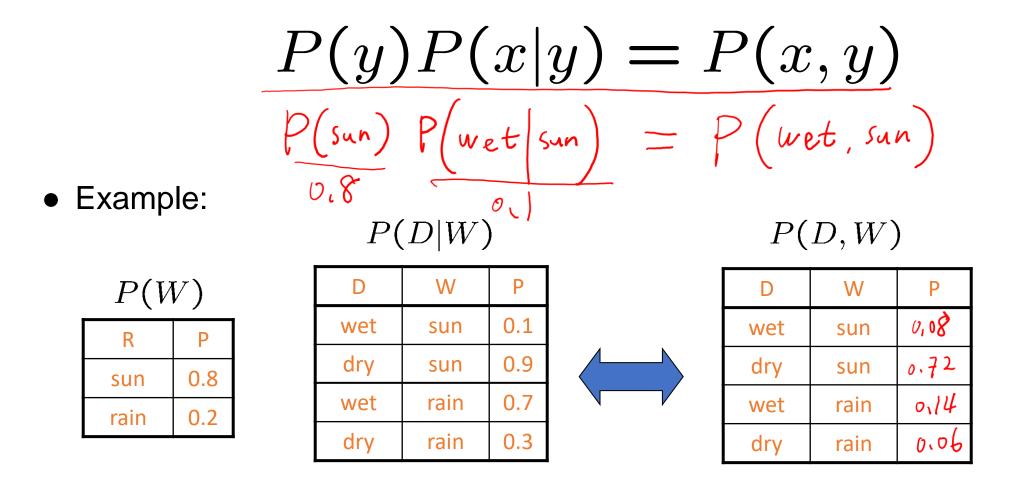
Я

The Product Rule

• Sometimes have conditional distributions but want the joint

$$P(y)P(x|y) = P(x,y)$$
 $(x|y) = \frac{P(x,y)}{P(y)}$

The Product Rule



The Chain Rule

• More generally, can always write any joint distribution as an incremental product of conditional distributions

• Why is this always true?

$$P(x_1, x_2, x_3) = \prod_i P(x_i | x_1 \dots x_{i-1})$$

$$P(x_1, x_2, \dots x_n) = \prod_i P(x_i | x_1 \dots x_{i-1})$$

$$P(x_1, x_2, \dots x_n) = \prod_i P(x_i | x_1 \dots x_{i-1})$$

$$P(x_1, x_2, \dots x_n) = \prod_i P(x_i | x_1 \dots x_{i-1})$$

$$P(x_1, x_2, \dots x_n) = \prod_i P(x_i | x_1 \dots x_{i-1})$$

Bayes' Rule

• Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

• Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many systems we'll see later

Inference with Bayes' Rule

• Example: Diagnostic probability from causal probability:

 $P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})} \sum_{c'} \frac{P(\text{effect}|\mathbf{s}')P(c')}{C'}$

Quiz: Bayes' Rule

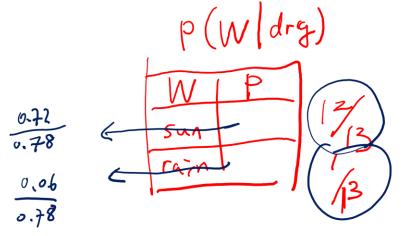
• Given:

P(W)			
W	Р		
Sun	0.8		
rain	0.2		

P(D W)			
D	W	Ρ	
wet	sun	0.1	
dry	sun	0.9	
wet	rain	0.7	
dry	rain	0.3	

p

• What is P(W | dry) ?



= 0.72 0.9×0.8 Sun sun P (sun dry dry · dr -0,3x R,2 0,06

Recap

- Probabilistic modeling
- Marginal distribution
- Conditional distribution
- Probabilistic Inference

 $P(X_1, X_2, ..., X_n)$ $P(X_1, X_2, X_3) \rightarrow P(X_1) =?$ P(X|Y)Given evidence $E_1 = e_1, ..., E_k = e_k$ and query QFind $P(Q|e_1, ..., e_k)$

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$

• Bayes rule