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One Sentence Summary

We achieve similar guarantees for the harder contextual bandit setting,
efficiently.



From MAB to Contextual Bandits [ACFS02,LZ08]

For t = 1, . . . ,T ,

I The learner sees context xt , where (xt , rt) ∼ Dt .

I The learner chooses at ∈ {1, . . . ,K}.
I The environment reveals rt(at).

Goal: minimize dynamic regret against the best policy at each time

Reg =
T∑
t=1

max
π∈Π

E(x ,r)∼Dt
[r(π(x))]−

T∑
t=1

rt (at) ,

where Π is a policy class: mappings from contexts to actions.
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Non-stationarity

I Sublinear dynamic regret is impossible in general.

I Non-stationarity is measured by

I S , 1 +
∑T

t=2 1 {Dt 6= Dt−1}

I or V ,
∑T

t=2 ‖Dt −Dt−1‖TV

I Optimal regret is ([ACFS02,BGZ14]): O
(

min
{√

ST ,V
1
3T

2
3

})
I Our algorithm achieves this without knowing S or V efficiently.

I Prior works: [LWAL18] achieves O
(

min
{
S

1
4T

3
4 ,V

1
5T

4
5

})
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Key Ideas

Adapting to S and V :

I inspired by [AGO18], but can’t naively treat each policy as an arm

I introduce the idea of replay phases: sample according to previous
distributions occasionally,

in the same vein as sampling discarded
arms [AGO19]

Oracle-efficiency:

I want to avoid poly(|Π|) time

I as in prior works, assume access to ERM oracle

I based on key ideas of ILOVETOCONBANDITS [AHKLLS14]
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An Overview of ILOVETOCONBANDITS (i.i.d.)

for block j = 1, 2, 3, . . . do
find a sparse distribution Qj over Π using all previous data

for time t = 2j−1 . . . 2j − 1 do
play Qj

t
block
j = 1

Q1
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An Overview of Our Algorithm (non-stationary)

for block j = 1, 2, 3, . . . do
Find a sparse distribution Qj over Π using all data since last restart

for time t = 2j−1 . . . 2j − 1 do

Randomly start a replay phase of length 2m, add it to S
if S is empty then Play Qj ;

else Sample u.a.r an “alive” replay phase from S, play Qm;

if Non-stationarity tests fail then
Restart from scratch

t
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Summary

Our algorithm achieves dynamic regret O
(

min
{√

ST ,V
1
3T

2
3

})
I optimal

I oracle-efficient

I without knowing S and V .

Poster #186


