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Adversarial Bandits

For t = 1, . . . ,T :

1. Learner choses (randomized) arm at ∈ {1, . . . ,K}
2. Loss value ℓt(at) is revealed

Regret w.r.t. arm a: RT (a) = E
[ T∑
t=1

ℓt(at)
]
−

T∑
t=1

ℓt(a)

▶ Oblivious adversary: ℓt(a) ∈ [0, 1] fixed a priori for all t, a

▶ Expectation w.r.t. learner’s randomness
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Adversarial Contextual Bandits
For t = 1, . . . ,T :

1. Context Xt ∈ Rp is revealed

2. Learner choses (randomized) arm at ∈ {1, . . . ,K}
3. Loss value ℓt(at) is revealed

Regret w.r.t. policy π: RT (π) = E
[ T∑
t=1

ℓt(at)−
T∑
t=1

ℓt(π)
]

ℓt(π) = E
a∼π(Xt)

[ℓt(a)] for π(Xt) ∈ ∆K

Adversarial losses, stochastic contexts [Neu and Olkhovskaya, 2020]:

▶ Linear losses: ℓt(a) = ⟨Xt , θt,a⟩ ∈ [−1,+1], where θt,a fixed a priori

▶ I.i.d. contexts: Xt ∼ D
▶ (Opposite setting with fixed loss function and adversarial contexts

also considered in literature.)
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Adversarial Contextual Bandits More Abstractly I
Incorporate contexts Xt ∈ Rp into actions a such that

ℓt(a) = ⟨Xt , θt,a⟩ = ⟨a, θt⟩:

θt =


θt,1

θt,2
...

θt,K


∈ Rp×K a =



0
...
0
Xt

0
...
0


∈ Rp×K

Then every round we receive a random action set (with K actions):

At =

{
Xt

 ,

Xt

 , . . . ,


Xt


}

⊂ Rp×K
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Adversarial Contextual Bandits More Abstractly II
For t = 1, . . . ,T :

1. Draw action set At ⊂ Rd i.i.d. from D
2. Learner choses (randomized) action at ∈ At

3. Loss value ℓt(at) = ⟨at , θt⟩ ∈ [−1,+1] is revealed

Regret w.r.t. policy π: RT (π) = E
[ T∑
t=1

ℓt(at)−
T∑
t=1

ℓt(π)
]

ℓt(π) = ⟨π(At), θt⟩ for π(At) ∈ conv(At)

Optimal policy is linear:

min
π

E
[ T∑
t=1

⟨π(At), θt⟩
]
= min

π
E
[
⟨π(A),

T∑
t=1

θt⟩
]

π∗(A) = πϕ(A) := argmina∈A⟨a, ϕ⟩ for ϕ =
T∑
t=1

θt
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Main Results I: General Setting

▶ d : dimension of the actions, At ⊂ Rd

▶ K : maximum number of actions, |At | ≤ K

▶ C : maximum number of linear constraints that describe conv(At)

▶ Simulator: free access to independent samples A ∼ D

Algorithm Regret1 Runtime Simulator

Dai et al. [2023] min{d
√
T ,

√
dT logK} poly(d ,K ,T ) yes

Liu et al. [2023] d
√
T K · TΩ(d) no

Liu et al. [2023] d2
√
T poly(d ,K ,T ) no

Ours d1.5
√
T logK poly(d ,C ,T ) no

Ours d
√
T poly(d ,C ,T ) yes

1Up to poly-logarithmic factors in d and T
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√
T poly(d ,K ,T ) no
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√
T logK poly(d ,C ,T ) no

Ours d
√
T poly(d ,C ,T ) yes

▶ Always C ≤ K + 1, but in many combinatorial problems
C = poly(d) and K = 2Ω(d)

▶ Example: in shortest path with d edges, set of all paths can be
described by a linear program with O(d) constraints, but number of
paths can be of order 2Ω(d).
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√
T poly(d ,K ,T ) no

Ours d1.5
√
T logK poly(d ,C ,T ) no

Ours d
√
L∗ poly(d ,C ,T ) yes

L∗ = min
π

E
[ T∑
t=1

⟨π(At), θt⟩
]
≤ T

Assuming ℓt(a) ∈ [0, 1]
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Main Results II: First-order Bounds, Initial Setting

▶ p: dimension of contexts, Xt ∈ Rp

▶ K : number of actions, |At | = K

▶ Simulator: free access to independent samples A ∼ D

L∗ = min
π

E
[ T∑
t=1

⟨π(At), θt⟩
]

Algorithm Regret1 Runtime Simulator Note
Neu and Olkhovskaya [2020]

√
KpT poly(p,K ,T ) yes

Olkhovskaya et al. [2023] K
√
pL∗ Θ

(
T
(

T
K2p

)Kp)
no

Olkhovskaya et al. [2023] K
√
pL∗ poly(p,K ,T ) yes ⋆

Ours Kp
√
L∗ poly(p,K ,T ) yes

Strong assumption ⋆: contexts Xt have log-concave distribution

1Up to poly-logarithmic factors
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Reduction: The Basic Idea
Expected loss for policy π in round t is:

E
At

[
⟨π(At), θt⟩

]
=

〈
E
At

[π(At)], θt
〉
=

〈
Ψ(π), θt

〉
,

where Ψ(π) is the mean action for π:

Ψ(π) = E
A
[π(A)] ∈ Rd .

Possibilities for expected loss:

⟨y , θt⟩ for y ∈ Ω = {Ψ(π) | π ∈ Π}

Reduction:

1. Let linear bandit algorithm choose yt ∈ Ω in round t

2. Play πt such that Ψ(πt) = yt

3. Provide unbiased loss estimate ⟨πt(At), θt⟩ as feedback to linear
bandit algorithm

NB Hanna et al. [2023] introduced this reduction for different setting of
stochastic linear contextual bandits, but their techniques do not carry
over.

11 / 19



Reduction: The Basic Idea
Expected loss for policy π in round t is:

E
At

[
⟨π(At), θt⟩

]
=

〈
E
At

[π(At)], θt
〉
=

〈
Ψ(π), θt

〉
,

where Ψ(π) is the mean action for π:

Ψ(π) = E
A
[π(A)] ∈ Rd .

Possibilities for expected loss:

⟨y , θt⟩ for y ∈ Ω = {Ψ(π) | π ∈ Π}

Reduction:

1. Let linear bandit algorithm choose yt ∈ Ω in round t

2. Play πt such that Ψ(πt) = yt

3. Provide unbiased loss estimate ⟨πt(At), θt⟩ as feedback to linear
bandit algorithm

NB Hanna et al. [2023] introduced this reduction for different setting of
stochastic linear contextual bandits, but their techniques do not carry
over.

11 / 19



Reduction: The Basic Idea
Expected loss for policy π in round t is:

E
At

[
⟨π(At), θt⟩

]
=

〈
E
At

[π(At)], θt
〉
=

〈
Ψ(π), θt

〉
,

where Ψ(π) is the mean action for π:

Ψ(π) = E
A
[π(A)] ∈ Rd .

Possibilities for expected loss:

⟨y , θt⟩ for y ∈ Ω = {Ψ(π) | π ∈ Π}

Reduction:

1. Let linear bandit algorithm choose yt ∈ Ω in round t

2. Play πt such that Ψ(πt) = yt

3. Provide unbiased loss estimate ⟨πt(At), θt⟩ as feedback to linear
bandit algorithm

NB Hanna et al. [2023] introduced this reduction for different setting of
stochastic linear contextual bandits, but their techniques do not carry
over.

11 / 19



Reduction: The Basic Idea
Expected loss for policy π in round t is:

E
At

[
⟨π(At), θt⟩

]
=

〈
E
At

[π(At)], θt
〉
=

〈
Ψ(π), θt

〉
,

where Ψ(π) is the mean action for π:

Ψ(π) = E
A
[π(A)] ∈ Rd .

Possibilities for expected loss:

⟨y , θt⟩ for y ∈ Ω = {Ψ(π) | π ∈ Π}

Reduction:

1. Let linear bandit algorithm choose yt ∈ Ω in round t

2. Play πt such that Ψ(πt) = yt

3. Provide unbiased loss estimate ⟨πt(At), θt⟩ as feedback to linear
bandit algorithm

NB Hanna et al. [2023] introduced this reduction for different setting of
stochastic linear contextual bandits, but their techniques do not carry
over.

11 / 19



Approximating Ω

Reduction:

1. Let linear bandit algorithm choose yt ∈ Ω in round t

2. Play πt such that Ψ(πt) = yt

3. Provide unbiased loss estimate ⟨πt(At), θt⟩ as feedback to linear
bandit algorithm

Ω = {Ψ(π) | π ∈ Π}, Ψ(π) = E
A
[π(A)]

Issue: Ψ and Ω depend on unknown distribution D of At

Using simulator: Given separate sample Ã1, . . . , ÃN from D:

Ω̂ = {Ψ̂(π) | π ∈ Π}, Ψ̂(π) =
1

N

N∑
i=1

π(Ãi )
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Approximating Ω

Reduction:

1. Let linear bandit algorithm choose yt ∈ Ω̂ in round t

2. Play πt such that Ψ̂(πt) = yt

3. Provide biased loss estimate ⟨πt(At), θt⟩ as feedback to linear
bandit algorithm

Ω = {Ψ(π) | π ∈ Π}, Ψ(π) = E
A
[π(A)]

Using simulator: Given separate sample Ã1, . . . , ÃN from D:

Ω̂ = {Ψ̂(π) | π ∈ Π}, Ψ̂(π) =
1

N

N∑
i=1

π(Ãi )

▶ Need computationally efficient adversarial linear bandit algorithm
that is robust to biased stochastic feedback
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Side-Result: Efficient Robust Linear Bandit
Algorithm

Definition (α-misspecification-robust linear bandit algorithm)

Given random feedback ft(yt) ∈ [−1,+1] with bias at most some known
ϵ ≥ 0: ∣∣Et [ft(yt)]− ⟨yt , θt⟩

∣∣ ≤ ϵ,

the algorithm achieves regret at most

E
[ T∑
t=1

⟨yt , θt⟩
]
≤ min

y∈Ω̂

T∑
t=1

⟨y , θt⟩+ Õ
(
d
√
T + α

√
dϵT

)
.

▶ [Liu et al., 2024]: optimal α = 1, but runtime scales with number of
actions K

▶ New alg: α =
√
d , and poly(d ,C ,T ) runtime

▶ Version of continuous exponential weights similar to Ito et al. [2020]
▶ Also achieves first-order bound
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Controlling the Difference between Ψ and Ψ̂

Are we there yet?
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Controlling the Difference between Ψ and Ψ̂

Suppose, with high probability,

|⟨Ψ(π), θt⟩ − ⟨Ψ̂(π), θt⟩| ≤ ϵ for π ∈ {π∗, πt}, t = 1, . . . ,T

This would resolve the following remaining issues:

1. Controlling bias:

| E
At

[⟨πt(At), θt⟩]− ⟨yt , θt⟩| = |⟨Ψ(πt), θt⟩ − ⟨Ψ̂(πt), θt⟩| ≤ ϵ

2. Linear bandit gives regret bound w.r.t. y∗ ∈ Ω̂ instead of Ω:

E
[ T∑

t=1

(
⟨yt , θt⟩−⟨y∗, θt⟩

)]
≥ E

[ T∑
t=1

(
⟨Ψ̂(πt), θt⟩−⟨Ψ̂(π∗), θt⟩

)]
≥ E

[ T∑
t=1

(
⟨Ψ(πt), θt⟩ − ⟨Ψ(π∗), θt⟩

)]
− 2T ϵ
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Controlling the Difference between Ψ and Ψ̂
Suppose, with high probability,

|⟨Ψ(π), θt⟩ − ⟨Ψ̂(π), θt⟩| ≤ ϵ for π ∈ {π∗, πt}, t = 1, . . . ,T

Ψ(π) = E
A
[π(A)] Ψ̂(π) =

1

N

N∑
i=1

π(Ãi )

Lemma (Uniform Convergence over Linear Policies)

Let πϕ(A) := argmina∈A⟨a, ϕ⟩ be a linear policy. Then, w.p. ≥ 1− δ,

sup
ϕ

∣∣⟨Ψ(πϕ), θt⟩ − ⟨Ψ̂(πϕ), θt⟩
∣∣ ≤ 2

√
2d ln(NK 2)

N
+

√
2 ln(4/δ)

N
.

▶ Union bound over t = 1, . . . ,T is cheap: δ/T instead of δ
▶ We know π∗ is always a linear policy, but algorithm’s choices πt may

not be! Problem!
▶ Can we solve this by extending to uniform convergence over all

policies π? No, does not hold! So need to ensure πt is linear policy.
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▶ We know π∗ is always a linear policy, but algorithm’s choices πt may

not be! Problem!
▶ Can we solve this by extending to uniform convergence over all

policies π? No, does not hold! So need to ensure πt is linear policy.
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Restricting πt to be a Linear Policy

▶ Ω̂ ⊂ Rd is a polytope

▶ Lemma: for every vertex v of Ω̂, there exists a
linear policy πϕ that maps to it: Ψ̂(πϕ) = v .
▶ In fact, this holds for any interior point ϕ of

the negative normal cone −N (Ω̂, v) at v .

▶ By Carathéodory’s theorem, yt is a convex
combination of m ≤ d + 1 vertices v1, . . . , vm:

yt =
m∑
j=1

λjvj for λ = (λ1, . . . , λm) ∈ ∆m (1)

Solution

Instead of playing yt , sample one of the vertices v1, . . . , vm according to
λ and play the corresponding linear policy πϕ → same expected loss.

▶ Computation: We can both find the decomposition (1) and the
interior point ϕ of the normal cone in poly(d ,N,C ) time, because
we can construct an efficient separation oracle for Ω̂.
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Putting It All Together

Theorem

Given access to an α-misspecification robust linear bandit algorithm, we
obtain

RT (π) = Õ
(
d
√
T + αTd

√
log(NKT )

N

)
.

▶ We had α =
√
d for an efficient algorithm

With simulator access: Take N large enough to make the second term
negligible:

RT (π) = Õ(d
√
T )

Without simulator access:

▶ Run in epochs of lengths 2i for i = 0, 1, 2, 3, . . .

▶ In epoch i use N = Θ(2i ) samples from all previous epochs to
construct Ω̂

RT (π) = Õ
(
d
√
T + αd

√
T log(KT )

)
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Conclusion

Highlights:

▶ First algorithm for this setting that handles combinatorial action sets
efficiently

▶ Efficient reduction from contextual to (misspecified) non-contextual
linear bandits

▶ Handle resulting misspecification in linear bandit algorithm

Open Questions:

▶ Improve computation to match Neu and Valko [2014]? For
semi-bandit feedback, they only require a linear optimization oracle
for each action set instead of a polynomial number of constraints.

▶ Improve regret to Õ(d
√
T ) with polynomial-time algorithm without

a simulator?

▶ Improve first-order bound to Õ(
√
pKL∗) in initial setting?
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