
An Improved Algorithm for Adversarial
Linear Contextual Bandits via Reduction

Tim van Erven

Joint work with:

Jack Mayo Julia Olkhovskaya Chen-Yu Wei

CWI, June 20, 2025

Outline

Setting
1. Adversarial Bandits
2. Adversarial Linear Contextual Bandits

Main Results
3. General Setting
4. First-order Bounds, Initial Setting

Approach: Reduction to Non-contextual Linear Bandits
5. Reduction: The Basic Idea
6. Approximating Ω
7. Side-Result: Efficient Robust Linear Bandit Algorithm
8. Controlling the Difference between Ψ and Ψ̂
9. Restricting πt to be a Linear Policy

2 / 19

Adversarial Bandits

For t = 1, . . . ,T :

1. Learner choses (randomized) arm at ∈ {1, . . . ,K}
2. Loss value ℓt(at) is revealed

Regret w.r.t. arm a: RT (a) = E
[T∑
t=1

ℓt(at)
]
−

T∑
t=1

ℓt(a)

▶ Oblivious adversary: ℓt(a) ∈ [0, 1] fixed a priori for all t, a

▶ Expectation w.r.t. learner’s randomness

3 / 19

Adversarial Bandits

For t = 1, . . . ,T :

1. Learner choses (randomized) arm at ∈ {1, . . . ,K}
2. Loss value ℓt(at) is revealed

Regret w.r.t. arm a: RT (a) = E
[T∑
t=1

ℓt(at)
]
−

T∑
t=1

ℓt(a)

▶ Oblivious adversary: ℓt(a) ∈ [0, 1] fixed a priori for all t, a

▶ Expectation w.r.t. learner’s randomness

3 / 19

Adversarial Contextual Bandits
For t = 1, . . . ,T :

1. Context Xt ∈ Rp is revealed

2. Learner choses (randomized) arm at ∈ {1, . . . ,K}
3. Loss value ℓt(at) is revealed

Regret w.r.t. policy π: RT (π) = E
[T∑
t=1

ℓt(at)−
T∑
t=1

ℓt(π)
]

ℓt(π) = E
a∼π(Xt)

[ℓt(a)] for π(Xt) ∈ ∆K

Adversarial losses, stochastic contexts [Neu and Olkhovskaya, 2020]:

▶ Linear losses: ℓt(a) = ⟨Xt , θt,a⟩ ∈ [−1,+1], where θt,a fixed a priori

▶ I.i.d. contexts: Xt ∼ D
▶ (Opposite setting with fixed loss function and adversarial contexts

also considered in literature.)

4 / 19

Adversarial Contextual Bandits
For t = 1, . . . ,T :

1. Context Xt ∈ Rp is revealed

2. Learner choses (randomized) arm at ∈ {1, . . . ,K}
3. Loss value ℓt(at) is revealed

Regret w.r.t. policy π: RT (π) = E
[T∑
t=1

ℓt(at)−
T∑
t=1

ℓt(π)
]

ℓt(π) = E
a∼π(Xt)

[ℓt(a)] for π(Xt) ∈ ∆K

Adversarial losses, stochastic contexts [Neu and Olkhovskaya, 2020]:

▶ Linear losses: ℓt(a) = ⟨Xt , θt,a⟩ ∈ [−1,+1], where θt,a fixed a priori

▶ I.i.d. contexts: Xt ∼ D

▶ (Opposite setting with fixed loss function and adversarial contexts
also considered in literature.)

4 / 19

Adversarial Contextual Bandits
For t = 1, . . . ,T :

1. Context Xt ∈ Rp is revealed

2. Learner choses (randomized) arm at ∈ {1, . . . ,K}
3. Loss value ℓt(at) is revealed

Regret w.r.t. policy π: RT (π) = E
[T∑
t=1

ℓt(at)−
T∑
t=1

ℓt(π)
]

ℓt(π) = E
a∼π(Xt)

[ℓt(a)] for π(Xt) ∈ ∆K

Adversarial losses, stochastic contexts [Neu and Olkhovskaya, 2020]:

▶ Linear losses: ℓt(a) = ⟨Xt , θt,a⟩ ∈ [−1,+1], where θt,a fixed a priori

▶ I.i.d. contexts: Xt ∼ D
▶ (Opposite setting with fixed loss function and adversarial contexts

also considered in literature.)

4 / 19

Adversarial Contextual Bandits More Abstractly I
Incorporate contexts Xt ∈ Rp into actions a such that

ℓt(a) = ⟨Xt , θt,a⟩ = ⟨a, θt⟩:

θt =


θt,1

θt,2
...

θt,K


∈ Rp×K a =



0
...
0
Xt

0
...
0


∈ Rp×K

Then every round we receive a random action set (with K actions):

At =

{
Xt

 ,

Xt

 , . . . ,


Xt


}

⊂ Rp×K

5 / 19

Adversarial Contextual Bandits More Abstractly II
For t = 1, . . . ,T :

1. Draw action set At ⊂ Rd i.i.d. from D
2. Learner choses (randomized) action at ∈ At

3. Loss value ℓt(at) = ⟨at , θt⟩ ∈ [−1,+1] is revealed

Regret w.r.t. policy π: RT (π) = E
[T∑
t=1

ℓt(at)−
T∑
t=1

ℓt(π)
]

ℓt(π) = ⟨π(At), θt⟩ for π(At) ∈ conv(At)

Optimal policy is linear:

min
π

E
[T∑
t=1

⟨π(At), θt⟩
]
= min

π
E
[
⟨π(A),

T∑
t=1

θt⟩
]

π∗(A) = πϕ(A) := argmina∈A⟨a, ϕ⟩ for ϕ =
T∑
t=1

θt

6 / 19

Adversarial Contextual Bandits More Abstractly II
For t = 1, . . . ,T :

1. Draw action set At ⊂ Rd i.i.d. from D
2. Learner choses (randomized) action at ∈ At

3. Loss value ℓt(at) = ⟨at , θt⟩ ∈ [−1,+1] is revealed

Regret w.r.t. policy π: RT (π) = E
[T∑
t=1

ℓt(at)−
T∑
t=1

ℓt(π)
]

ℓt(π) = ⟨π(At), θt⟩ for π(At) ∈ conv(At)

Optimal policy is linear:

min
π

E
[T∑
t=1

⟨π(At), θt⟩
]
= min

π
E
[
⟨π(A),

T∑
t=1

θt⟩
]

π∗(A) = πϕ(A) := argmina∈A⟨a, ϕ⟩ for ϕ =
T∑
t=1

θt

6 / 19

Outline

Setting
1. Adversarial Bandits
2. Adversarial Linear Contextual Bandits

Main Results
3. General Setting
4. First-order Bounds, Initial Setting

Approach: Reduction to Non-contextual Linear Bandits
5. Reduction: The Basic Idea
6. Approximating Ω
7. Side-Result: Efficient Robust Linear Bandit Algorithm
8. Controlling the Difference between Ψ and Ψ̂
9. Restricting πt to be a Linear Policy

7 / 19

Main Results I: General Setting

▶ d : dimension of the actions, At ⊂ Rd

▶ K : maximum number of actions, |At | ≤ K

▶ C : maximum number of linear constraints that describe conv(At)

▶ Simulator: free access to independent samples A ∼ D

Algorithm Regret1 Runtime Simulator

Dai et al. [2023] min{d
√
T ,

√
dT logK} poly(d ,K ,T) yes

Liu et al. [2023] d
√
T K · TΩ(d) no

Liu et al. [2023] d2
√
T poly(d ,K ,T) no

Ours d1.5
√
T logK poly(d ,C ,T) no

Ours d
√
T poly(d ,C ,T) yes

1Up to poly-logarithmic factors in d and T
8 / 19

Main Results I: General Setting
▶ d : dimension of the actions, At ⊂ Rd

▶ K : maximum number of actions, |At | ≤ K

▶ C : maximum number of linear constraints that describe conv(At)

▶ Simulator: free access to independent samples A ∼ D

Algorithm Regret1 Runtime Simulator

Dai et al. [2023] min{d
√
T ,

√
dT logK} poly(d ,K ,T) yes

Liu et al. [2023] d
√
T K · TΩ(d) no

Liu et al. [2023] d2
√
T poly(d ,K ,T) no

Ours d1.5
√
T logK poly(d ,C ,T) no

Ours d
√
T poly(d ,C ,T) yes

▶ Always C ≤ K + 1, but in many combinatorial problems
C = poly(d) and K = 2Ω(d)

▶ Example: in shortest path with d edges, set of all paths can be
described by a linear program with O(d) constraints, but number of
paths can be of order 2Ω(d).

1Up to poly-logarithmic factors in d and T
8 / 19

Main Results I: General Setting

▶ d : dimension of the actions, At ⊂ Rd

▶ K : maximum number of actions, |At | ≤ K

▶ C : maximum number of linear constraints that describe conv(At)

▶ Simulator: free access to independent samples A ∼ D

Algorithm Regret Runtime Simulator

Dai et al. [2023] min{d
√
T ,

√
dT logK} poly(d ,K ,T) yes

Liu et al. [2023] d
√
T K · TΩ(d) no

Liu et al. [2023] d2
√
T poly(d ,K ,T) no

Ours d1.5
√
T logK poly(d ,C ,T) no

Ours d
√
L∗ poly(d ,C ,T) yes

L∗ = min
π

E
[T∑
t=1

⟨π(At), θt⟩
]
≤ T

Assuming ℓt(a) ∈ [0, 1]
8 / 19

Main Results II: First-order Bounds, Initial Setting

▶ p: dimension of contexts, Xt ∈ Rp

▶ K : number of actions, |At | = K

▶ Simulator: free access to independent samples A ∼ D

L∗ = min
π

E
[T∑
t=1

⟨π(At), θt⟩
]

Algorithm Regret1 Runtime Simulator Note
Neu and Olkhovskaya [2020]

√
KpT poly(p,K ,T) yes

Olkhovskaya et al. [2023] K
√
pL∗ Θ

(
T
(

T
K2p

)Kp)
no

Olkhovskaya et al. [2023] K
√
pL∗ poly(p,K ,T) yes ⋆

Ours Kp
√
L∗ poly(p,K ,T) yes

Strong assumption ⋆: contexts Xt have log-concave distribution

1Up to poly-logarithmic factors
9 / 19

Outline

Setting
1. Adversarial Bandits
2. Adversarial Linear Contextual Bandits

Main Results
3. General Setting
4. First-order Bounds, Initial Setting

Approach: Reduction to Non-contextual Linear Bandits
5. Reduction: The Basic Idea
6. Approximating Ω
7. Side-Result: Efficient Robust Linear Bandit Algorithm
8. Controlling the Difference between Ψ and Ψ̂
9. Restricting πt to be a Linear Policy

10 / 19

Reduction: The Basic Idea
Expected loss for policy π in round t is:

E
At

[
⟨π(At), θt⟩

]
=

〈
E
At

[π(At)], θt
〉
=

〈
Ψ(π), θt

〉
,

where Ψ(π) is the mean action for π:

Ψ(π) = E
A
[π(A)] ∈ Rd .

Possibilities for expected loss:

⟨y , θt⟩ for y ∈ Ω = {Ψ(π) | π ∈ Π}

Reduction:

1. Let linear bandit algorithm choose yt ∈ Ω in round t

2. Play πt such that Ψ(πt) = yt

3. Provide unbiased loss estimate ⟨πt(At), θt⟩ as feedback to linear
bandit algorithm

NB Hanna et al. [2023] introduced this reduction for different setting of
stochastic linear contextual bandits, but their techniques do not carry
over.

11 / 19

Reduction: The Basic Idea
Expected loss for policy π in round t is:

E
At

[
⟨π(At), θt⟩

]
=

〈
E
At

[π(At)], θt
〉
=

〈
Ψ(π), θt

〉
,

where Ψ(π) is the mean action for π:

Ψ(π) = E
A
[π(A)] ∈ Rd .

Possibilities for expected loss:

⟨y , θt⟩ for y ∈ Ω = {Ψ(π) | π ∈ Π}

Reduction:

1. Let linear bandit algorithm choose yt ∈ Ω in round t

2. Play πt such that Ψ(πt) = yt

3. Provide unbiased loss estimate ⟨πt(At), θt⟩ as feedback to linear
bandit algorithm

NB Hanna et al. [2023] introduced this reduction for different setting of
stochastic linear contextual bandits, but their techniques do not carry
over.

11 / 19

Reduction: The Basic Idea
Expected loss for policy π in round t is:

E
At

[
⟨π(At), θt⟩

]
=

〈
E
At

[π(At)], θt
〉
=

〈
Ψ(π), θt

〉
,

where Ψ(π) is the mean action for π:

Ψ(π) = E
A
[π(A)] ∈ Rd .

Possibilities for expected loss:

⟨y , θt⟩ for y ∈ Ω = {Ψ(π) | π ∈ Π}

Reduction:

1. Let linear bandit algorithm choose yt ∈ Ω in round t

2. Play πt such that Ψ(πt) = yt

3. Provide unbiased loss estimate ⟨πt(At), θt⟩ as feedback to linear
bandit algorithm

NB Hanna et al. [2023] introduced this reduction for different setting of
stochastic linear contextual bandits, but their techniques do not carry
over.

11 / 19

Reduction: The Basic Idea
Expected loss for policy π in round t is:

E
At

[
⟨π(At), θt⟩

]
=

〈
E
At

[π(At)], θt
〉
=

〈
Ψ(π), θt

〉
,

where Ψ(π) is the mean action for π:

Ψ(π) = E
A
[π(A)] ∈ Rd .

Possibilities for expected loss:

⟨y , θt⟩ for y ∈ Ω = {Ψ(π) | π ∈ Π}

Reduction:

1. Let linear bandit algorithm choose yt ∈ Ω in round t

2. Play πt such that Ψ(πt) = yt

3. Provide unbiased loss estimate ⟨πt(At), θt⟩ as feedback to linear
bandit algorithm

NB Hanna et al. [2023] introduced this reduction for different setting of
stochastic linear contextual bandits, but their techniques do not carry
over.

11 / 19

Approximating Ω

Reduction:

1. Let linear bandit algorithm choose yt ∈ Ω in round t

2. Play πt such that Ψ(πt) = yt

3. Provide unbiased loss estimate ⟨πt(At), θt⟩ as feedback to linear
bandit algorithm

Ω = {Ψ(π) | π ∈ Π}, Ψ(π) = E
A
[π(A)]

Issue: Ψ and Ω depend on unknown distribution D of At

Using simulator: Given separate sample Ã1, . . . , ÃN from D:

Ω̂ = {Ψ̂(π) | π ∈ Π}, Ψ̂(π) =
1

N

N∑
i=1

π(Ãi)

12 / 19

Approximating Ω

Reduction:

1. Let linear bandit algorithm choose yt ∈ Ω in round t

2. Play πt such that Ψ(πt) = yt

3. Provide unbiased loss estimate ⟨πt(At), θt⟩ as feedback to linear
bandit algorithm

Ω = {Ψ(π) | π ∈ Π}, Ψ(π) = E
A
[π(A)]

Issue: Ψ and Ω depend on unknown distribution D of At

Using simulator: Given separate sample Ã1, . . . , ÃN from D:

Ω̂ = {Ψ̂(π) | π ∈ Π}, Ψ̂(π) =
1

N

N∑
i=1

π(Ãi)

12 / 19

Approximating Ω

Reduction:

1. Let linear bandit algorithm choose yt ∈ Ω̂ in round t

2. Play πt such that Ψ̂(πt) = yt

3. Provide biased loss estimate ⟨πt(At), θt⟩ as feedback to linear
bandit algorithm

Ω = {Ψ(π) | π ∈ Π}, Ψ(π) = E
A
[π(A)]

Using simulator: Given separate sample Ã1, . . . , ÃN from D:

Ω̂ = {Ψ̂(π) | π ∈ Π}, Ψ̂(π) =
1

N

N∑
i=1

π(Ãi)

▶ Need computationally efficient adversarial linear bandit algorithm
that is robust to biased stochastic feedback

12 / 19

Side-Result: Efficient Robust Linear Bandit
Algorithm

Definition (α-misspecification-robust linear bandit algorithm)

Given random feedback ft(yt) ∈ [−1,+1] with bias at most some known
ϵ ≥ 0: ∣∣Et [ft(yt)]− ⟨yt , θt⟩

∣∣ ≤ ϵ,

the algorithm achieves regret at most

E
[T∑
t=1

⟨yt , θt⟩
]
≤ min

y∈Ω̂

T∑
t=1

⟨y , θt⟩+ Õ
(
d
√
T + α

√
dϵT

)
.

▶ [Liu et al., 2024]: optimal α = 1, but runtime scales with number of
actions K

▶ New alg: α =
√
d , and poly(d ,C ,T) runtime

▶ Version of continuous exponential weights similar to Ito et al. [2020]
▶ Also achieves first-order bound

13 / 19

Controlling the Difference between Ψ and Ψ̂

Are we there yet?

14 / 19

Controlling the Difference between Ψ and Ψ̂

Suppose, with high probability,

|⟨Ψ(π), θt⟩ − ⟨Ψ̂(π), θt⟩| ≤ ϵ for π ∈ {π∗, πt}, t = 1, . . . ,T

This would resolve the following remaining issues:

1. Controlling bias:

| E
At

[⟨πt(At), θt⟩]− ⟨yt , θt⟩| = |⟨Ψ(πt), θt⟩ − ⟨Ψ̂(πt), θt⟩| ≤ ϵ

2. Linear bandit gives regret bound w.r.t. y∗ ∈ Ω̂ instead of Ω:

E
[T∑

t=1

(
⟨yt , θt⟩−⟨y∗, θt⟩

)]
≥ E

[T∑
t=1

(
⟨Ψ̂(πt), θt⟩−⟨Ψ̂(π∗), θt⟩

)]
≥ E

[T∑
t=1

(
⟨Ψ(πt), θt⟩ − ⟨Ψ(π∗), θt⟩

)]
− 2T ϵ

14 / 19

Controlling the Difference between Ψ and Ψ̂

Suppose, with high probability,

|⟨Ψ(π), θt⟩ − ⟨Ψ̂(π), θt⟩| ≤ ϵ for π ∈ {π∗, πt}, t = 1, . . . ,T

This would resolve the following remaining issues:

1. Controlling bias:

| E
At

[⟨πt(At), θt⟩]− ⟨yt , θt⟩| = |⟨Ψ(πt), θt⟩ − ⟨Ψ̂(πt), θt⟩| ≤ ϵ

2. Linear bandit gives regret bound w.r.t. y∗ ∈ Ω̂ instead of Ω:

E
[T∑

t=1

(
⟨yt , θt⟩−⟨y∗, θt⟩

)]
≥ E

[T∑
t=1

(
⟨Ψ̂(πt), θt⟩−⟨Ψ̂(π∗), θt⟩

)]
≥ E

[T∑
t=1

(
⟨Ψ(πt), θt⟩ − ⟨Ψ(π∗), θt⟩

)]
− 2T ϵ

14 / 19

Controlling the Difference between Ψ and Ψ̂

Suppose, with high probability,

|⟨Ψ(π), θt⟩ − ⟨Ψ̂(π), θt⟩| ≤ ϵ for π ∈ {π∗, πt}, t = 1, . . . ,T

This would resolve the following remaining issues:

1. Controlling bias:

| E
At

[⟨πt(At), θt⟩]− ⟨yt , θt⟩| = |⟨Ψ(πt), θt⟩ − ⟨Ψ̂(πt), θt⟩| ≤ ϵ

2. Linear bandit gives regret bound w.r.t. y∗ ∈ Ω̂ instead of Ω:

E
[T∑

t=1

(
⟨yt , θt⟩−⟨y∗, θt⟩

)]
≥ E

[T∑
t=1

(
⟨Ψ̂(πt), θt⟩−⟨Ψ̂(π∗), θt⟩

)]
≥ E

[T∑
t=1

(
⟨Ψ(πt), θt⟩ − ⟨Ψ(π∗), θt⟩

)]
− 2T ϵ

14 / 19

Controlling the Difference between Ψ and Ψ̂
Suppose, with high probability,

|⟨Ψ(π), θt⟩ − ⟨Ψ̂(π), θt⟩| ≤ ϵ for π ∈ {π∗, πt}, t = 1, . . . ,T

Ψ(π) = E
A
[π(A)] Ψ̂(π) =

1

N

N∑
i=1

π(Ãi)

Lemma (Uniform Convergence over Linear Policies)

Let πϕ(A) := argmina∈A⟨a, ϕ⟩ be a linear policy. Then, w.p. ≥ 1− δ,

sup
ϕ

∣∣⟨Ψ(πϕ), θt⟩ − ⟨Ψ̂(πϕ), θt⟩
∣∣ ≤ 2

√
2d ln(NK 2)

N
+

√
2 ln(4/δ)

N
.

▶ Union bound over t = 1, . . . ,T is cheap: δ/T instead of δ
▶ We know π∗ is always a linear policy, but algorithm’s choices πt may

not be! Problem!
▶ Can we solve this by extending to uniform convergence over all

policies π? No, does not hold! So need to ensure πt is linear policy.

14 / 19

Controlling the Difference between Ψ and Ψ̂
Suppose, with high probability,

|⟨Ψ(π), θt⟩ − ⟨Ψ̂(π), θt⟩| ≤ ϵ for π ∈ {π∗, πt}, t = 1, . . . ,T

Ψ(π) = E
A
[π(A)] Ψ̂(π) =

1

N

N∑
i=1

π(Ãi)

Lemma (Uniform Convergence over Linear Policies)

Let πϕ(A) := argmina∈A⟨a, ϕ⟩ be a linear policy. Then, w.p. ≥ 1− δ,

sup
ϕ

∣∣⟨Ψ(πϕ), θt⟩ − ⟨Ψ̂(πϕ), θt⟩
∣∣ ≤ 2

√
2d ln(NK 2)

N
+

√
2 ln(4/δ)

N
.

▶ Union bound over t = 1, . . . ,T is cheap: δ/T instead of δ

▶ We know π∗ is always a linear policy, but algorithm’s choices πt may
not be! Problem!

▶ Can we solve this by extending to uniform convergence over all
policies π? No, does not hold! So need to ensure πt is linear policy.

14 / 19

Controlling the Difference between Ψ and Ψ̂
Suppose, with high probability,

|⟨Ψ(π), θt⟩ − ⟨Ψ̂(π), θt⟩| ≤ ϵ for π ∈ {π∗, πt}, t = 1, . . . ,T

Ψ(π) = E
A
[π(A)] Ψ̂(π) =

1

N

N∑
i=1

π(Ãi)

Lemma (Uniform Convergence over Linear Policies)

Let πϕ(A) := argmina∈A⟨a, ϕ⟩ be a linear policy. Then, w.p. ≥ 1− δ,

sup
ϕ

∣∣⟨Ψ(πϕ), θt⟩ − ⟨Ψ̂(πϕ), θt⟩
∣∣ ≤ 2

√
2d ln(NK 2)

N
+

√
2 ln(4/δ)

N
.

▶ Union bound over t = 1, . . . ,T is cheap: δ/T instead of δ
▶ We know π∗ is always a linear policy, but algorithm’s choices πt may

not be! Problem!

▶ Can we solve this by extending to uniform convergence over all
policies π? No, does not hold! So need to ensure πt is linear policy.

14 / 19

Controlling the Difference between Ψ and Ψ̂
Suppose, with high probability,

|⟨Ψ(π), θt⟩ − ⟨Ψ̂(π), θt⟩| ≤ ϵ for π ∈ {π∗, πt}, t = 1, . . . ,T

Ψ(π) = E
A
[π(A)] Ψ̂(π) =

1

N

N∑
i=1

π(Ãi)

Lemma (Uniform Convergence over Linear Policies)

Let πϕ(A) := argmina∈A⟨a, ϕ⟩ be a linear policy. Then, w.p. ≥ 1− δ,

sup
ϕ

∣∣⟨Ψ(πϕ), θt⟩ − ⟨Ψ̂(πϕ), θt⟩
∣∣ ≤ 2

√
2d ln(NK 2)

N
+

√
2 ln(4/δ)

N
.

▶ Union bound over t = 1, . . . ,T is cheap: δ/T instead of δ
▶ We know π∗ is always a linear policy, but algorithm’s choices πt may

not be! Problem!
▶ Can we solve this by extending to uniform convergence over all

policies π? No, does not hold! So need to ensure πt is linear policy.
14 / 19

Restricting πt to be a Linear Policy

▶ Ω̂ ⊂ Rd is a polytope

▶ Lemma: for every vertex v of Ω̂, there exists a
linear policy πϕ that maps to it: Ψ̂(πϕ) = v .
▶ In fact, this holds for any interior point ϕ of

the negative normal cone −N (Ω̂, v) at v .

▶ By Carathéodory’s theorem, yt is a convex
combination of m ≤ d + 1 vertices v1, . . . , vm:

yt =
m∑
j=1

λjvj for λ = (λ1, . . . , λm) ∈ ∆m (1)

Solution

Instead of playing yt , sample one of the vertices v1, . . . , vm according to
λ and play the corresponding linear policy πϕ → same expected loss.

▶ Computation: We can both find the decomposition (1) and the
interior point ϕ of the normal cone in poly(d ,N,C) time, because
we can construct an efficient separation oracle for Ω̂.

15 / 19

Restricting πt to be a Linear Policy

▶ Ω̂ ⊂ Rd is a polytope

▶ Lemma: for every vertex v of Ω̂, there exists a
linear policy πϕ that maps to it: Ψ̂(πϕ) = v .
▶ In fact, this holds for any interior point ϕ of

the negative normal cone −N (Ω̂, v) at v .

▶ By Carathéodory’s theorem, yt is a convex
combination of m ≤ d + 1 vertices v1, . . . , vm:

yt =
m∑
j=1

λjvj for λ = (λ1, . . . , λm) ∈ ∆m (1)

Solution

Instead of playing yt , sample one of the vertices v1, . . . , vm according to
λ and play the corresponding linear policy πϕ → same expected loss.

▶ Computation: We can both find the decomposition (1) and the
interior point ϕ of the normal cone in poly(d ,N,C) time, because
we can construct an efficient separation oracle for Ω̂.

15 / 19

Restricting πt to be a Linear Policy

▶ Ω̂ ⊂ Rd is a polytope

▶ Lemma: for every vertex v of Ω̂, there exists a
linear policy πϕ that maps to it: Ψ̂(πϕ) = v .
▶ In fact, this holds for any interior point ϕ of

the negative normal cone −N (Ω̂, v) at v .

▶ By Carathéodory’s theorem, yt is a convex
combination of m ≤ d + 1 vertices v1, . . . , vm:

yt =
m∑
j=1

λjvj for λ = (λ1, . . . , λm) ∈ ∆m (1)

Solution

Instead of playing yt , sample one of the vertices v1, . . . , vm according to
λ and play the corresponding linear policy πϕ → same expected loss.

▶ Computation: We can both find the decomposition (1) and the
interior point ϕ of the normal cone in poly(d ,N,C) time, because
we can construct an efficient separation oracle for Ω̂.

15 / 19

Restricting πt to be a Linear Policy

▶ Ω̂ ⊂ Rd is a polytope

▶ Lemma: for every vertex v of Ω̂, there exists a
linear policy πϕ that maps to it: Ψ̂(πϕ) = v .
▶ In fact, this holds for any interior point ϕ of

the negative normal cone −N (Ω̂, v) at v .

▶ By Carathéodory’s theorem, yt is a convex
combination of m ≤ d + 1 vertices v1, . . . , vm:

yt =
m∑
j=1

λjvj for λ = (λ1, . . . , λm) ∈ ∆m (1)

Solution

Instead of playing yt , sample one of the vertices v1, . . . , vm according to
λ and play the corresponding linear policy πϕ → same expected loss.

▶ Computation: We can both find the decomposition (1) and the
interior point ϕ of the normal cone in poly(d ,N,C) time, because
we can construct an efficient separation oracle for Ω̂.

15 / 19

Putting It All Together

Theorem

Given access to an α-misspecification robust linear bandit algorithm, we
obtain

RT (π) = Õ
(
d
√
T + αTd

√
log(NKT)

N

)
.

▶ We had α =
√
d for an efficient algorithm

With simulator access: Take N large enough to make the second term
negligible:

RT (π) = Õ(d
√
T)

Without simulator access:

▶ Run in epochs of lengths 2i for i = 0, 1, 2, 3, . . .

▶ In epoch i use N = Θ(2i) samples from all previous epochs to
construct Ω̂

RT (π) = Õ
(
d
√
T + αd

√
T log(KT)

)

16 / 19

Putting It All Together

Theorem

Given access to an α-misspecification robust linear bandit algorithm, we
obtain

RT (π) = Õ
(
d
√
T + αTd

√
log(NKT)

N

)
.

▶ We had α =
√
d for an efficient algorithm

With simulator access: Take N large enough to make the second term
negligible:

RT (π) = Õ(d
√
T)

Without simulator access:

▶ Run in epochs of lengths 2i for i = 0, 1, 2, 3, . . .

▶ In epoch i use N = Θ(2i) samples from all previous epochs to
construct Ω̂

RT (π) = Õ
(
d
√
T + αd

√
T log(KT)

)

16 / 19

Putting It All Together

Theorem

Given access to an α-misspecification robust linear bandit algorithm, we
obtain

RT (π) = Õ
(
d
√
T + αTd

√
log(NKT)

N

)
.

▶ We had α =
√
d for an efficient algorithm

With simulator access: Take N large enough to make the second term
negligible:

RT (π) = Õ(d
√
T)

Without simulator access:

▶ Run in epochs of lengths 2i for i = 0, 1, 2, 3, . . .

▶ In epoch i use N = Θ(2i) samples from all previous epochs to
construct Ω̂

RT (π) = Õ
(
d
√
T + αd

√
T log(KT)

)
16 / 19

Conclusion

Highlights:

▶ First algorithm for this setting that handles combinatorial action sets
efficiently

▶ Efficient reduction from contextual to (misspecified) non-contextual
linear bandits

▶ Handle resulting misspecification in linear bandit algorithm

Open Questions:

▶ Improve computation to match Neu and Valko [2014]? For
semi-bandit feedback, they only require a linear optimization oracle
for each action set instead of a polynomial number of constraints.

▶ Improve regret to Õ(d
√
T) with polynomial-time algorithm without

a simulator?

▶ Improve first-order bound to Õ(
√
pKL∗) in initial setting?

17 / 19

References I

Y. Dai, H. Luo, C.-Y. Wei, and J. Zimmert. Refined regret for adversarial MDPs with
linear function approximation. In International Conference on Machine Learning,
pages 6726–6759. PMLR, 2023.

O. A. Hanna, L. Yang, and C. Fragouli. Contexts can be cheap: Solving stochastic
contextual bandits with linear bandit algorithms. In The Thirty Sixth Annual
Conference on Learning Theory, pages 1791–1821. PMLR, 2023.

S. Ito, S. Hirahara, T. Soma, and Y. Yoshida. Tight first-and second-order regret
bounds for adversarial linear bandits. Advances in Neural Information Processing
Systems, 33:2028–2038, 2020.

H. Liu, C.-Y. Wei, and J. Zimmert. Bypassing the simulator: Near-optimal adversarial
linear contextual bandits. Advances in Neural Information Processing Systems, 36,
2023.

H. Liu, A. Tajdini, A. Wagenmaker, and C.-Y. Wei. Corruption-robust linear bandits:
Minimax optimality and gap-dependent misspecification. In The Thirty-eighth
Annual Conference on Neural Information Processing Systems, 2024.

G. Neu and J. Olkhovskaya. Efficient and robust algorithms for adversarial linear
contextual bandits. In J. Abernethy and S. Agarwal, editors, Proceedings of Thirty
Third Conference on Learning Theory, volume 125 of Proceedings of Machine
Learning Research, pages 3049–3068. PMLR, 09–12 Jul 2020. URL
https://proceedings.mlr.press/v125/neu20b.html.

18 / 19

https://proceedings.mlr.press/v125/neu20b.html

References II

G. Neu and M. Valko. Online combinatorial optimization with stochastic decision sets
and adversarial losses. Advances in Neural Information Processing Systems, 27,
2014.

J. Olkhovskaya, J. Mayo, T. van Erven, G. Neu, and C.-Y. Wei. First-and
second-order bounds for adversarial linear contextual bandits. Advances in Neural
Information Processing Systems, 36, 2023.

19 / 19

	Setting
	Adversarial Bandits
	Adversarial Linear Contextual Bandits

	Main Results
	General Setting
	First-order Bounds, Initial Setting

	Approach: Reduction to Non-contextual Linear Bandits
	Reduction: The Basic Idea
	Approximating
	Side-Result: Efficient Robust Linear Bandit Algorithm
	Controlling the Difference between and
	Restricting t to be a Linear Policy

	References

