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A horse racing example

◎ There is a set of horses. 

◎ In each round, a subset of horses are chosen 
(arbitrarily) to compete with each other. 

◎ In each round, you can predict the winner. If you 
correctly predict it, you get $20. 
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A horse racing example

If not all horses join the competition in all rounds 
→ a “learning from sleeping experts” problem
[Kleinberg, Niculescu-Mizil, Sharma’08]
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Input:  𝑁 (number of horses / experts / actions)

For 𝑡 = 1, 2, … , 𝑇

Environment reveals 𝑆𝑡 ⊆ [𝑁]

Choose 𝑎𝑡 ∈ 𝑆𝑡 and suffers ℓ𝑡(𝑎𝑡)

Observe ℓ𝑡(𝑎) for all 𝑎 ∈ 𝑆𝑡

// ℓ𝑡(𝑎) = 0 if 𝑎 wins;   ℓ𝑡(𝑎) = 1 otherwise



Measuring the Performance

For sleeping expert problem, one benchmark is the “total loss of the best ranking” 
[Kleinberg, Niculescu-Mizil, Sharma’08]. 

Example.   Let 𝜎 specifies the ranking  3 → 4 → 1 → 2 → 5. Then 

𝜎 2, 4, 5 = 4
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𝐿⋆ ≜ min
𝜎∈ ranking over [𝑁]



𝑡=1

𝑇

ℓ𝑡 𝜎 𝑆𝑡

Reg ≜ 𝐿 − 𝐿⋆

𝐿 ≜

𝑡=1

𝑇

ℓ𝑡 𝑎𝑡

Note: the learner need not pick a ranking; only the benchmark 𝐿⋆ is defined though a ranking. 



Known results for sleeping expert problems

Reg = 𝒐(𝑻) is possible. Hedging over the strategies (#strategies = 𝑁!) using the 

exponential weight algorithm [Kleinberg, Niculescu-Mizil, Sharma’08]: 

Reg = 𝐿 − 𝐿⋆ = 𝑂 𝑇 log(𝑁!) = 𝑂 𝑁𝑇 log(𝑁)

Computationally hard to get 𝒐(𝑻) regret when both ℓ𝒕 and 𝑺𝒕 are adversarial.  
[Kanade and Steinke’11]
At least as hard as PAC learning DNF (disjunctive normal form) functions, for which no 

poly(𝑁)-time algorithm is known.
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∃ Computationally efficient algorithms with 𝒐(𝑻) regret if either ℓ𝒕 or 𝑺𝐭 is i.i.d.
[Kanade, McMahan, Bryan’ 09,   Neu and Valko’14,  Saha, Gaillard, Valko’20]



Our Work

Motivation  Is there a polynomial-time algorithm whose performance is comparable to 

the best ranking when both ℓ𝑡 and 𝑆𝑡 are adversarial? 
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→ Relaxing the regret definition: 

𝛼-Reg ≜ 𝐿 − 𝛼𝐿⋆ for some 𝛼 ≥ 1

𝛼 is called the “approximation ratio”   (𝐿 ≲ 𝛼𝐿⋆ if 𝛼-Reg = 𝑜(𝑇))

Goals  ● polynomial-time algorithm

● making 𝛼 as small as possible

● 𝛼-Reg = 𝑜(𝑇)



Result Overview
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feedback 𝛼 𝛼-Reg Requirement

full-info or bandit 𝑁 𝑁2

full-info 𝑂(log 𝐾) 𝑂(𝑁2) Binary loss with 𝑍 = 1

bandit 𝑂(log 𝐾) 𝑂 𝑁 𝐾𝑇 + 𝑁2𝐾 Binary loss with 𝑍 = 1

full-info 𝑂(𝐾2) 𝑂(𝑁4) Binary loss with 𝑍 = 2

𝐿 ≤ 𝛼𝐿⋆ + (𝛼-Reg)

𝐾 ≜ an upper bound of |𝑆𝑡|
𝑍 ≜ # of zero-loss actions per round

𝑍 ≤ 𝐾 ≤ 𝑁

In the following, we focus on the case of binary losses. 

full-info: The learner observes ℓ𝑡 𝑎 ∀𝑎 ∈ 𝑆𝑡
bandit:   The learner only observes ℓ𝑡(𝑎𝑡)



LEVEL algorithm (similar to [Blum, Mansour, Morgenstern’18])

level 𝑎 ← 0 ∀𝑎 ∈ 𝑁

For 𝑡 = 1,… , 𝑇:

Choose 𝑎𝑡 ∈ argmin𝑎∈𝑆𝑡 level(𝑎)

If ℓ𝑡 𝑎𝑡 = 1: 

level 𝑎𝑡 ← level 𝑎𝑡 + 1

8

Theorem.     𝐿 ≤ 𝑁𝐿⋆ + 𝑁2



HATT (Hedges Aggregated with Tournament Trees)
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𝑝1 1 = 𝑝1 2 =
1

2

For 𝑡 = 1, 2,… , 𝑇: 

For 𝑖 ∈ 1, 2 ,  update  𝑝𝑡+1 𝑖 ∝ 𝑝𝑡 𝑖 𝑒−𝜂ℓ𝑡(𝑖)

Idea  Reducing the sleeping expert problem to pairwise comparison

Base Algorithm:  Hedge for a 2-action problem

Setting  full-information;  in each round, exactly one 𝑎 ∈ 𝑆𝑡 has loss 0 (others have loss 1) 

We call this action the 

“winner” of that round



HATT (Hedges Aggregated with Tournament Trees)
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Initiate a Hedge algorithm between any pair of actions (𝑖, 𝑗).      (totally 𝑁
2

of them)

In a round with 𝑆𝑡 = 1, 3, 4, 7, 9, 10

After receiving ℓ𝑡, update all hedges that appears in the tree and involves the winner. 

1 3 4 7 9 10

Call the Hedge 

between (1,3) and 

sample 𝑖𝑡 ∼ 𝑝𝑡

1 7 10

7 10
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Call the Hedge 

between (1,7) and 

sample 𝑖𝑡 ∼ 𝑝𝑡

Call the Hedge 

between (7,10) and 

sample 𝑖𝑡 ∼ 𝑝𝑡

𝑎𝑡 = 10



HATT (Hedges Aggregated with Tournament Trees)
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Theorem   If in every round, there is exactly one 𝑎 ∈ [𝑁] with ℓ𝑡 𝑎 = 0, and 𝑆𝑡 ≤ 𝐾, 

then 𝔼 𝐿 ≤ 𝑂 log 𝐾 𝐿⋆ + 𝑂 𝑁2 .



Summary
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➢ Our work gives first efficient algorithms that tackle adversarial sleeping experts / bandits.

➢ We propose four algorithms with approximate regret bounds for general or special cases. 

Future Work

➢ Any algorithm with poly(𝐾) approximation ratio for 𝑍 ≥ 3 cases. 

➢ Further improving the approximation ratio in all cases. 

➢ Providing approximation-ratio lower bounds under computational constraints.  



Bandit-HATT
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Theorem     𝔼 𝐿 ≤ 𝑂 log 𝐾 𝐿⋆ + 𝑂 𝑁 𝐾𝑇 + 𝑁2𝐾

Idea   Reducing bandit to full-information 

(standard technique for bandit classification, e.g., Banditron, Newtron)

𝑡 = 1 𝑡 = 𝑇

In time step marked with    : perform uniform exploration → winner is revealed with probability ≥
1

𝐾

→ perform full-information update

Essentially becomes the full-info case

In time step marked with    : choosing 𝑎𝑡 using the tournament tree as before (but without update)



HOPP (Hedges Over Pairs of Pairs)
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Initialize 𝑁
4

× 3 + 𝑁
3

Hedges 

For 𝑡 = 1, 2, … , 𝑇: 

Use a complicated decision rule to aggregate the output of all Hedges. 

Observe ℓ𝑡 𝑎 ∀𝑎 ∈ 𝑆𝑡.

Update some of the hedges.

𝑎, 𝑏 𝑐, 𝑑

Hedge ( (a, b), (c, d) ) with distinct a, b, c, d

𝑎 𝑐𝑏

Hedge ( a, b, c ) with distinct a, b, c
Theorem   If in every round, there is exactly two 𝑎 ∈ [𝑁] with 

ℓ𝑡 𝑎 = 0 (others have losses of 1) and 𝑆𝑡 ≤ 𝐾, then

𝔼 𝐿 ≤ 𝑂 𝐾2 𝐿⋆ + 𝑂 𝑁4 .

Algorithm


