Adversarial Online Learning with Changing Action Sets: Efficient Algorithms with Approximate Regret Bounds

Ehsan Emamjomeh-Zadeh, Chen-Yu Wei, Haipeng Luo, David Kempe

University of Southern California

A horse racing example

- There is a set of horses.
- In each round, a subset of horses are chosen (arbitrarily) to compete with each other.
- In each round, you can predict the winner. If you correctly predict it, you get \$20.

A horse racing example

If not all horses join the competition in all rounds → a "learning from sleeping experts" problem [Kleinberg, Niculescu-Mizil, Sharma'08]

Input: *N* (number of horses / experts / actions) For t = 1, 2, ..., T

Environment reveals $S_t \subseteq [N]$

```
Choose a_t \in S_t and suffers \ell_t(a_t)
```

```
Observe \ell_t(a) for all a \in S_t
```

```
// \ell_t(a) = 0 if a wins; \ell_t(a) = 1 otherwise
```


Measuring the Performance

For sleeping expert problem, one benchmark is the "total loss of the best ranking" [Kleinberg, Niculescu-Mizil, Sharma'08].

$$\hat{L} \triangleq \sum_{t=1}^{T} \ell_t(a_t)$$
$$L^* \triangleq \min_{\sigma \in \text{ ranking over } [N]} \sum_{t=1}^{T} \ell_t(\sigma(S_t))$$

Example. Let σ specifies the ranking $3 \rightarrow 4 \rightarrow 1 \rightarrow 2 \rightarrow 5$. Then $\sigma(\{2, 4, 5\}) = 4$

Note: the learner need not pick a ranking; only the benchmark L^* is defined though a ranking.

 $\operatorname{Reg} \triangleq \widehat{L} - L^{\star}$

Known results for sleeping expert problems

Reg = o(T) is possible. Hedging over the strategies (#strategies = N!) using the exponential weight algorithm [Kleinberg, Niculescu-Mizil, Sharma'08]:

$$\operatorname{\mathsf{Reg}} = \widehat{L} - L^{\star} = O\left(\sqrt{T \log(N!)}\right) = O\left(\sqrt{NT \log(N)}\right)$$

∃ Computationally efficient algorithms with o(T) regret if either ℓ_t or S_t is i.i.d. [Kanade, McMahan, Bryan' 09, Neu and Valko'14, Saha, Gaillard, Valko'20]

Computationally hard to get o(T) regret when both ℓ_t and S_t are adversarial.

[Kanade and Steinke'11] At least as hard as PAC learning DNF (disjunctive normal form) functions, for which no poly(*N*)-time algorithm is known.

Our Work

Motivation Is there a polynomial-time algorithm whose performance is comparable to the best ranking when both ℓ_t and S_t are adversarial?

 \rightarrow Relaxing the regret definition:

 α -Reg $\triangleq \hat{L} - \alpha L^{\star}$ for some $\alpha \ge 1$

 α is called the "approximation ratio" ($\hat{L} \leq \alpha L^*$ if α -Reg = o(T))

- **Goals** polynomial-time algorithm
 - making α as small as possible

•
$$\alpha$$
-Reg = $o(T)$

Result Overview

$\hat{L} \leq \alpha L^{\star} + (\alpha \operatorname{-Reg})$

 $K \triangleq$ an upper bound of $|S_t|$ $Z \triangleq \#$ of zero-loss actions per round $Z \le K \le N$

full-info: The learner observes $\ell_t(a) \quad \forall a \in S_t$ bandit: The learner only observes $\ell_t(a_t)$

	feedback	α	α -Reg	Requirement
	full-info or bandit	Ν	N ²	
•	full-info	$O(\log K)$	$O(N^2)$	Binary loss with $Z = 1$
	bandit	$O(\log K)$	$O\left(N\sqrt{KT} + N^2K\right)$	Binary loss with $Z = 1$
	• full-info	$O(K^2)$	$O(N^4)$	Binary loss with $Z = 2$

In the following, we focus on the case of binary losses.

LEVEL algorithm (similar to [Blum, Mansour, Morgenstern'18])

```
\begin{aligned} &\text{level}(a) \leftarrow 0 \quad \forall a \in [N] \\ &\text{For } t = 1, \dots, T: \\ &\text{Choose } a_t \in \operatorname{argmin}_{a \in S_t} \text{ level}(a) \\ &\text{lf } \ell_t(a_t) = 1: \\ &\text{level}(a_t) \leftarrow \text{level}(a_t) + 1 \end{aligned}
```

Theorem. $\hat{L} \leq NL^* + N^2$

HATT (Hedges Aggregated with Tournament Trees)

Setting full-information; in each round, exactly one $a \in S_t$ has loss 0 (others have loss 1)

Idea Reducing the sleeping expert problem to pairwise comparison We call thi

We call this action the "winner" of that round

Base Algorithm: Hedge for a 2-action problem

$$p_1(1) = p_1(2) = \frac{1}{2}$$

For $t = 1, 2, ..., T$:
For $i \in \{1, 2\}$, update $p_{t+1}(i) \propto p_t(i) e^{-\eta \ell_t(i)}$

HATT (Hedges Aggregated with Tournament Trees)

Initiate a Hedge algorithm between any pair of actions (i, j). (totally $\binom{N}{2}$ of them) In a round with $S_t = \{1, 3, 4, 7, 9, 10\}$

 $a_t = 10$

After receiving ℓ_t , update all hedges that <u>appears in the tree</u> and <u>involves the winner</u>.

HATT (Hedges Aggregated with Tournament Trees)

Theorem If in every round, there is exactly one $a \in [N]$ with $\ell_t(a) = 0$, and $|S_t| \le K$, then $\mathbb{E}[\hat{L}] \le O(\log K)L^* + O(N^2)$.

Summary

- Our work gives first efficient algorithms that tackle adversarial sleeping experts / bandits.
- > We propose four algorithms with **approximate regret bounds** for general or special cases.

Future Work

- Any algorithm with poly(K) approximation ratio for $Z \ge 3$ cases.
- > Further improving the approximation ratio in all cases.
- Providing approximation-ratio lower bounds under computational constraints.

Bandit-HATT

Theorem $\mathbb{E}[\hat{L}] \leq O(\log K)L^* + O(N\sqrt{KT} + N^2K)$

Idea Reducing bandit to full-information (standard technique for bandit classification, e.g., Banditron, Newtron)

t = 1

In time step marked with •: perform uniform exploration \rightarrow winner is revealed with probability $\geq \frac{1}{K}$ \rightarrow perform full-information update

Essentially becomes the full-info case

In time step marked with \bullet : choosing a_t using the tournament tree as before (but without update)

HOPP (Hedges Over Pairs of Pairs)

Hedge ((a, b), (c, d)) with distinct a, b, c, d

Algorithm

Initialize $\binom{N}{4} \times 3 + \binom{N}{3}$ Hedges

For t = 1, 2, ..., T:

Use a complicated decision rule to aggregate the output of all Hedges. Observe $\ell_t(a) \ \forall a \in S_t$.

Update some of the hedges.

Hedge (a, b, c) with distinct a, b, c

Theorem If in every round, there is exactly two $a \in [N]$ with $\ell_t(a) = 0$ (others have losses of 1) and $|S_t| \le K$, then $\mathbb{E}[\hat{L}] \le O(K^2)L^* + O(N^4)$.