Adversarial Online Learning with Changing Action Sets: Efficient Algorithms with Approximate Regret Bounds

Ehsan Emamjomeh-Zadeh, Chen-Yu Wei, Haipeng Luo, David Kempe
University of Southern California

A horse racing example

There is a set of horses.In each round, a subset of horses are chosen (arbitrarily) to compete with each other.In each round, you can predict the winner. If you correctly predict it, you get \$20.
A horse racing example

If not all horses join the competition in all rounds
\rightarrow a "learning from sleeping experts" problem [Kleinberg, Niculescu-Mizil, Sharma'08]

Input: N (number of horses / experts / actions)
For $t=1,2, \ldots, T$
Environment reveals $S_{t} \subseteq[N]$
Choose $a_{t} \in S_{t}$ and suffers $\ell_{t}\left(a_{t}\right)$
Observe $\ell_{t}(a)$ for all $a \in S_{t}$
$/ / \ell_{t}(a)=0$ if a wins; $\quad \ell_{t}(a)=1$ otherwise

Measuring the Performance

For sleeping expert problem, one benchmark is the "total loss of the best ranking" [Kleinberg, Niculescu-Mizil, Sharma’08].

$$
\begin{aligned}
& \hat{L} \triangleq \sum_{t=1}^{T} e_{t}\left(a_{t}\right) \\
& L^{\star} \triangleq \min _{\sigma \in \operatorname{ranking~over}[N]} \sum_{t=1}^{T} e_{t}\left(\sigma\left(S_{t}\right)\right)
\end{aligned}
$$

Example. Let σ specifies the ranking $3 \rightarrow 4 \rightarrow 1 \rightarrow 2 \rightarrow 5$. Then

$$
\sigma(\{2,4,5\})=4
$$

Note: the learner need not pick a ranking; only the benchmark L^{\star} is defined though a ranking.

$$
\operatorname{Reg} \triangleq \hat{L}-L^{\star}
$$

Known results for sleeping expert problems

Reg $=o(T)$ is possible. Hedging over the strategies (\#strategies $=N!$) using the exponential weight algorithm [Kleinberg, Niculescu-Mizil, Sharma'08]:

$$
\operatorname{Reg}=\hat{L}-L^{\star}=O(\sqrt{T \log (N!)})=O(\sqrt{N T \log (N)})
$$

\exists Computationally efficient algorithms with $o(T)$ regret if either ℓ_{t} or S_{t} is i.i.d. [Kanade, McMahan, Bryan' 09, Neu and Valko'14, Saha, Gaillard, Valko'20]

Computationally hard to get $\boldsymbol{o}(T)$ regret when both ℓ_{t} and S_{t} are adversarial. [Kanade and Steinke'11]
At least as hard as PAC learning DNF (disjunctive normal form) functions, for which no poly (N)-time algorithm is known.

Our Work

Motivation Is there a polynomial-time algorithm whose performance is comparable to the best ranking when both ℓ_{t} and S_{t} are adversarial?
\rightarrow Relaxing the regret definition:

$$
\alpha-\operatorname{Reg} \triangleq \hat{L}-\alpha L^{\star} \quad \text { for some } \alpha \geq 1
$$

α is called the "approximation ratio" ($\hat{L} \lesssim \alpha L^{\star}$ if α-Reg $=o(T)$)

Goals - polynomial-time algorithm

- making α as small as possible
- $\alpha-\operatorname{Reg}=o(T)$

Result Overview

$$
\hat{L} \leq \alpha L^{\star}+(\alpha-\text { Reg })
$$

$K \triangleq$ an upper bound of $\left|S_{t}\right|$
$Z \triangleq$ \# of zero-loss actions per round
$Z \leq K \leq N$
full-info: The learner observes $\ell_{t}(a) \forall a \in S_{t}$ bandit: The learner only observes $\ell_{t}\left(a_{t}\right)$

feedback	α	α-Reg	Requirement
full-info or bandit	N	N^{2}	
full-info	$O(\log K)$	$O\left(N^{2}\right)$	Binary loss with $Z=1$
bandit	$O(\log K)$	$O\left(N \sqrt{K T}+N^{2} K\right)$	Binary loss with $Z=1$
full-info	$O\left(K^{2}\right)$	$O\left(N^{4}\right)$	Binary loss with $Z=2$

In the following, we focus on the case of binary losses.

LEVEL algorithm (similar to [Blum, Mansour, Morgenstern'18])

```
level}(a)\leftarrow0\quad\foralla\in[N
Fort=1, ..,T:
    Choose }\mp@subsup{a}{t}{}\in\mp@subsup{\operatorname{argmin}}{a\in\mp@subsup{S}{t}{}}{}\operatorname{level}(a
    If }\mp@subsup{\ell}{t}{}(\mp@subsup{a}{t}{})=1
        level}(\mp@subsup{a}{t}{})\leftarrow\operatorname{level}(\mp@subsup{a}{t}{})+
```

Theorem. $\quad \hat{L} \leq N L^{\star}+N^{2}$

HATT (Hedges Aggregated with Tournament Trees)

Setting full-information; in each round, exactly one $a \in S_{t}$ has loss 0 (others have loss 1)
Idea Reducing the sleeping expert problem to pairwise comparison We call this action the "winner" of that round

Base Algorithm: Hedge for a 2-action problem

$$
\begin{aligned}
& p_{1}(1)=p_{1}(2)=\frac{1}{2} \\
& \text { For } t=1,2, \ldots, T \text { : } \\
& \quad \text { For } i \in\{1,2\} \text {, update } p_{t+1}(i) \propto p_{t}(i) e^{-\eta \ell_{t}(i)}
\end{aligned}
$$

HATT (Hedges Aggregated with Tournament Trees)

Initiate a Hedge algorithm between any pair of actions (i, j). (totally $\binom{N}{2}$ of them) In a round with $S_{t}=\{1,3,4,7,9,10\}$

$$
a_{t}=10
$$

> Call the Hedge between $(7,10)$ and sample $i_{t} \sim p_{t}$

HATT (Hedges Aggregated with Tournament Trees)

Theorem If in every round, there is exactly one $a \in[N]$ with $\ell_{t}(a)=0$, and $\left|S_{t}\right| \leq K$, then $\mathbb{E}[\hat{L}] \leq O(\log K) L^{\star}+O\left(N^{2}\right)$.

Summary

> Our work gives first efficient algorithms that tackle adversarial sleeping experts / bandits.
> We propose four algorithms with approximate regret bounds for general or special cases.

Future Work

$>$ Any algorithm with poly (K) approximation ratio for $Z \geq 3$ cases.
> Further improving the approximation ratio in all cases.
> Providing approximation-ratio lower bounds under computational constraints.

Bandit-HATT

Theorem $\quad \mathbb{E}[\hat{L}] \leq O(\log K) L^{\star}+O\left(N \sqrt{K T}+N^{2} K\right)$

Idea Reducing bandit to full-information
(standard technique for bandit classification, e.g., Banditron, Newtron)

```
t=1
\[
t=T
\]
```

In time step marked with \bullet : perform uniform exploration \rightarrow winner is revealed with probability $\geq \frac{1}{K}$ \rightarrow perform full-information update

> Essentially becomes the full-info case

In time step marked with • : choosing a_{t} using the tournament tree as before (but without update)

HOPP (Hedges Over Pairs of Pairs)

Hedge ((a, b), (c, d)) with distinct a, b, c, d

Hedge (a, b, c) with distinct a, b, c

Algorithm

Initialize $\binom{N}{4} \times 3+\binom{N}{3}$ Hedges
For $t=1,2, \ldots, T$:
Use a complicated decision rule to aggregate the output of all Hedges.
Observe $\ell_{t}(a) \forall a \in S_{t}$.
Update some of the hedges.

Theorem If in every round, there is exactly two $a \in[N]$ with $\ell_{t}(a)=0$ (others have losses of 1) and $\left|S_{t}\right| \leq K$, then $\mathbb{E}[\hat{L}] \leq O\left(K^{2}\right) L^{\star}+O\left(N^{4}\right)$.

