
Adversarial Online Learning with Changing Action Sets:
Efficient Algorithms with Approximate Regret Bounds

Ehsan Emamjomeh-Zadeh, Chen-Yu Wei, Haipeng Luo, David Kempe

University of Southern California

A horse racing example

◎ There is a set of horses.

◎ In each round, a subset of horses are chosen
(arbitrarily) to compete with each other.

◎ In each round, you can predict the winner. If you
correctly predict it, you get $20.

2

A horse racing example

If not all horses join the competition in all rounds
→ a “learning from sleeping experts” problem
[Kleinberg, Niculescu-Mizil, Sharma’08]

3

Input: 𝑁 (number of horses / experts / actions)

For 𝑡 = 1, 2, … , 𝑇

Environment reveals 𝑆𝑡 ⊆ [𝑁]

Choose 𝑎𝑡 ∈ 𝑆𝑡 and suffers ℓ𝑡(𝑎𝑡)

Observe ℓ𝑡(𝑎) for all 𝑎 ∈ 𝑆𝑡

// ℓ𝑡(𝑎) = 0 if 𝑎 wins; ℓ𝑡(𝑎) = 1 otherwise

Measuring the Performance

For sleeping expert problem, one benchmark is the “total loss of the best ranking”
[Kleinberg, Niculescu-Mizil, Sharma’08].

Example. Let 𝜎 specifies the ranking 3 → 4 → 1 → 2 → 5. Then

𝜎 2, 4, 5 = 4

4

𝐿⋆ ≜ min
𝜎∈ ranking over [𝑁]

𝑡=1

𝑇

ℓ𝑡 𝜎 𝑆𝑡

Reg ≜ 𝐿 − 𝐿⋆

𝐿 ≜

𝑡=1

𝑇

ℓ𝑡 𝑎𝑡

Note: the learner need not pick a ranking; only the benchmark 𝐿⋆ is defined though a ranking.

Known results for sleeping expert problems

Reg = 𝒐(𝑻) is possible. Hedging over the strategies (#strategies = 𝑁!) using the

exponential weight algorithm [Kleinberg, Niculescu-Mizil, Sharma’08]:

Reg = 𝐿 − 𝐿⋆ = 𝑂 𝑇 log(𝑁!) = 𝑂 𝑁𝑇 log(𝑁)

Computationally hard to get 𝒐(𝑻) regret when both ℓ𝒕 and 𝑺𝒕 are adversarial.
[Kanade and Steinke’11]
At least as hard as PAC learning DNF (disjunctive normal form) functions, for which no

poly(𝑁)-time algorithm is known.

5

∃ Computationally efficient algorithms with 𝒐(𝑻) regret if either ℓ𝒕 or 𝑺𝐭 is i.i.d.
[Kanade, McMahan, Bryan’ 09, Neu and Valko’14, Saha, Gaillard, Valko’20]

Our Work

Motivation Is there a polynomial-time algorithm whose performance is comparable to

the best ranking when both ℓ𝑡 and 𝑆𝑡 are adversarial?

6

→ Relaxing the regret definition:

𝛼-Reg ≜ 𝐿 − 𝛼𝐿⋆ for some 𝛼 ≥ 1

𝛼 is called the “approximation ratio” (𝐿 ≲ 𝛼𝐿⋆ if 𝛼-Reg = 𝑜(𝑇))

Goals ● polynomial-time algorithm

● making 𝛼 as small as possible

● 𝛼-Reg = 𝑜(𝑇)

Result Overview

7

feedback 𝛼 𝛼-Reg Requirement

full-info or bandit 𝑁 𝑁2

full-info 𝑂(log 𝐾) 𝑂(𝑁2) Binary loss with 𝑍 = 1

bandit 𝑂(log 𝐾) 𝑂 𝑁 𝐾𝑇 + 𝑁2𝐾 Binary loss with 𝑍 = 1

full-info 𝑂(𝐾2) 𝑂(𝑁4) Binary loss with 𝑍 = 2

𝐿 ≤ 𝛼𝐿⋆ + (𝛼-Reg)

𝐾 ≜ an upper bound of |𝑆𝑡|
𝑍 ≜ # of zero-loss actions per round

𝑍 ≤ 𝐾 ≤ 𝑁

In the following, we focus on the case of binary losses.

full-info: The learner observes ℓ𝑡 𝑎 ∀𝑎 ∈ 𝑆𝑡
bandit: The learner only observes ℓ𝑡(𝑎𝑡)

LEVEL algorithm (similar to [Blum, Mansour, Morgenstern’18])

level 𝑎 ← 0 ∀𝑎 ∈ 𝑁

For 𝑡 = 1,… , 𝑇:

Choose 𝑎𝑡 ∈ argmin𝑎∈𝑆𝑡 level(𝑎)

If ℓ𝑡 𝑎𝑡 = 1:

level 𝑎𝑡 ← level 𝑎𝑡 + 1

8

Theorem. 𝐿 ≤ 𝑁𝐿⋆ + 𝑁2

HATT (Hedges Aggregated with Tournament Trees)

9

𝑝1 1 = 𝑝1 2 =
1

2

For 𝑡 = 1, 2,… , 𝑇:

For 𝑖 ∈ 1, 2 , update 𝑝𝑡+1 𝑖 ∝ 𝑝𝑡 𝑖 𝑒−𝜂ℓ𝑡(𝑖)

Idea Reducing the sleeping expert problem to pairwise comparison

Base Algorithm: Hedge for a 2-action problem

Setting full-information; in each round, exactly one 𝑎 ∈ 𝑆𝑡 has loss 0 (others have loss 1)

We call this action the

“winner” of that round

HATT (Hedges Aggregated with Tournament Trees)

10

Initiate a Hedge algorithm between any pair of actions (𝑖, 𝑗). (totally 𝑁
2

of them)

In a round with 𝑆𝑡 = 1, 3, 4, 7, 9, 10

After receiving ℓ𝑡, update all hedges that appears in the tree and involves the winner.

1 3 4 7 9 10

Call the Hedge

between (1,3) and

sample 𝑖𝑡 ∼ 𝑝𝑡

1 7 10

7 10

10

Call the Hedge

between (1,7) and

sample 𝑖𝑡 ∼ 𝑝𝑡

Call the Hedge

between (7,10) and

sample 𝑖𝑡 ∼ 𝑝𝑡

𝑎𝑡 = 10

HATT (Hedges Aggregated with Tournament Trees)

11

Theorem If in every round, there is exactly one 𝑎 ∈ [𝑁] with ℓ𝑡 𝑎 = 0, and 𝑆𝑡 ≤ 𝐾,

then 𝔼 𝐿 ≤ 𝑂 log 𝐾 𝐿⋆ + 𝑂 𝑁2 .

Summary

12

➢ Our work gives first efficient algorithms that tackle adversarial sleeping experts / bandits.

➢ We propose four algorithms with approximate regret bounds for general or special cases.

Future Work

➢ Any algorithm with poly(𝐾) approximation ratio for 𝑍 ≥ 3 cases.

➢ Further improving the approximation ratio in all cases.

➢ Providing approximation-ratio lower bounds under computational constraints.

Bandit-HATT

13

Theorem 𝔼 𝐿 ≤ 𝑂 log 𝐾 𝐿⋆ + 𝑂 𝑁 𝐾𝑇 + 𝑁2𝐾

Idea Reducing bandit to full-information

(standard technique for bandit classification, e.g., Banditron, Newtron)

𝑡 = 1 𝑡 = 𝑇

In time step marked with : perform uniform exploration → winner is revealed with probability ≥
1

𝐾

→ perform full-information update

Essentially becomes the full-info case

In time step marked with : choosing 𝑎𝑡 using the tournament tree as before (but without update)

HOPP (Hedges Over Pairs of Pairs)

14

Initialize 𝑁
4

× 3 + 𝑁
3

Hedges

For 𝑡 = 1, 2, … , 𝑇:

Use a complicated decision rule to aggregate the output of all Hedges.

Observe ℓ𝑡 𝑎 ∀𝑎 ∈ 𝑆𝑡.

Update some of the hedges.

𝑎, 𝑏 𝑐, 𝑑

Hedge ((a, b), (c, d)) with distinct a, b, c, d

𝑎 𝑐𝑏

Hedge (a, b, c) with distinct a, b, c
Theorem If in every round, there is exactly two 𝑎 ∈ [𝑁] with

ℓ𝑡 𝑎 = 0 (others have losses of 1) and 𝑆𝑡 ≤ 𝐾, then

𝔼 𝐿 ≤ 𝑂 𝐾2 𝐿⋆ + 𝑂 𝑁4 .

Algorithm

