Towards Minimax Regret for Stochastic Shortest Path with

Adversarial Costs
Presenter: Liyu Chen

Liyu Chen Haipeng Luo Chen-Yu Wei

University of Southern California

September 12, 2021

1/31

Problem Formulation: Markov Decision Process (MDP)

state s; € S| | cost c(s¢,a;) € [0,1]

next state s;y1 ~ P(+|s¢,a4)

We assume finite state space S and action space A = {As}ses.

action a; € As,

2/31

Many MDP models have been studied:
e Infinite horizon average reward model (Bartlett & Tewari, 2009; Jaksch et al., 2010)
¢ Infinite horizon discounted model (Even-Dar et al., 2003; Strehl et al., 2006)
® Finite horizon model (Osband and Van Roy, 2016; Azar et al., 2017; Jin et al., 2018)

3/31

Many MDP models have been studied:
e Infinite horizon average reward model (Bartlett & Tewari, 2009; Jaksch et al., 2010)
¢ Infinite horizon discounted model (Even-Dar et al., 2003; Strehl et al., 2006)
® Finite horizon model (Osband and Van Roy, 2016; Azar et al., 2017; Jin et al., 2018)

However, there are many real-world applications not modelled well by the above:

g

® Games (such as Go)

e (Car navigation

® Robotic manipulation

3/31

Many MDP models have been studied:
e Infinite horizon average reward model (Bartlett & Tewari, 2009; Jaksch et al., 2010)
¢ Infinite horizon discounted model (Even-Dar et al., 2003; Strehl et al., 2006)
® Finite horizon model (Osband and Van Roy, 2016; Azar et al., 2017; Jin et al., 2018)

However, there are many real-world applications not modelled well by the above:

7

® Games (such as Go)

e (Car navigation

® Robotic manipulation

For these, Stochastic Shortest Path (SSP) is a better model.
® Episodic MDP with a goal state.

3/31

Many MDP models have been studied:
e Infinite horizon average reward model (Bartlett & Tewari, 2009; Jaksch et al., 2010)
¢ Infinite horizon discounted model (Even-Dar et al., 2003; Strehl et al., 2006)
® Finite horizon model (Osband and Van Roy, 2016; Azar et al., 2017; Jin et al., 2018)

However, there are many real-world applications not modelled well by the above:

7

® Games (such as Go)

e (Car navigation

® Robotic manipulation

For these, Stochastic Shortest Path (SSP) is a better model.
® Episodic MDP with a goal state.

® Challenges: variable episode length, possibly unbounded cost, etc.

3/31

Many MDP models have been studied:
e Infinite horizon average reward model (Bartlett & Tewari, 2009; Jaksch et al., 2010)
¢ Infinite horizon discounted model (Even-Dar et al., 2003; Strehl et al., 2006)
® Finite horizon model (Osband and Van Roy, 2016; Azar et al., 2017; Jin et al., 2018)

However, there are many real-world applications not modelled well by the above:

7

® Games (such as Go)

e (Car navigation

® Robotic manipulation

For these, Stochastic Shortest Path (SSP) is a better model.
® Episodic MDP with a goal state.

® Challenges: variable episode length, possibly unbounded cost, etc.
® Not well studied yet.

3/31

Related Works

S: # states, A: # actions, D: SSP-diameter, K: # episodes,
T,: expected hitting time of optimal policy, ¢min: minimum cost

® SSP with stochastic cost:

* UC-SSP (Tarbouriech et al., 2020): O (DS, /2 AK)

4/31

Related Works

S: # states, A: # actions, D: SSP-diameter, K: # episodes,
T,: expected hitting time of optimal policy, ¢min: minimum cost

® SSP with stochastic cost:
® UC-SSP (Tarbouriech et al., 2020): O (DS D AK)

Cmin

® Bernstein-SSP (Cohen et al., 2020): & (DSVAK)

4/31

Related Works

S: # states, A: # actions, D: SSP-diameter, K: # episodes,
T,: expected hitting time of optimal policy, ¢min: minimum cost

® SSP with stochastic cost:
® UC-SSP (Tarbouriech et al., 2020): O (DS D AK)

Cmin

® Bernstein-SSP (Cohen et al., 2020): & (DSVAK)

® SSP with adversarial cost (full information):

® SSP-O-REPS (Rosenberg and Mansour, 2020): O (%\/7) or O (v/DT,K3/*) with known
transition

4/31

Our Results

S: # of states, A: # of actions, D: SSP-diameter, K: # of episodes
T,: expected hitting time of optimal policy, ¢min: minimum cost

Minimax Regret (this talk) | (Rosenberg and Mansour, 2020)
Full information o(vDT,K) A (L\/R) or O (\/DT*K%)

Cmin

Bandit feedback O(vDT,SAK) N/A

Our contributions: we develop efficient minimax optimal algorithms for both full
information and bandit feedback setting with known transition.

5/31

Follow-up Work for Unknown Transition

S: # of states, A: # of actions, D: SSP-diameter, K: # of episodes
T,: expected hitting time of optimal policy, ¢min: minimum cost

Follow-up (Rosenberg and Mansour, 2020) Lower bounds
Full information | & <\/52ADT*K) %) (g AK) or & (\/52AT*2K3/4 + sz/R) Q(v/DT.K + DVSAK)
Bandit feedback | & <\/53A2DT*K) N/A Q(v/SADT,K + DVSAK)

Paper: https://arxiv.org/abs/2102.05284.

6/31

Highlights

All algorithms are based on Online Mirror Descent (OMD).

Many new ideas are required to achieve desired results.

® A new multi-scale expert algorithm

A reduction from a general SSP to its loop-free version

Skewed occupancy measure

Log-barrier regularizer

® An increasing learning rate schedule

A negative bias injected to the cost function

7/31

Problem Formulation

SSP Model: MDP M = (S, A, so, g, P) + cost functions {cx}K_,

8/31

Problem Formulation

SSP Model: MDP M = (S, A, 59, g, P) + cost functions {c, }<_,

Learning Protocol

fork=1,...,K do

environment chooses ¢, adaptively (based on learner's
algorithm and history)

end

8/31

Problem Formulation

SSP Model: MDP M = (S, A, 59, g, P) + cost functions {c, }<_,

Learning Protocol
fork=1,...,K do
environment chooses ¢, adaptively (based on learner's
algorithm and history)
learner starts in state sp = sp, i 1
while s, # g do '
learner chooses action aj € ‘ASL

learner observes states s, ~ P(:|s], a})
I+ i+1
end

end
8/31

Problem Formulation

SSP Model: MDP M = (S, A, 59, g, P) + cost functions {c, }<_,

Learning Protocol
fork=1,...,K do
environment chooses ¢, adaptively (based on learner's
algorithm and history)
learner starts in state sp = sp, i 1
while s, # g do '
learner chooses action aj € ‘ASL

learner observes states s, ~ P(:|s], a})
I+ i+1
end

learner observes ¢y (full information) or {c(s, a;'()}szl
(bandit feedback) and suffer cost kazl c(st,ak)

end

8/31

Problem Formulation

SSP Model: MDP M = (S, A, so, g, P) + cost functions {cx}K_,

Notations:
e Valid state-action pairs [= {(s,a) : s € S,a € A}

9/31

Problem Formulation

SSP Model: MDP M = (S, A, 59, g, P) + cost functions {c, }<_,

Notations:
e Valid state-action pairs [= {(s,a) : s € S,a € A}
® Policy m: maps s € S to distribution over A,
® Proper: reaches g with probability 1

9/31

Problem Formulation

SSP Model: MDP M = (S, A, 59, g, P) + cost functions {c, }<_,

Notations:
e Valid state-action pairs [= {(s,a) : s € S,a € A}
® Policy m: maps s € S to distribution over A,
® Proper: reaches g with probability 1

® Cost-to-go function J™(s) = E[Zle c(s’,a)|P,m, st = s]

9/31

Problem Formulation

SSP Model: MDP M = (S, A, 59, g, P) + cost functions {c, }<_,

Notations:
e Valid state-action pairs [= {(s,a) : s € S,a € A}
® Policy m: maps s € S to distribution over A,
® Proper: reaches g with probability 1

® Cost-to-go function J™(s) = E[Zle c(s’,a)|P,m, st = s]
® Expected hitting time T7(s) = E[/|P, 7, s' = s]

9/31

Problem Formulation

SSP Model: MDP M = (S, A, 59, g, P) + cost functions {c, }<_,
Notations:

e Valid state-action pairs [= {(s,a) : s € S,a € A}
® Policy m: maps s € S to distribution over A,
® Proper: reaches g with probability 1

® Cost-to-go function J™(s) = E[Zle c(s’,a)|P,m, st = s]
® Expected hitting time T7(s) = E[/|P, 7, s' = s]
® D =maxs Minzer, o T7(5), To = T™ (s0).

9/31

Problem Formulation

SSP Model: MDP M = (S, A, 59, g, P) + cost functions {c, }<_,
Notations:

e Valid state-action pairs [= {(s,a) : s € S,a € A}
® Policy m: maps s € S to distribution over A,
® Proper: reaches g with probability 1

® Cost-to-go function J™(s) = E[Zle c(s’,a)|P,m, st = s]
® Expected hitting time T7(s) = E[/|P, 7, s' = s]
® D =maxs Minzer, o T7(5), To = T™ (s0).

Objective: minimize regret w.r.t. the best stationary proper policy in hindsight
K I
=3 (S etk)
k=1 \i=1

* : K *
where 7 = argmin cn Y o1 I (s0)

9/31

Occupancy Measure

A proper policy 7 induces an occupancy measure g, €]Rgo with

I
Gr(s,a) =E [Z]I{si =s,a =a}

i=1

1
P,7T,S :50])

which is the expected number of visits to (s, a) when executing .

10/31

Occupancy Measure

A proper policy 7 induces an occupancy measure g, €]Rgo with

I
g-(s,a) =E [Z]I{si =s,a =a}

i=1

1
'Daﬂ-as :50])

which is the expected number of visits to (s, a) when executing .

® One-to-one correspondence: mq(als) o q(s, a)

10/31

Occupancy Measure

A proper policy 7 induces an occupancy measure g, €]Rgo with

I
g-(s,a) =E [Z]I{si =s,a =a}

i=1

1
'Daﬂ-as :50])

which is the expected number of visits to (s, a) when executing .
® One-to-one correspondence: mq(als) o q(s, a)
* Ji(s0) = (qm; ck), T(s0) = Z(s,a) qx(s,a)

10/31

Occupancy Measure

A proper policy 7 induces an occupancy measure g, €]Rgo with

I
g-(s,a) =E [Z]I{si =s,a =a}

i=1

1
'Daﬂ-as :50])

which is the expected number of visits to (s, a) when executing .
® One-to-one correspondence: mq(als) o q(s, a)
* Ji(s0) = (qm; ck), T(s0) = Z(s,a) qx(s,a)

* E[Rk] = E |Ti5 (4n, — are)|

10/31

Occupancy Measure

A proper policy 7 induces an occupancy measure g, € Rgo with

I
gr(s,a)=E [ZH{si =s,a =a}

i=1

1
P,T[’,S :50])

which is the expected number of visits to (s, a) when executing .
® One-to-one correspondence: mq(als) o q(s, a)
* Ji(s0) = (qm; ck), T(s0) = Z(s,a) qx(s,a)

* E[Rk] = E |Ti5 (4n, — are)|

Converting into online linear optimization. Apply Online Mirror Descent (OMD)!

10/31

Occupancy Measure

Define the decision set of occupancy measures:

A(T) = {qeRgo: Y q(s,a)< T,

(s,a)el

Z q(s,a) — Z P(s|s’,a)q(s',d') =1{s = s}, Vs € S}

acAs (s',a")er

T is an upper bound on expected hitting time.

11/31

Full information, Expected Regret
Key challenge: achieve optimal bound without knowing T,

Solution: a new multi-scale expert algorithm as meta learner

12/31

Full Information, Expected Regret

Algorithm 1 SSP-O-REPS (Rosenberg and Mansour, 2020)

Input: upper bound on expected hitting time T.

Define: regularizer i)(q) = %Z(s,a) q(s,a)Inq(s,a) and n = min {%, Tlnéf(AT) }
Initialization: g1 = argmingca (1) ¥(q).

for k=1,...,K do

| Execute 7q,, receive ck, and update qx+1 = argmingea(r) (g, ck) + Dy(q, qx).
end

13/31

Full Information, Expected Regret

Algorithm 1 SSP-O-REPS (Rosenberg and Mansour, 2020)

Input: upper bound on expected hitting time T.

Define: regularizer i)(q) = %Z(s,a) q(s,a)Inq(s,a) and n = min {%, Tlnéf(AT) }
Initialization: g1 = argmingca (1) ¥(q).

for k=1,...,K do

| Execute 7q,, receive ck, and update qx+1 = argmingea(r) (g, ck) + Dy(q, qx).
end

Rosenberg and Mansour (2020) proves E[Rk] = O (T\/R)

13/31

Full Information, Expected Regret

Algorithm 1 SSP-O-REPS (Rosenberg and Mansour, 2020)

Input: upper bound on expected hitting time T.
Define: regularizer i)(q) = %Z(s’a) q(s,a)Inqg(s,a) and n = min {%, TI"L(;(AT) }

Initialization: g1 = argmingca (1) ¥(q).
for k=1,...,K do

| Execute 7q,, receive ck, and update qx+1 = argmingea(r) (g, ck) + Dy(q, qx).
end

Rosenberg and Mansour (2020) proves E[Rk] = O (T\/R)
We improve their analysis by the fact S>F_, J7"(sp) < DK:

Algorithm 1 ensures E[Rx] = O (x/DTK> aslongas T > T,.

13/31

Full Information, Expected Regret

Algorithm 1 SSP-O-REPS (Rosenberg and Mansour, 2020)

Input: upper bound on expected hitting time T.
Define: regularizer i)(q) = %Z(s’a) q(s,a)Inqg(s,a) and n = min {%, TI"L(;(AT) }

Initialization: g1 = argmingca (1) ¥(q).

for k=1,...,K do

| Execute 7q,, receive ck, and update qx+1 = argmingea(r) (g, ck) + Dy(q, qx).
end

Rosenberg and Mansour (2020) proves E[Rk] = O (T\/R)
We improve their analysis by the fact S>F_, J7"(sp) < DK:

Algorithm 1 ensures E[Rx] = O (\/DTK) as long as T > T,. (Problem: need to know T,)

13/31

Full Information, Expected Regret

Question: how to deal with unknown T,7?

14 /31

Full Information, Expected Regret

Question: how to deal with unknown T,7?
Solution: run multiple O-REPS-SSP instances with different T and learn the best.
® Maintain N ~ log, K SSP-O-REPS instances, where the j-th instance sets T ~ 2/,

® Each instance is an action of the meta-algorithm. Define meta-loss /,(j) = <q{(, ck>.

14 /31

Full Information, Expected Regret

Question: how to deal with unknown T,7?
Solution: run multiple O-REPS-SSP instances with different T and learn the best.
® Maintain N ~ log, K SSP-O-REPS instances, where the j-th instance sets T ~ 2/,

® Each instance is an action of the meta-algorithm. Define meta-loss /,(j) = <q{(, ck>.

® lIssue: losses have different scales, £, (j) < b(j) ~ 2.

14 /31

Full Information, Expected Regret

Question: how to deal with unknown T,7?
Solution: run multiple O-REPS-SSP instances with different T and learn the best.
® Maintain N ~ log, K SSP-O-REPS instances, where the j-th instance sets T ~ 2/,

® Each instance is an action of the meta-algorithm. Define meta-loss /,(j) = <qf(, ck>.

® lIssue: losses have different scales, £, (j) < b(j) ~ 2.
® Natural first attempt: apply multi-scale expert algorithm (Bubeck et al., 2017):

N

o)=Y ip(j) npG). pili) o<

j=1

14 /31

Full Information, Expected Regret

Question: how to deal with unknown T,7?
Solution: run multiple O-REPS-SSP instances with different T and learn the best.
® Maintain N ~ log, K SSP-O-REPS instances, where the j-th instance sets T ~ 2/,

® Each instance is an action of the meta-algorithm. Define meta-loss /,(j) = <qf(, ck>.

® lIssue: losses have different scales, £, (j) < b(j) ~ 2.
® Natural first attempt: apply multi-scale expert algorithm (Bubeck et al., 2017):

N
o)=Y ip(j) npG). pili) o<

j=1

* However, known multi-scale algorithms only ensure O (b(/*)ﬁ) regret, not optimal.

14 /31

Full Information, Expected Regret

Question: how to deal with unknown T,7?
Solution: run multiple O-REPS-SSP instances with different T and learn the best.
® Maintain N ~ log, K SSP-O-REPS instances, where the j-th instance sets T ~ 2/,
® Each instance is an action of the meta-algorithm. Define meta-loss /,(j) = <qf<, ck>.

® lIssue: losses have different scales, £, (j) < b(j) ~ 2.
® Natural first attempt: apply multi-scale expert algorithm (Bubeck et al., 2017):

N

o)=Y %P(f) npG). pili) o<

=t

* However, known multi-scale algorithms only ensure O (b(/*)ﬁ) regret, not optimal.

® Our solution: inspired by other works for adaptive regret bound (Steinhardt and Liang,
2014; Wei and Luo, 2018), we change £ (j) to £x(j) + 4n;¢2(j) (penalizing long horizon

policy), which gives O <\/b(j*)E[Zf:1 Kk(j*)]) regret.

14/31

Full Information, Expected Regret

Algorithm 2 Adaptive SSP-O-REPS with Multi-scale Experts

Define: Qz{peRgo:ZJ 1p() =1} and ¥(p ZJ 1np(J)Inp(/)
Initialize: p; € Q such that p;(j) o 7;.
Initialize: N instances of SSP-O-REPS, where the j-th instance uses parameter T = b(j).
fork=1,...,K do
For each j € [N], obtain occupancy measure qi from SSP-O-REPS instance j.
Sample ji ~ pi, execute 7y induced by qf(receive ¢, and feed ci to all instances.
Compute £ and ax: £k(j) = (q}, k), ax(j) = 4n;03(j), Vj € [N].

Update pyi1 = argmin,cq (p, Ck + ak) + Dy(p, pk)-
end

15/31

Full Information, Expected Regret

Algorithm 2 Adaptive SSP-O-REPS with Multi-scale Experts

Define: Qz{peRgo:zj 1p() =1} and ¥(p ZJ 1np(J)Inp(/)
Initialize: p; € Q such that p;(j) o 7;.
Initialize: N instances of SSP-O-REPS, where the j-th instance uses parameter T = b(j).
fork=1,...,K do
For each j € [N], obtain occupancy measure qf(from SSP-O-REPS instance j.
Sample ji ~ pi, execute 7y induced by qf(receive ¢, and feed ci to all instances.
Compute £ and ax: £k(j) = (q}, k), ax(j) = 4n;03(j), Vj € [N].
Update pyy1 = argmin,cq (p, lk + ak) + Dy (p; pk)-
end

Algorithm 2 ensures E[Rx] = O (vVDT,K) without knowing T, (which is optimal).

15/31

Full Information, High Probability Bound
Key challenge: control the variance of learner's cost

Solution: loop-free reduction + skewed occupancy measure

16 /31

Full Information, High Probability Bound

K
:1

] =

Nk — Grsyck) = (Nk — qi, k) +
=1 k=1 k

. S/

— Qr~*, Ck

I
|ij

Deviation RE G

where N (s, a) = lekzl]I{s,’; =s, af(= a}.

17/31

Full Information, High Probability Bound

K K
Nie = Grer k) = Y (N = qrs i) + > (Gk — G, k),
k=1 k=1

Deviation RE G

I
bjx

k=1

/

where N (s, a) = lekzl]I{s,’; =s, af(= a}.

Issue: there is no good upper bound on (N, ck).

17/31

Full Information, High Probability Bound

[l
M=

K K
Nie = Grer k) = Y (N = qrs i) + > (Gk — G, k),
k=1 k=1

Deviation RE G

where N (s, a) = lekzl H{SL =s, a;'(= a}.

Issue: there is no good upper bound on (N, ck).

Lemma (Quantifying Deviation in SSP)

Consider executing a stationary policy 7 in episode k. Then Ei[(Ny, ci)?] < 2 (qn, J5).

17/31

Full Information, High Probability Bound

Lemma (Quantifying Deviation in SSP)

Consider executing a stationary policy 7 in episode k. Then E[(Ny, ci)?] < 2 (qn, J5).

Observation 1: for the optimal policy 7*:

ZK:<q,T*,JZ*> S G (s Z (s) < DKY " gn-(s) = DT.K

k=1 seS seS

18/31

Full Information, High Probability Bound

Lemma (Quantifying Deviation in SSP)

Consider executing a stationary policy 7 in episode k. Then E[(Ny, ci)?] < 2 (qn, J5).

Observation 1: for the optimal policy 7*:
K
S {ae) =Y ane(s Z) < DK gne(s) = DT.K
k=1 seS seS

It is thus tempting to enforce S°K_, (qm,, Ji¥) < DT.K. But how?
® |t depends on all cost functions cy, ..., ck.

® Non-convex w.r.t. occupancy measure.

18/31

Full Information, High Probability Bound

Observation 2: the variance upper bound takes a much simpler form in a loop-free MDP.

19/31

Full Information, High Probability Bound

Observation 2: the variance upper bound takes a much simpler form in a loop-free MDP.
Loop-free layered structure:
e State space is of the form S x [H].

e Transition from (s, h) to (s’, #’) is only possible if /' = h+1
(except transition to the goal state).

19/31

Full Information, High Probability Bound

Observation 2: the variance upper bound takes a much simpler form in a loop-free MDP.

Loop-free layered structure:

® State space is of the form S x [H].
® Transition from (s, h) to (s', #") is only possible if i = h+1 O<82§>>

(except transition to the goal state).

Lemma (Quantifying Deviation in loop-free MDP)

If M has a loop-free layered structure, then
<qﬂ'> J;(r) = Z(s,a) Zthl h- qﬂ'(sv a, h)Ck(S, a, h) = <q7Ta HO Ck> ;

where we define ho f(s,a, h) = h- f(s,a, h). For simplicity, we write q.((s, h), a) as
q=(s,a, h), and cx((s, h),a) as c(s, a, h).

19/31

Full Information, High Probability Bound

Observation 2: the variance upper bound takes a much simpler form in a loop-free MDP.

Loop-free layered structure:
® State space is of the form S x [H].
® Transition from (s, h) to (s', #") is only possible if i = h+1 @
(except transition to the goal state).

Lemma (Quantifying Deviation in loop-free MDP)

If M has a loop-free layered structure, then
<qﬂ'> J;(r) = Z(s,a) Zthl h- qﬂ'(sv a, h)Ck(S, a, h) = <q7Ta HO Ck> ;

where we define ho f(s,a, h) = h- f(s,a, h). For simplicity, we write q.((s, h), a) as
q=(s,a, h), and cx((s, h),a) as c(s, a, h).

This inspires us to approximate the SSP instance by a loop-free MDP.

19/31

First ldea: Loop-free Reduction

Construct M from M: duplicate each state by attaching a time step h for H; steps, and then
connect all states to some dummy state that lasts for another Hy steps.

c((s,h),a) = c(s,a) ,
P((s',h 4+ 1)|(s, h) a) = P(s'|s,a),h € [H) — 1]

50) .

For simplicity, write q(s, a, h) = q((s, h), a), c(s, a, h) = ¢((s, h), a), and define H = Hy + Ha.

20/31

First ldea: Loop-free Reduction

Given 7 in M, define non-stationary policy o(%) in M which
1. follows 7(-|(s, h)) at state s for time step h < H;

2. then execute the fast policy 7 until reaching g

21/31

First Idea: Loop-free Reduction

Given 7 in M, define non-stationary policy o(%) in M which
1. follows 7(-|(s, h)) at state s for time step h < H;
2. then execute the fast policy 7 until reaching g

Lemma
Suppose Hy > maxs T™ (s),Hy > D. Let 7, ..., 7k be policies for M with occupancy
measure q1, . ..,qk. Then the regret of executing o(71),...,0(Tk) in M satisfies for any

A € (0,2/H], with probability 1 — 3,

Rk < i <Nk — G+, Ck> +0(1)
=1

21/31

First Idea: Loop-free Reduction

Given 7 in M, define non-stationary policy o(%) in M which
1. follows 7(-|(s, h)) at state s for time step h < H;
2. then execute the fast policy 7 until reaching g

Lemma
Suppose Hy > maxs T™ (s),Hy > D. Let 7, ..., 7k be policies for M with occupancy
measure q1, . ..,qk. Then the regret of executing o(71),...,0(Tk) in M satisfies for any

A € (0,2/H], with probability 1 — 3,

Rk < i <Nk — G+, Ck> +0(1)
=1

Note: applying standard loop-free algorithms does not solve our problem!
21/31

First Idea: Loop-free Reduction

Given 7 in M, define non-stationary policy o(7) in M which
1. follows 7(-|(s, h)) at state s for time step h < H;
2. then execute the fast policy 7 until reaching g

Lemma
Suppose Hy > maxs T™ (s),Hy > D. Let 7, ..., 7k be policies for M with occupancy
measure q1, . ..,qk. Then the regret of executing o(71),...,0(Tk) in M satisfies for any

A € (0,2/H], with probability 1 — 3,

K K K . 2In(2s) «
§Z<Nk Q7 Ck>+0 Z - 7T*7Ck>+)‘z<qk7hock>+T+O(1)
k=1

k=1

/

~
" ~

REG VAR

Note: applying standard loop-free algorithms does not solve our problem!
21/31

Second Idea: Skewed Occupancy Measure Space

K
RK Z — Gz, Ck)\Z<Qk,HOCk>+§.

k=1 k=1

X

VAR

22/31

Second Idea: Skewed Occupancy Measure Space

K
RK Z — gz, Ck +>\Z<qkaﬁock>+%'

VAR
It is still hard to enforce VAR < DT, K. Instead, we have the following observation:
K K 1
R 5 {((ak+Aho qe) = (g + Ak o gz, ck) + AkX_jl (s Foa)+5

>
I
—

1 5
<¢7Tk _¢%*7Ck>+)‘DT*K+X' (¢7r = qrr+)\hoq7r)

24N
M=

T
I

22/31

Second Idea: Skewed Occupancy Measure Space

K
RK Z — qx*, Ck +>\Z<qk,HOCk> +%

VAR
It is still hard to enforce VAR < DT, K. Instead, we have the following observation:
K K 1
R 5 {((ak+Aho qe) = (g + Ak o gz, ck) + AkX_jl (s Foa)+5

[y

k=
K

A

1 5
<¢7Tk _¢%*7Ck>+>‘DT*K+X' (¢7r = qrr+)\hoq7r)
1

k=
It thus motivates us to perform OMD over a skewed occupancy measure space:

Q:{¢:q+Aqu:qu(T*)}.

22/31

Full Information, High Probability Bound

Algorithm 3 SSP-O-REPS with Loop-free Reduction and Skewed Occupancy Measure

Parameters: 7 = min {%, \/ ER},)\ = B(Tlf?’ H, = [4DIn %
Define: H = H; + Hb, regularizer ¢)(¢) = %Zthl Z(S 2)ef o(s,a, h)Ind(s, a, h)
Initialization: ¢; = g1 + Aho g1 = argmin,eq ¥(9).
fork=1,...,K do
Execute o(7x) where Tk is such that m,(a|(s, h)) < gk(s, a, h), and receive ck.

Update ¢xy1 = Gri1 + Aho gryr = argmingcq (9, ck) + Dy (9, dk)-
end

23/31

Full Information, High Probability Bound

Algorithm 3 SSP-O-REPS with Loop-free Reduction and Skewed Occupancy Measure

Parameters: 7 = min {%, \/ g,*(},)\ = B(Tlf?’ H, = [4DIn %

Define: H = H; + Hy, regularizer ¢)(¢) = %Zthl Z(s 2)ef o(s,a, h)Ind(s, a, h)
Initialization: ¢; = g1 + Aho g1 = argmin,eq ¥(9).

fork=1,...,K do

Execute o(7x) where Tk is such that m,(a|(s, h)) < gk(s, a, h), and receive ck.
Update ¢xy1 = Gri1 + Aho gryr = argmingcq (9, ck) + Dy (9, dk)-

end

Algorithm 3 ensures that Rk = O (v/DT,K) with high probability.

Open Problem: How to achieve the same without knowing T.7
23/31

Bandit Feedback, Expected Bound
Key challenge: large variance of unbiased cost estimators

Solution: log-barrier regularizer + skewed occupancy measure

24/31

Bandit Feedback, Expected Bound

® Standard technique: construct an importance-weighted unbiased cost estimator. The

natural estimator is Ck(s, a) = %

25/31

Bandit Feedback, Expected Bound

® Standard technique: construct an importance-weighted unbiased cost estimator. The

natural estimator is Ck(s, a) = %

® With the entropy regularizer, the stability term of OMD is

> (s,a) k(s a)E[ci(s,a)] = 2 (s,2) W, which could be prohibitively large.

25/31

Bandit Feedback, Expected Bound

® Standard technique: construct an importance-weighted unbiased cost estimator. The

natural estimator is Ck(s, a) = %

® With the entropy regularizer, the stability term of OMD is

> (s,a) k(s a)E[ci(s,a)] = 2 (s,2) W, which could be prohibitively large.

We resolve these problems with Log-barrier regularizer ¢(¢) = — 3, . In(z,'jzqu(s, a, h)).

25/31

Bandit Feedback, Expected Bound

® Standard technique: construct an importance-weighted unbiased cost estimator. The

natural estimator is Ck(s, a) = %

® With the entropy regularizer, the stability term of OMD is

ak(s, a)Ex[c2(s, a)] = M, which could be prohibitively large.
(s,a) k (s,a) ax(s,a)

We resolve these problems with Log-barrier regularizer ¢(¢) = — 3, . In(z,'jzqu(s, a, h)).
® |t leads to a smaller stability term:

> ai(s, E[C(s. a)l = Y Ex[Ni(s. a)lci(s, a) < Ex[(Ni, c)’].
(s,a) (s,a)

Exactly the variance of actual cost and can be handled by skewed occupancy measure!

25/31

Bandit Feedback, Expected Bound

® Standard technique: construct an importance-weighted unbiased cost estimator. The
H P _ Nk(s,a)ck(s,a)
natural estimator is ¢(s, a) = BT) B
® With the entropy regularizer, the stability term of OMD is
2
> (s,a) k(s a)E[ci(s,a)] = 2 (s,2) W, which could be prohibitively large.
We resolve these problems with Log-barrier regularizer ¢(¢) = — 3, . In(ZZ’Zqu(s, a, h)).

® |t leads to a smaller stability term:
> qils, ABk[ER(s)] = Y Ex[Ni(s, a)lci(s, a) < Exl[(Nk, ex)?].
(s,a) (s,a)

Exactly the variance of actual cost and can be handled by skewed occupancy measure!

® Summing over H inside to avoid H dependency (leveraging the fact c(s, a, h) = c(s, a)).

25/31

Bandit Feedback, Expected Bound

Algorithm 4 Log-barrier Policy Search for SSP

Define: regularizer ¢(¢) = —% E(s,a)eF In¢(s, a) where ¢(s,a) = Zthl o(s,a, h)
Initialization: ¢; = g1 + Ahoq = argminycq ¥(9).
for k=1,...,K do

Execute o(7x) where Ty is such that m,(a|(s, h)) < gk(s, a, h).

- ~ T o N))
Construct cost estimator ik € Rgo such that ¢(s, a) = %.
Update ¢x+1 = Grt1 + Aho qei1 = argmingeq (9, ¢k) + Dy (9, d)-
end

26/31

Bandit Feedback, Expected Bound

Algorithm 4 Log-barrier Policy Search for SSP

Define: regularizer ¢(¢) = —% 2(573)@ In¢(s, a) where ¢(s,a) = 2th1 o(s,a, h)
Initialization: ¢; = g1 + Ahoq = argmincq ().
for k=1,...,K do

Execute o(7x) where Ty is such that m,(a|(s, h)) < gk(s, a, h).

H = r = N,))
Construct cost estimator ik € Rgo such that ¢(s, a) = %.
Update ¢x+1 = Grt1 + Aho qei1 = argmingeq (9, ¢k) + Dy (9, d)-

end

Algorithm 4 ensures E[Ryk] = O (V/DT.SAK) (which is optimal).

26/31

Bandit Feedback, High Probability Bound

Key challenge: large variance of the cost estimators for 7*

Solution: skewed occupancy measure + increasing learning rate + negative bias injected to
cost function (positive bias + negative bias)

27/31

Bandit Feedback, High Probability Bound

Question: how to obtain a high probability bound?

28/31

Bandit Feedback, High Probability Bound

Question: how to obtain a high probability bound?
® The key is to bound the deviation of 7*: Z,’le (Grr, Ck — Ck)-

28/31

Bandit Feedback, High Probability Bound

Question: how to obtain a high probability bound?
® The key is to bound the deviation of 7*: Zle (Grr, Ck — Ck)-
* By Ek[lvlf(s, a)l <>, h-qk(s,a,h)in the loop-free setting:

EN2(s, 2)]cE(s.8) _ S h- auls.a h)ax(s,)

E[ck(s,a)] = < pk(s,a)bk(s, a),

qk(s,a) B qk(s a)
where pi(s,a) = maxy ﬁ and by(s,a) = 2 hq"(gks(i Z;C"(S :2)

28/31

Bandit Feedback, High Probability Bound

Question: how to obtain a high probability bound?
® The key is to bound the deviation of 7*: Zle (Grr, Ck — Ck)-
* By Ek[lvlf(s, a)l <>, h-qk(s,a,h)in the loop-free setting:

EN2(s, 2)]cE(s.8) _ S h- auls.a h)ax(s,)

E[ck(s,a)] = < pk(s,a)bk(s, a),

qk(s,a) B qk(s a)
where pi(s,a) = maxy ﬁ and by(s,a) = 2 hq"(gks(z Z;C"(S :2)

® By Freedman's inequality, the deviation is bounded by

K K
Z g7+ (s a) J pr(s,a) D bi(s,a) < % (G, pi) + 1Y (Ges i)
k=1

(s,a) k=1

28/31

Bandit Feedback, High Probability Bound

By Freedman’s inequality, the deviation is bounded by

K

K
> (s a)J pi(5:2) Y bels.2) <~ (G)+ 1Y (4505,
k=1

(s,a) k=1

® The first term % (gz+, pk) appears in (Lee et al., 2020a) already and can be handled by
an increasing learning rate schedule.

29/31

Bandit Feedback, High Probability Bound

By Freedman’s inequality, the deviation is bounded by

K K
> (s a)J pi(5:2) Y bels.2) <~ (G)+ 1Y (4505,

(s,a) k=1 k=1
® The first term % (gz+, pk) appears in (Lee et al., 2020a) already and can be handled by

an increasing learning rate schedule.
® To handle the second term, we inject a negative bias: replacing ¢, by ¢x — nby.

29/31

Bandit Feedback, High Probability Bound

By Freedman’s inequality, the deviation is bounded by

K K

S g (5,2, | pc(5:2) S bi(s,) < % (Grer i) + 1> (G0, be)

(s,a) k=1 k=1

® The first term % (gz+, pk) appears in (Lee et al., 2020a) already and can be handled by
an increasing learning rate schedule.
® To handle the second term, we inject a negative bias: replacing ¢, by ¢x — nby.
® Gives a negative term —7 ZLI (gs+, bk). Cancel out the second term.

29/31

Bandit Feedback, High Probability Bound

By Freedman’s inequality, the deviation is bounded by

K K

S g (5,2, | pc(5:2) S bi(s,) < % (Grer i) + 1> (G0, be)

(s,a) k=1 k=1

® The first term % (gz+, pk) appears in (Lee et al., 2020a) already and can be handled by
an increasing learning rate schedule.
® To handle the second term, we inject a negative bias: replacing ¢, by ¢x — nby.
® Gives a negative term —7 Zle (gs+, bk). Cancel out the second term.

® |Incurs a bias 172,’((:1 (qk, bx) = 772;,((:1 <qk, ho ck>. Again handled by the skewed
occupancy measure.

29/31

Bandit Feedback, High Probability Bound

By Freedman’s inequality, the deviation is bounded by

K K

S g (5,2, | pc(5:2) S bi(s,) < % (Grer i) + 1S (G50 bi)

(s,a) k=1 k=1

® The first term % (gz+, pk) appears in (Lee et al., 2020a) already and can be handled by
an increasing learning rate schedule.
® To handle the second term, we inject a negative bias: replacing ¢, by ¢x — nby.
® Gives a negative term —7 Zle (gs+, bk). Cancel out the second term.
® |Incurs a bias 172,’((:1 (qk, bx) = 772;,((:1 <qk, ho ck>. Again handled by the skewed

OCCupancy measure.

— Zh qk(s7a7h)a((s7a) .

® Since ¢, is unknown, we use Bk instead of by with Ek(s, a) 5.2)

29/31

Bandit Feedback, High Probability Bound

By Freedman’s inequality, the deviation is bounded by

K K
S g (5,2, | pc(5:2) S bi(s,) < %<q»ﬁ*,pK> 03 (G bi)
k=

(s a) 1 k=1

The first term % (gz+, pk) appears in (Lee et al., 2020a) already and can be handled by
an increasing learning rate schedule.
To handle the second term, we inject a negative bias: replacing ¢, by ¢x — nby.

® Gives a negative term —7 ZLI (gs+, bk). Cancel out the second term.

® |Incurs a bias 172,’((:1 (qk, bx) = 772;,((:1 <qk, ho ck>. Again handled by the skewed
occupancy measure.

>_n ak(s,a,h)c (s, a)
qk(s;a)

We apply both positive (skewed occupancy measure) and negative bias (increasing
learning rate, —nby)!

Since ¢ is unknown, we use bk instead of by with bk(s a) =

29/31

Bandit Feedback, High Probability Bound

Algorithm 5 Log-barrier Policy Search for SSP (High Probability)

Initialization: for all (s,a) € T, m1(s,a) =, pa(s,a) = 2T.
fork=1,...,K do

Execute o(7x) where Ty is such that mx(a|(s, h)) x gk(s, a, h).

Gk+1 = Q1 + Ah 0 G = argmingeq <¢7 Ck — ’YBk> + Dy, (¢, ¢x)-

for V(s,a) € T do
if m > pk(57 a) then Pk+1(57 a) - m7nk+l(sa a) - 57lk(57 a) ;

else pii1(s,a) = pi(s,a), mkr1(s,a) = nk(s, a) ;

end

end

30/31

Bandit Feedback, High Probability Bound

Algorithm 5 Log-barrier Policy Search for SSP (High Probability)

Initialization: for all (s,a) € I, 11(s,a) = 0, pi(s,a) = 2T.

fork=1,...,K do

Execute o(7x) where Ty is such that mx(a|(s, h)) x gk(s, a, h).

Gri1 = Qs1+Mho qup1 = argmingco <¢7 Chk — ka> + Dy, (&, k).

for V(s, a) €T do

if ¢k+1(s DIk pk(s,a) then piyi(s,a) = m Nk+1(s, a) = Bik(s, a) ;
else pk+1(57 a) = pk(sa a)a 77k+1(57 a) - 77k(5 a) ;

end
end

Algorithm 5 ensures Rk = O (\/DT*SAK) with high probability.

30/31

Open Problems

® How to achieve high probability bound without knowing T,7?
® Minimax optimal algorithms for the unknown transition setting.
® The bounds in our follow-up work are not optimal yet.

Thank You!

31/31

References

Sébastien Bubeck, Nikhil R Devanur, Zhiyi Huang, and Rad Niazadeh. Online auctions
and multiscale online learning. In Proceedings of the 2017 ACM Conference on
Economics and Computation, pages 497-514, 2017

Chung-Wei Lee, Haipeng Luo, Chen-Yu Wei, and Mengxiao Zhang. Bias no more:
high-probability data-dependent regret bounds for adversarial bandits and mdps.
Advances in Neural Information Processing Systems, 33, 2020a.

Aviv Rosenberg and Yishay Mansour. Stochastic shortest path with adversarially
changing costs. arXiv preprint arXiv:2006.11561, 2020

Aviv Rosenberg, Alon Cohen, Yishay Mansour, and Haim Kaplan. Near-optimal regret
bounds for stochastic shortest path. In Proceedings of the 37th International Conference
on Machine Learning, pages 8210-8219, 2020.

Jean Tarbouriech, Evrard Garcelon, Michal Valko, Matteo Pirotta, and Alessandro
Lazaric. Noregret exploration in goal-oriented reinforcement learning. In International
Conference on Machine Learning, pages 9428-9437. PMLR, 2020.

31/31

References

Jaksch, Thomas, Ronald Ortner, and Peter Auer. " Near-optimal Regret Bounds for
Reinforcement Learning.” Journal of Machine Learning Research 11.4 (2010).

Bartlett, P. L. and Tewari, A. Regal: A regularization based algorithm for reinforcement
learning in weakly communicating mdps. In Proceedings of the Twenty-Fifth Conference
on Uncertainty in Artificial Intelligence, pp. 35—-42. AUAI Press, 2009.

Even-Dar, Eyal, Yishay Mansour, and Peter Bartlett. " Learning Rates for Q-learning.”
Journal of machine learning Research 5.1 (2003).

Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L Littman.
Pac model-free reinforcement learning. In Proceedings of the 23rd international
conference on Machine learning, pages 881-888. ACM, 2006.

Azar, Mohammad Gheshlaghi, lan Osband, and Rémi Munos. "Minimax regret bounds for
reinforcement learning.” International Conference on Machine Learning. PMLR, 2017.
Osband, lan and Van Roy, Benjamin. On lower bounds for regret in reinforcement
learning. stat, 1050:9, 2016a.

31/31

References

® Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael | Jordan. Is g-learning
provably efficient? In Advances in neural information processing systems, pages
4863-4873, 2018.

® Wei, Chen-Yu, and Haipeng Luo. "More adaptive algorithms for adversarial bandits.”
Conference On Learning Theory. PMLR, 2018.

® Jacob Steinhardt and Percy Liang. Adaptivity and optimism: An improved exponentiated
gradient algorithm. In International Conference on Machine Learning, pages 1593-1601,
2014.

31/31

Backup Slides

31/31

Lower Bound

31/31

Main idea: an analogy to an expert / MAB problem with loss scale T, and total losses DK.

31/31

Main idea: an analogy to an expert / MAB problem with loss scale T, and total losses DK.

(action, probability, cost)

¢ Uniformly sample a good state j* € [N] and
fixed throughout the K episodes

(ag,1 —1/Ty,z1)

® |n each episode:
® Xj» ~ Bernoulli(%)
® Xxj~ Bernoulli(% +¢) for any j # j*

(a‘gyl - 1/D31)

(ag,1—1/Ty,zN)
31/31

Main idea: an analogy to an expert / MAB problem with loss scale T, and total losses DK.

(action, probability, cost)

¢ Uniformly sample a good state j* € [N] and
fixed throughout the K episodes

(ag,1 —1/Ty,z1)

® |n each episode:
® Xj» ~ Bernoulli(%)
® Xxj~ Bernoulli(% +¢) for any j # j*

Full information: Q(v/DT.K)
Bandit feedback: Q(1/DT,SAK)

(agvl - 1/D31)

(ag,1—1/Ty,zN)
31/31

Main idea: an analogy to an expert / MAB problem with loss scale T, and total losses DK.

(action, probability, cost)

¢ Uniformly sample a good state j* € [N] and
fixed throughout the K episodes

(ag,1 —1/Ty,z1)

® |n each episode:
® Xj» ~ Bernoulli(%)
® Xxj~ Bernoulli(% +¢) for any j # j*

Full information: Q(v/DT.K)
Bandit feedback: Q(1/DT,SAK)
Stochastic cost (Cohen et al., 2020): Q(D+v/ SAK)

(agvl - 1/D31)

(ag,1—1/Ty,zN)
31/31

Main idea: an analogy to an expert / MAB problem with loss scale T, and total losses DK.

(action, probability, cost)

¢ Uniformly sample a good state j* € [N] and
fixed throughout the K episodes
® |n each episode:
® X m/BernouHKig:)
® Xj~ Bernoulli(% +¢€) for any j # j*

(ag,1—1/Ty,z1)

Full information: Q(v/DT.K)
Bandit feedback: Q(1/DT,SAK)
Stochastic cost (Cohen et al., 2020): Q(D+v/ SAK)

Our setting is harder due to the larger variance
of costs (with T, dependency).

(agvl - 1/D31)

(ag,1=1/Ty,zN)
31/31

	Introduction
	Full Information
	Bandit Feedback

