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Problem Formulation: Markov Decision Process (MDP)

state s; € S| | cost c(s¢,a;) € [0,1]

next state s;y1 ~ P(+|s¢,a4)

We assume finite state space S and action space A = {As}ses.

action a; € As,

2/31



Many MDP models have been studied:
e Infinite horizon average reward model (Bartlett & Tewari, 2009; Jaksch et al., 2010)
¢ Infinite horizon discounted model (Even-Dar et al., 2003; Strehl et al., 2006)
® Finite horizon model (Osband and Van Roy, 2016; Azar et al., 2017; Jin et al., 2018)
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¢ Infinite horizon discounted model (Even-Dar et al., 2003; Strehl et al., 2006)
® Finite horizon model (Osband and Van Roy, 2016; Azar et al., 2017; Jin et al., 2018)

However, there are many real-world applications not modelled well by the above:

7

® Games (such as Go)

e (Car navigation

® Robotic manipulation

For these, Stochastic Shortest Path (SSP) is a better model.
® Episodic MDP with a goal state.

® Challenges: variable episode length, possibly unbounded cost, etc.
® Not well studied yet.
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Related Works

S: # states, A: # actions, D: SSP-diameter, K: # episodes,
T,: expected hitting time of optimal policy, ¢min: minimum cost

® SSP with stochastic cost:

* UC-SSP (Tarbouriech et al., 2020): O (DS, /2 AK)
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Related Works

S: # states, A: # actions, D: SSP-diameter, K: # episodes,
T,: expected hitting time of optimal policy, ¢min: minimum cost

® SSP with stochastic cost:
® UC-SSP (Tarbouriech et al., 2020): O (DS D AK)

Cmin

® Bernstein-SSP (Cohen et al., 2020): & (DSVAK)

® SSP with adversarial cost (full information):

® SSP-O-REPS (Rosenberg and Mansour, 2020): O (%\/7) or O (v/DT,K3/*) with known
transition
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Our Results

S: # of states, A: # of actions, D: SSP-diameter, K: # of episodes
T,: expected hitting time of optimal policy, ¢min: minimum cost

Minimax Regret (this talk) | (Rosenberg and Mansour, 2020)
Full information o(vDT,K) A (L\/R) or O (\/DT*K%)

Cmin

Bandit feedback O(vDT,SAK) N/A

Our contributions: we develop efficient minimax optimal algorithms for both full
information and bandit feedback setting with known transition.
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Follow-up Work for Unknown Transition

S: # of states, A: # of actions, D: SSP-diameter, K: # of episodes
T,: expected hitting time of optimal policy, ¢min: minimum cost

Follow-up (Rosenberg and Mansour, 2020) Lower bounds
Full information | & <\/52ADT*K) %) (g AK) or & (\/52AT*2K3/4 + sz/R) Q(v/DT.K + DVSAK)
Bandit feedback | & <\/53A2DT*K) N/A Q(v/SADT,K + DVSAK)

Paper: https://arxiv.org/abs/2102.05284.
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Highlights

All algorithms are based on Online Mirror Descent (OMD).

Many new ideas are required to achieve desired results.

® A new multi-scale expert algorithm

A reduction from a general SSP to its loop-free version

Skewed occupancy measure

Log-barrier regularizer

® An increasing learning rate schedule

A negative bias injected to the cost function
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Problem Formulation

SSP Model: MDP M = (S, A, so, g, P) + cost functions {cx}K_,
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SSP Model: MDP M = (S, A, 59, g, P) + cost functions {c, }<_,

Learning Protocol
fork=1,...,K do
environment chooses ¢, adaptively (based on learner's
algorithm and history)
learner starts in state sp = sp, i 1
while s, # g do '
learner chooses action aj € ‘ASL

learner observes states s, ~ P(:|s], a})
I+ i+1
end

learner observes ¢y (full information) or {c(s, a;'()}szl
(bandit feedback) and suffer cost kazl c(st,ak)

end
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Problem Formulation

SSP Model: MDP M = (S, A, so, g, P) + cost functions {cx}K_,

Notations:
e Valid state-action pairs [ = {(s,a) : s € S,a € A}
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Problem Formulation

SSP Model: MDP M = (S, A, 59, g, P) + cost functions {c, }<_,
Notations:

e Valid state-action pairs [ = {(s,a) : s € S,a € A}
® Policy m: maps s € S to distribution over A,
® Proper: reaches g with probability 1

® Cost-to-go function J™(s) = E[Zle c(s’,a)|P,m, st = s]
® Expected hitting time T7(s) = E[/|P, 7, s' = s]
® D =maxs Minzer, o T7(5), To = T™ (s0).

Objective: minimize regret w.r.t. the best stationary proper policy in hindsight
K I
=3 (S etk )
k=1 \i=1

* : K *
where 7 = argmin cn Y o1 I (s0)
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Occupancy Measure

A proper policy 7 induces an occupancy measure g, € ]Rgo with

I
Gr(s,a) =E [Z]I{si =s,a =a}

i=1

1
P,7T,S :50] )

which is the expected number of visits to (s, a) when executing .
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Occupancy Measure

A proper policy 7 induces an occupancy measure g, € Rgo with

I
gr(s,a)=E [ZH{si =s,a =a}

i=1

1
P,T[’,S :50] )

which is the expected number of visits to (s, a) when executing .
® One-to-one correspondence: mq(als) o q(s, a)
* Ji(s0) = (qm; ck), T(s0) = Z(s,a) qx(s,a)

* E[Rk] = E |Ti5 (4n, — are )|

Converting into online linear optimization. Apply Online Mirror Descent (OMD)!
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Occupancy Measure

Define the decision set of occupancy measures:

A(T) = {qeRgo: Y q(s,a)< T,

(s,a)el

Z q(s,a) — Z P(s|s’,a)q(s',d') =1{s = s}, Vs € S}

acAs (s',a")er

T is an upper bound on expected hitting time.
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Full information, Expected Regret
Key challenge: achieve optimal bound without knowing T,

Solution: a new multi-scale expert algorithm as meta learner
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Full Information, Expected Regret

Algorithm 1 SSP-O-REPS (Rosenberg and Mansour, 2020)

Input: upper bound on expected hitting time T.

Define: regularizer i)(q) = %Z(s,a) q(s,a)Inq(s,a) and n = min {%, Tlnéf(AT) }
Initialization: g1 = argmingca (1) ¥(q).

for k=1,...,K do

| Execute 7q,, receive ck, and update qx+1 = argmingea(r) (g, ck) + Dy(q, qx).
end
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Rosenberg and Mansour (2020) proves E[Rk] = O (T\/R)
We improve their analysis by the fact S>F_, J7"(sp) < DK:

Algorithm 1 ensures E[Rx] = O (\/DTK ) as long as T > T,. (Problem: need to know T,)
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Full Information, Expected Regret

Question: how to deal with unknown T,7?
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Question: how to deal with unknown T,7?
Solution: run multiple O-REPS-SSP instances with different T and learn the best.
® Maintain N ~ log, K SSP-O-REPS instances, where the j-th instance sets T ~ 2/,
® Each instance is an action of the meta-algorithm. Define meta-loss /,(j) = <qf<, ck>.

® lIssue: losses have different scales, £, (j) < b(j) ~ 2.
® Natural first attempt: apply multi-scale expert algorithm (Bubeck et al., 2017):

N

o)=Y %P(f) npG).  pili) o<

=t

* However, known multi-scale algorithms only ensure O (b(/*)ﬁ) regret, not optimal.

® Our solution: inspired by other works for adaptive regret bound (Steinhardt and Liang,
2014; Wei and Luo, 2018), we change £ (j) to £x(j) + 4n;¢2(j) (penalizing long horizon

policy), which gives O <\/b(j*)E[Zf:1 Kk(j*)]) regret.
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Full Information, Expected Regret

Algorithm 2 Adaptive SSP-O-REPS with Multi-scale Experts

Define: Qz{peRgo:ZJ 1p() =1} and ¥(p ZJ 1np(J)Inp(/)
Initialize: p; € Q such that p;(j) o 7;.
Initialize: N instances of SSP-O-REPS, where the j-th instance uses parameter T = b(j).
fork=1,...,K do
For each j € [N], obtain occupancy measure qi from SSP-O-REPS instance j.
Sample ji ~ pi, execute 7y induced by qf( receive ¢, and feed ci to all instances.
Compute £ and ax: £k(j) = (q}, k), ax(j) = 4n;03(j), Vj € [N].

Update pyi1 = argmin,cq (p, Ck + ak) + Dy(p, pk)-
end
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Algorithm 2 Adaptive SSP-O-REPS with Multi-scale Experts

Define: Qz{peRgo:zj 1p() =1} and ¥(p ZJ 1np(J)Inp(/)
Initialize: p; € Q such that p;(j) o 7;.
Initialize: N instances of SSP-O-REPS, where the j-th instance uses parameter T = b(j).
fork=1,...,K do
For each j € [N], obtain occupancy measure qf( from SSP-O-REPS instance j.
Sample ji ~ pi, execute 7y induced by qf( receive ¢, and feed ci to all instances.
Compute £ and ax: £k(j) = (q}, k), ax(j) = 4n;03(j), Vj € [N].
Update pyy1 = argmin,cq (p, lk + ak) + Dy (p; pk)-
end

Algorithm 2 ensures E[Rx] = O (vVDT,K) without knowing T, (which is optimal).
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Full Information, High Probability Bound
Key challenge: control the variance of learner's cost

Solution: loop-free reduction + skewed occupancy measure
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Full Information, High Probability Bound

K
:1

] =

Nk — Grsyck) = (Nk — qi, k) +
=1 k=1 k

. S/

— Qr~*, Ck

I
|ij

Deviation RE G

where N (s, a) = lekzl ]I{s,’; =s, af( = a}.
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K K
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/
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Full Information, High Probability Bound

[l
M=

K K
Nie = Grer k) = Y (N = qrs i) + > (Gk — G, k),
k=1 k=1

Deviation RE G

where N (s, a) = lekzl H{SL =s, a;'( = a}.

Issue: there is no good upper bound on (N, ck).

Lemma (Quantifying Deviation in SSP)

Consider executing a stationary policy 7 in episode k. Then Ei[(Ny, ci)?] < 2 (qn, J5).
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Full Information, High Probability Bound

Lemma (Quantifying Deviation in SSP)

Consider executing a stationary policy 7 in episode k. Then E[(Ny, ci)?] < 2 (qn, J5).

Observation 1: for the optimal policy 7*:

ZK:<q,T*,JZ*> S G (s Z (s) < DKY " gn-(s) = DT.K

k=1 seS seS
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Full Information, High Probability Bound

Lemma (Quantifying Deviation in SSP)

Consider executing a stationary policy 7 in episode k. Then E[(Ny, ci)?] < 2 (qn, J5).

Observation 1: for the optimal policy 7*:
K
S {ae ) =Y ane(s Z ) < DK gne(s) = DT.K
k=1 seS seS

It is thus tempting to enforce S°K_, (qm,, Ji¥) < DT.K. But how?
® |t depends on all cost functions cy, ..., ck.

® Non-convex w.r.t. occupancy measure.
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Full Information, High Probability Bound

Observation 2: the variance upper bound takes a much simpler form in a loop-free MDP.
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(except transition to the goal state).
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Full Information, High Probability Bound

Observation 2: the variance upper bound takes a much simpler form in a loop-free MDP.

Loop-free layered structure:

® State space is of the form S x [H].
® Transition from (s, h) to (s', #") is only possible if i = h+1 O<82§>>

(except transition to the goal state).

Lemma (Quantifying Deviation in loop-free MDP)

If M has a loop-free layered structure, then
<qﬂ'> J;(r) = Z(s,a) Zthl h- qﬂ'(sv a, h)Ck(S, a, h) = <q7Ta HO Ck> ;

where we define ho f(s,a, h) = h- f(s,a, h). For simplicity, we write q.((s, h), a) as
q=(s,a, h), and cx((s, h),a) as c(s, a, h).
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Observation 2: the variance upper bound takes a much simpler form in a loop-free MDP.

Loop-free layered structure:
® State space is of the form S x [H].
® Transition from (s, h) to (s', #") is only possible if i = h+1 @
(except transition to the goal state).

Lemma (Quantifying Deviation in loop-free MDP)

If M has a loop-free layered structure, then
<qﬂ'> J;(r) = Z(s,a) Zthl h- qﬂ'(sv a, h)Ck(S, a, h) = <q7Ta HO Ck> ;

where we define ho f(s,a, h) = h- f(s,a, h). For simplicity, we write q.((s, h), a) as
q=(s,a, h), and cx((s, h),a) as c(s, a, h).

This inspires us to approximate the SSP instance by a loop-free MDP.
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First ldea: Loop-free Reduction

Construct M from M: duplicate each state by attaching a time step h for H; steps, and then
connect all states to some dummy state that lasts for another Hy steps.

c((s,h),a) = c(s,a) ,
P((s',h 4+ 1)|(s, h) a) = P(s'|s,a),h € [H) — 1]

50) .

For simplicity, write q(s, a, h) = q((s, h), a), c(s, a, h) = ¢((s, h), a), and define H = Hy + Ha.
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First ldea: Loop-free Reduction

Given 7 in M, define non-stationary policy o(%) in M which
1. follows 7(-|(s, h)) at state s for time step h < H;

2. then execute the fast policy 7 until reaching g
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First Idea: Loop-free Reduction

Given 7 in M, define non-stationary policy o(%) in M which
1. follows 7(-|(s, h)) at state s for time step h < H;
2. then execute the fast policy 7 until reaching g

Lemma
Suppose Hy > maxs T™ (s),Hy > D. Let 7, ..., 7k be policies for M with occupancy
measure q1, . ..,qk. Then the regret of executing o(71),...,0(Tk) in M satisfies for any

A € (0,2/H], with probability 1 — 3,

Rk < i <Nk — G+, Ck> +0(1)
=1

21/31



First Idea: Loop-free Reduction

Given 7 in M, define non-stationary policy o(%) in M which
1. follows 7(-|(s, h)) at state s for time step h < H;
2. then execute the fast policy 7 until reaching g

Lemma
Suppose Hy > maxs T™ (s),Hy > D. Let 7, ..., 7k be policies for M with occupancy
measure q1, . ..,qk. Then the regret of executing o(71),...,0(Tk) in M satisfies for any

A € (0,2/H], with probability 1 — 3,

Rk < i <Nk — G+, Ck> +0(1)
=1

Note: applying standard loop-free algorithms does not solve our problem!
21/31



First Idea: Loop-free Reduction

Given 7 in M, define non-stationary policy o(7) in M which
1. follows 7(-|(s, h)) at state s for time step h < H;
2. then execute the fast policy 7 until reaching g

Lemma
Suppose Hy > maxs T™ (s),Hy > D. Let 7, ..., 7k be policies for M with occupancy
measure q1, . ..,qk. Then the regret of executing o(71),...,0(Tk) in M satisfies for any

A € (0,2/H], with probability 1 — 3,

K K K . 2In(2s)  «
§Z<Nk Q7 Ck>+0 Z - 7T*7Ck>+)‘z<qk7hock>+T+O(1)
k=1

k=1

/

~
" ~

REG VAR

Note: applying standard loop-free algorithms does not solve our problem!
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Second Idea: Skewed Occupancy Measure Space

K
RK Z — Gz, Ck )\Z<Qk,HOCk>+§.

k=1 k=1

X

VAR
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K
RK Z — gz, Ck +>\Z<qkaﬁock>+%'

VAR
It is still hard to enforce VAR < DT, K. Instead, we have the following observation:
K K 1
R 5 {((ak+Aho qe) = (g + Ak o gz, ck ) + AkX_jl (s Foa)+5

>
I
—

1 5
<¢7Tk _¢%*7Ck>+)‘DT*K+X' (¢7r = qrr+)\hoq7r)

24N
M=

T
I
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Second Idea: Skewed Occupancy Measure Space

K
RK Z — qx*, Ck +>\Z<qk,HOCk> +%

VAR
It is still hard to enforce VAR < DT, K. Instead, we have the following observation:
K K 1
R 5 {((ak+Aho qe) = (g + Ak o gz, ck ) + AkX_jl (s Foa)+5

[y

k=
K

A

1 5
<¢7Tk _¢%*7Ck>+>‘DT*K+X' (¢7r = qrr+)\hoq7r)
1

k=
It thus motivates us to perform OMD over a skewed occupancy measure space:

Q:{¢:q+Aqu:qu(T*)}.
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Full Information, High Probability Bound

Algorithm 3 SSP-O-REPS with Loop-free Reduction and Skewed Occupancy Measure

Parameters: 7 = min {%, \/ ER},)\ = B(Tlf?’ H, = [4DIn %
Define: H = H; + Hb, regularizer ¢)(¢) = %Zthl Z(S 2)ef o(s,a, h)Ind(s, a, h)
Initialization: ¢; = g1 + Aho g1 = argmin,eq ¥(9).
fork=1,...,K do
Execute o(7x) where Tk is such that m,(a|(s, h)) < gk(s, a, h), and receive ck.

Update ¢xy1 = Gri1 + Aho gryr = argmingcq (9, ck) + Dy (9, dk)-
end
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Full Information, High Probability Bound

Algorithm 3 SSP-O-REPS with Loop-free Reduction and Skewed Occupancy Measure

Parameters: 7 = min {%, \/ g,*(},)\ = B(Tlf?’ H, = [4DIn %

Define: H = H; + Hy, regularizer ¢)(¢) = %Zthl Z(s 2)ef o(s,a, h)Ind(s, a, h)
Initialization: ¢; = g1 + Aho g1 = argmin,eq ¥(9).

fork=1,...,K do

Execute o(7x) where Tk is such that m,(a|(s, h)) < gk(s, a, h), and receive ck.
Update ¢xy1 = Gri1 + Aho gryr = argmingcq (9, ck) + Dy (9, dk)-

end

Algorithm 3 ensures that Rk = O (v/DT,K) with high probability.

Open Problem: How to achieve the same without knowing T.7
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Bandit Feedback, Expected Bound
Key challenge: large variance of unbiased cost estimators

Solution: log-barrier regularizer + skewed occupancy measure

24/31



Bandit Feedback, Expected Bound

® Standard technique: construct an importance-weighted unbiased cost estimator. The

natural estimator is Ck(s, a) = %
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® Standard technique: construct an importance-weighted unbiased cost estimator. The

natural estimator is Ck(s, a) = %

® With the entropy regularizer, the stability term of OMD is

ak(s, a)Ex[c2(s, a)] = M, which could be prohibitively large.
(s,a) k (s,a) ax(s,a)

We resolve these problems with Log-barrier regularizer ¢(¢) = — 3, . In(z,'jzqu(s, a, h)).
® |t leads to a smaller stability term:

> ai(s, E[C(s. a)l = Y Ex[Ni(s. a)lci(s, a) < Ex[(Ni, c)’].
(s,a) (s,a)

Exactly the variance of actual cost and can be handled by skewed occupancy measure!

25/31



Bandit Feedback, Expected Bound

® Standard technique: construct an importance-weighted unbiased cost estimator. The
H P _ Nk(s,a)ck(s,a)
natural estimator is ¢(s, a) = BT ) B
® With the entropy regularizer, the stability term of OMD is
2
> (s,a) k(s a)E[ci(s,a)] = 2 (s,2) W, which could be prohibitively large.
We resolve these problems with Log-barrier regularizer ¢(¢) = — 3, . In(ZZ’Zqu(s, a, h)).

® |t leads to a smaller stability term:
> qils, ABk[ER(s )] = Y Ex[Ni(s, a)lci(s, a) < Exl[(Nk, ex)?].
(s,a) (s,a)

Exactly the variance of actual cost and can be handled by skewed occupancy measure!

® Summing over H inside to avoid H dependency (leveraging the fact c(s, a, h) = c(s, a)).
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Bandit Feedback, Expected Bound

Algorithm 4 Log-barrier Policy Search for SSP

Define: regularizer ¢(¢) = —% E(s,a)eF In¢(s, a) where ¢(s,a) = Zthl o(s,a, h)
Initialization: ¢; = g1 + Ahoq = argminycq ¥(9).
for k=1,...,K do

Execute o(7x) where Ty is such that m,(a|(s, h)) < gk(s, a, h).

- ~ T o N ) )
Construct cost estimator ik € Rgo such that ¢(s, a) = %.
Update ¢x+1 = Grt1 + Aho qei1 = argmingeq (9, ¢k) + Dy (9, d)-
end
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Bandit Feedback, Expected Bound

Algorithm 4 Log-barrier Policy Search for SSP

Define: regularizer ¢(¢) = —% 2(573)@ In¢(s, a) where ¢(s,a) = 2th1 o(s,a, h)
Initialization: ¢; = g1 + Ahoq = argmincq ().
for k=1,...,K do

Execute o(7x) where Ty is such that m,(a|(s, h)) < gk(s, a, h).

H = r = N, ) )
Construct cost estimator ik € Rgo such that ¢(s, a) = %.
Update ¢x+1 = Grt1 + Aho qei1 = argmingeq (9, ¢k) + Dy (9, d)-

end

Algorithm 4 ensures E[Ryk] = O (V/DT.SAK) (which is optimal).
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Bandit Feedback, High Probability Bound

Key challenge: large variance of the cost estimators for 7*

Solution: skewed occupancy measure + increasing learning rate + negative bias injected to
cost function (positive bias + negative bias)
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Bandit Feedback, High Probability Bound

Question: how to obtain a high probability bound?
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Question: how to obtain a high probability bound?
® The key is to bound the deviation of 7*: Zle (Grr, Ck — Ck)-
* By Ek[lvlf(s, a)l <>, h-qk(s,a,h)in the loop-free setting:

EN2(s, 2)]cE(s.8) _ S h- auls.a h)ax(s, )

E[ck(s,a)] = < pk(s,a)bk(s, a),

qk(s,a) B qk(s a)
where pi(s,a) = maxy ﬁ and by(s,a) = 2 hq"(gks(i Z;C"(S :2)
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Question: how to obtain a high probability bound?
® The key is to bound the deviation of 7*: Zle (Grr, Ck — Ck)-
* By Ek[lvlf(s, a)l <>, h-qk(s,a,h)in the loop-free setting:

EN2(s, 2)]cE(s.8) _ S h- auls.a h)ax(s, )

E[ck(s,a)] = < pk(s,a)bk(s, a),

qk(s,a) B qk(s a)
where pi(s,a) = maxy ﬁ and by(s,a) = 2 hq"(gks(z Z;C"(S :2)

® By Freedman's inequality, the deviation is bounded by

K K
Z g7+ (s a) J pr(s,a) D bi(s,a) < % (G, pi) + 1Y (Ges i)
k=1

(s,a) k=1
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Bandit Feedback, High Probability Bound

By Freedman’s inequality, the deviation is bounded by

K

K
> (s a)J pi(5:2) Y bels.2) <~ (G )+ 1Y (4505,
k=1

(s,a) k=1

® The first term % (gz+, pk) appears in (Lee et al., 2020a) already and can be handled by
an increasing learning rate schedule.
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By Freedman’s inequality, the deviation is bounded by

K K

S g (5,2, | pc(5:2) S bi(s, ) < % (Grer i) + 1S (G50 bi)

(s,a) k=1 k=1

® The first term % (gz+, pk) appears in (Lee et al., 2020a) already and can be handled by
an increasing learning rate schedule.
® To handle the second term, we inject a negative bias: replacing ¢, by ¢x — nby.
® Gives a negative term —7 Zle (gs+, bk). Cancel out the second term.
® |Incurs a bias 172,’((:1 (qk, bx) = 772;,((:1 <qk, ho ck>. Again handled by the skewed

OCCupancy measure.

— Zh qk(s7a7h)a((s7a) .

® Since ¢, is unknown, we use Bk instead of by with Ek(s, a) 5.2)
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Bandit Feedback, High Probability Bound

By Freedman’s inequality, the deviation is bounded by

K K
S g (5,2, | pc(5:2) S bi(s, ) < %<q»ﬁ*,pK> 03 (G bi)
k=

(s a) 1 k=1

The first term % (gz+, pk) appears in (Lee et al., 2020a) already and can be handled by
an increasing learning rate schedule.
To handle the second term, we inject a negative bias: replacing ¢, by ¢x — nby.

® Gives a negative term —7 ZLI (gs+, bk). Cancel out the second term.

® |Incurs a bias 172,’((:1 (qk, bx) = 772;,((:1 <qk, ho ck>. Again handled by the skewed
occupancy measure.

>_n ak(s,a,h)c (s, a)
qk(s;a)

We apply both positive (skewed occupancy measure) and negative bias (increasing
learning rate, —nby)!

Since ¢ is unknown, we use bk instead of by with bk(s a) =
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Bandit Feedback, High Probability Bound

Algorithm 5 Log-barrier Policy Search for SSP (High Probability)

Initialization: for all (s,a) € T, m1(s,a) =, pa(s,a) = 2T.
fork=1,...,K do

Execute o(7x) where Ty is such that mx(a|(s, h)) x gk(s, a, h).

Gk+1 = Q1 + Ah 0 G = argmingeq <¢7 Ck — ’YBk> + Dy, (¢, ¢x)-

for V(s,a) € T do
if m > pk(57 a) then Pk+1(57 a) - m7nk+l(sa a) - 57lk(57 a) ;

else pii1(s,a) = pi(s,a), mkr1(s,a) = nk(s, a) ;

end

end
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Bandit Feedback, High Probability Bound

Algorithm 5 Log-barrier Policy Search for SSP (High Probability)

Initialization: for all (s,a) € I, 11(s,a) = 0, pi(s,a) = 2T.

fork=1,...,K do

Execute o(7x) where Ty is such that mx(a|(s, h)) x gk(s, a, h).

Gri1 = Qs1+Mho qup1 = argmingco <¢7 Chk — ka> + Dy, (&, k).

for V(s, a) €T do

if ¢k+1(s DIk pk(s,a) then piyi(s,a) = m Nk+1(s, a) = Bik(s, a) ;
else pk+1(57 a) = pk(sa a)a 77k+1(57 a) - 77k(5 a) ;

end
end

Algorithm 5 ensures Rk = O (\/DT*SAK ) with high probability.
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Open Problems

® How to achieve high probability bound without knowing T,7?
® Minimax optimal algorithms for the unknown transition setting.
® The bounds in our follow-up work are not optimal yet.

Thank You!
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Main idea: an analogy to an expert / MAB problem with loss scale T, and total losses DK.
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Main idea: an analogy to an expert / MAB problem with loss scale T, and total losses DK.

(action, probability, cost)

¢ Uniformly sample a good state j* € [N] and
fixed throughout the K episodes

(ag,1 —1/Ty,z1)

® |n each episode:
® Xj» ~ Bernoulli(%)
® Xxj~ Bernoulli(% +¢) for any j # j*

(a‘gyl - 1/D31)

(ag,1—1/Ty,zN)
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Main idea: an analogy to an expert / MAB problem with loss scale T, and total losses DK.

(action, probability, cost)

¢ Uniformly sample a good state j* € [N] and
fixed throughout the K episodes
® |n each episode:
® X m/BernouHKig:)
® Xj~ Bernoulli(% +¢€) for any j # j*

(ag,1—1/Ty,z1)

Full information: Q(v/DT.K)
Bandit feedback: Q(1/DT,SAK)
Stochastic cost (Cohen et al., 2020): Q(D+v/ SAK)

Our setting is harder due to the larger variance
of costs (with T, dependency).

(agvl - 1/D31)

(ag,1=1/Ty,zN)
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