
Towards Minimax Regret for Stochastic Shortest Path with

Adversarial Costs
Presenter: Liyu Chen

Liyu Chen Haipeng Luo Chen-Yu Wei

University of Southern California

September 12, 2021

1 / 31

Problem Formulation: Markov Decision Process (MDP)

We assume finite state space S and action space A = {As}s∈S .

2 / 31

Motivation

Many MDP models have been studied:

• Infinite horizon average reward model (Bartlett & Tewari, 2009; Jaksch et al., 2010)

• Infinite horizon discounted model (Even-Dar et al., 2003; Strehl et al., 2006)

• Finite horizon model (Osband and Van Roy, 2016; Azar et al., 2017; Jin et al., 2018)

However, there are many real-world applications not modelled well by the above:

• Games (such as Go)

• Car navigation

• Robotic manipulation

For these, Stochastic Shortest Path (SSP) is a better model.

• Episodic MDP with a goal state.

• Challenges: variable episode length, possibly unbounded cost, etc.

• Not well studied yet.

3 / 31

Motivation

Many MDP models have been studied:

• Infinite horizon average reward model (Bartlett & Tewari, 2009; Jaksch et al., 2010)

• Infinite horizon discounted model (Even-Dar et al., 2003; Strehl et al., 2006)

• Finite horizon model (Osband and Van Roy, 2016; Azar et al., 2017; Jin et al., 2018)

However, there are many real-world applications not modelled well by the above:

• Games (such as Go)

• Car navigation

• Robotic manipulation

For these, Stochastic Shortest Path (SSP) is a better model.

• Episodic MDP with a goal state.

• Challenges: variable episode length, possibly unbounded cost, etc.

• Not well studied yet.

3 / 31

Motivation

Many MDP models have been studied:

• Infinite horizon average reward model (Bartlett & Tewari, 2009; Jaksch et al., 2010)

• Infinite horizon discounted model (Even-Dar et al., 2003; Strehl et al., 2006)

• Finite horizon model (Osband and Van Roy, 2016; Azar et al., 2017; Jin et al., 2018)

However, there are many real-world applications not modelled well by the above:

• Games (such as Go)

• Car navigation

• Robotic manipulation

For these, Stochastic Shortest Path (SSP) is a better model.

• Episodic MDP with a goal state.

• Challenges: variable episode length, possibly unbounded cost, etc.

• Not well studied yet.

3 / 31

Motivation

Many MDP models have been studied:

• Infinite horizon average reward model (Bartlett & Tewari, 2009; Jaksch et al., 2010)

• Infinite horizon discounted model (Even-Dar et al., 2003; Strehl et al., 2006)

• Finite horizon model (Osband and Van Roy, 2016; Azar et al., 2017; Jin et al., 2018)

However, there are many real-world applications not modelled well by the above:

• Games (such as Go)

• Car navigation

• Robotic manipulation

For these, Stochastic Shortest Path (SSP) is a better model.

• Episodic MDP with a goal state.

• Challenges: variable episode length, possibly unbounded cost, etc.

• Not well studied yet.

3 / 31

Motivation

Many MDP models have been studied:

• Infinite horizon average reward model (Bartlett & Tewari, 2009; Jaksch et al., 2010)

• Infinite horizon discounted model (Even-Dar et al., 2003; Strehl et al., 2006)

• Finite horizon model (Osband and Van Roy, 2016; Azar et al., 2017; Jin et al., 2018)

However, there are many real-world applications not modelled well by the above:

• Games (such as Go)

• Car navigation

• Robotic manipulation

For these, Stochastic Shortest Path (SSP) is a better model.

• Episodic MDP with a goal state.

• Challenges: variable episode length, possibly unbounded cost, etc.

• Not well studied yet.
3 / 31

Related Works

S : # states, A: # actions, D: SSP-diameter, K : # episodes,
T?: expected hitting time of optimal policy, cmin: minimum cost

• SSP with stochastic cost:
• UC-SSP (Tarbouriech et al., 2020): Õ

(
DS
√

D
cmin

AK
)

• Bernstein-SSP (Cohen et al., 2020): Õ
(
DS
√
AK
)

• SSP with adversarial cost (full information):

• SSP-O-REPS (Rosenberg and Mansour, 2020): Õ
(

D
cmin

√
K
)

or Õ
(√

DT?K
3/4
)

with known

transition

4 / 31

Related Works

S : # states, A: # actions, D: SSP-diameter, K : # episodes,
T?: expected hitting time of optimal policy, cmin: minimum cost

• SSP with stochastic cost:
• UC-SSP (Tarbouriech et al., 2020): Õ

(
DS
√

D
cmin

AK
)

• Bernstein-SSP (Cohen et al., 2020): Õ
(
DS
√
AK
)

• SSP with adversarial cost (full information):

• SSP-O-REPS (Rosenberg and Mansour, 2020): Õ
(

D
cmin

√
K
)

or Õ
(√

DT?K
3/4
)

with known

transition

4 / 31

Related Works

S : # states, A: # actions, D: SSP-diameter, K : # episodes,
T?: expected hitting time of optimal policy, cmin: minimum cost

• SSP with stochastic cost:
• UC-SSP (Tarbouriech et al., 2020): Õ

(
DS
√

D
cmin

AK
)

• Bernstein-SSP (Cohen et al., 2020): Õ
(
DS
√
AK
)

• SSP with adversarial cost (full information):

• SSP-O-REPS (Rosenberg and Mansour, 2020): Õ
(

D
cmin

√
K
)

or Õ
(√

DT?K
3/4
)

with known

transition

4 / 31

Our Results

S : # of states, A: # of actions, D: SSP-diameter, K : # of episodes
T?: expected hitting time of optimal policy, cmin: minimum cost

Minimax Regret (this talk) (Rosenberg and Mansour, 2020)

Full information Θ(
√
DT?K) Õ

(
D
cmin

√
K
)

or Õ
(√

DT?K
3
4

)
Bandit feedback Θ(

√
DT?SAK) N/A

Our contributions: we develop efficient minimax optimal algorithms for both full
information and bandit feedback setting with known transition.

5 / 31

Follow-up Work for Unknown Transition

S : # of states, A: # of actions, D: SSP-diameter, K : # of episodes
T?: expected hitting time of optimal policy, cmin: minimum cost

Follow-up (Rosenberg and Mansour, 2020) Lower bounds

Full information Õ
(√

S2ADT?K
)
Õ
(

DS
cmin

√
AK
)

or Õ
(√

S2AT 2
?K

3/4 + D2
√
K
)

Ω(
√
DT?K + D

√
SAK)

Bandit feedback Õ
(√

S3A2DT?K
)

N/A Ω(
√
SADT?K + D

√
SAK)

Paper: https://arxiv.org/abs/2102.05284.

6 / 31

Highlights

All algorithms are based on Online Mirror Descent (OMD).

Many new ideas are required to achieve desired results.

• A new multi-scale expert algorithm

• A reduction from a general SSP to its loop-free version

• Skewed occupancy measure

• Log-barrier regularizer

• An increasing learning rate schedule

• A negative bias injected to the cost function

7 / 31

Problem Formulation

SSP Model: MDP M = (S,A, s0, g ,P) + cost functions {ck}Kk=1

Learning Protocol

for k = 1, . . . ,K do
environment chooses ck adaptively (based on learner’s
algorithm and history)

learner starts in state s1
k = s0, i ← 1

while s ik 6= g do
learner chooses action aik ∈ As ik

learner observes states s i+1
k ∼ P(·|s ik , aik)

i ← i + 1
end

learner observes ck (full information) or {c(s ik , a
i
k)}Iki=1

(bandit feedback) and suffer cost
∑Ik

i=1 c(s ik , a
i
k)

end

8 / 31

Problem Formulation

SSP Model: MDP M = (S,A, s0, g ,P) + cost functions {ck}Kk=1

Learning Protocol

for k = 1, . . . ,K do
environment chooses ck adaptively (based on learner’s
algorithm and history)

learner starts in state s1
k = s0, i ← 1

while s ik 6= g do
learner chooses action aik ∈ As ik

learner observes states s i+1
k ∼ P(·|s ik , aik)

i ← i + 1
end

learner observes ck (full information) or {c(s ik , a
i
k)}Iki=1

(bandit feedback) and suffer cost
∑Ik

i=1 c(s ik , a
i
k)

end
8 / 31

Problem Formulation

SSP Model: MDP M = (S,A, s0, g ,P) + cost functions {ck}Kk=1

Learning Protocol

for k = 1, . . . ,K do
environment chooses ck adaptively (based on learner’s
algorithm and history)
learner starts in state s1

k = s0, i ← 1
while s ik 6= g do

learner chooses action aik ∈ As ik

learner observes states s i+1
k ∼ P(·|s ik , aik)

i ← i + 1
end

learner observes ck (full information) or {c(s ik , a
i
k)}Iki=1

(bandit feedback) and suffer cost
∑Ik

i=1 c(s ik , a
i
k)

end
8 / 31

Problem Formulation

SSP Model: MDP M = (S,A, s0, g ,P) + cost functions {ck}Kk=1

Learning Protocol

for k = 1, . . . ,K do
environment chooses ck adaptively (based on learner’s
algorithm and history)
learner starts in state s1

k = s0, i ← 1
while s ik 6= g do

learner chooses action aik ∈ As ik

learner observes states s i+1
k ∼ P(·|s ik , aik)

i ← i + 1
end

learner observes ck (full information) or {c(s ik , a
i
k)}Iki=1

(bandit feedback) and suffer cost
∑Ik

i=1 c(s ik , a
i
k)

end
8 / 31

Problem Formulation

SSP Model: MDP M = (S,A, s0, g ,P) + cost functions {ck}Kk=1

Notations:
• Valid state-action pairs Γ = {(s, a) : s ∈ S, a ∈ As}

• Policy π: maps s ∈ S to distribution over As
• Proper: reaches g with probability 1

• Cost-to-go function Jπ(s) = E[
∑I

i=1 c(s i , ai)|P, π, s1 = s]
• Expected hitting time Tπ(s) = E[I |P, π, s1 = s]
• D = maxs minπ∈Πproper T

π(s),T? = Tπ?(s0).

Objective: minimize regret w.r.t. the best stationary proper policy in hindsight

RK =
K∑

k=1

(
Ik∑
i=1

ck(s ik , a
i
k)− Jπ

?

k (s0)

)
,

where π? = argminπ∈Πproper

∑K
k=1 J

π?

k (s0)

9 / 31

Problem Formulation

SSP Model: MDP M = (S,A, s0, g ,P) + cost functions {ck}Kk=1

Notations:
• Valid state-action pairs Γ = {(s, a) : s ∈ S, a ∈ As}
• Policy π: maps s ∈ S to distribution over As

• Proper: reaches g with probability 1

• Cost-to-go function Jπ(s) = E[
∑I

i=1 c(s i , ai)|P, π, s1 = s]
• Expected hitting time Tπ(s) = E[I |P, π, s1 = s]
• D = maxs minπ∈Πproper T

π(s),T? = Tπ?(s0).

Objective: minimize regret w.r.t. the best stationary proper policy in hindsight

RK =
K∑

k=1

(
Ik∑
i=1

ck(s ik , a
i
k)− Jπ

?

k (s0)

)
,

where π? = argminπ∈Πproper

∑K
k=1 J

π?

k (s0)

9 / 31

Problem Formulation

SSP Model: MDP M = (S,A, s0, g ,P) + cost functions {ck}Kk=1

Notations:
• Valid state-action pairs Γ = {(s, a) : s ∈ S, a ∈ As}
• Policy π: maps s ∈ S to distribution over As

• Proper: reaches g with probability 1

• Cost-to-go function Jπ(s) = E[
∑I

i=1 c(s i , ai)|P, π, s1 = s]

• Expected hitting time Tπ(s) = E[I |P, π, s1 = s]
• D = maxs minπ∈Πproper T

π(s),T? = Tπ?(s0).

Objective: minimize regret w.r.t. the best stationary proper policy in hindsight

RK =
K∑

k=1

(
Ik∑
i=1

ck(s ik , a
i
k)− Jπ

?

k (s0)

)
,

where π? = argminπ∈Πproper

∑K
k=1 J

π?

k (s0)

9 / 31

Problem Formulation

SSP Model: MDP M = (S,A, s0, g ,P) + cost functions {ck}Kk=1

Notations:
• Valid state-action pairs Γ = {(s, a) : s ∈ S, a ∈ As}
• Policy π: maps s ∈ S to distribution over As

• Proper: reaches g with probability 1

• Cost-to-go function Jπ(s) = E[
∑I

i=1 c(s i , ai)|P, π, s1 = s]
• Expected hitting time Tπ(s) = E[I |P, π, s1 = s]

• D = maxs minπ∈Πproper T
π(s),T? = Tπ?(s0).

Objective: minimize regret w.r.t. the best stationary proper policy in hindsight

RK =
K∑

k=1

(
Ik∑
i=1

ck(s ik , a
i
k)− Jπ

?

k (s0)

)
,

where π? = argminπ∈Πproper

∑K
k=1 J

π?

k (s0)

9 / 31

Problem Formulation

SSP Model: MDP M = (S,A, s0, g ,P) + cost functions {ck}Kk=1

Notations:
• Valid state-action pairs Γ = {(s, a) : s ∈ S, a ∈ As}
• Policy π: maps s ∈ S to distribution over As

• Proper: reaches g with probability 1

• Cost-to-go function Jπ(s) = E[
∑I

i=1 c(s i , ai)|P, π, s1 = s]
• Expected hitting time Tπ(s) = E[I |P, π, s1 = s]
• D = maxs minπ∈Πproper T

π(s),T? = Tπ?(s0).

Objective: minimize regret w.r.t. the best stationary proper policy in hindsight

RK =
K∑

k=1

(
Ik∑
i=1

ck(s ik , a
i
k)− Jπ

?

k (s0)

)
,

where π? = argminπ∈Πproper

∑K
k=1 J

π?

k (s0)

9 / 31

Problem Formulation

SSP Model: MDP M = (S,A, s0, g ,P) + cost functions {ck}Kk=1

Notations:
• Valid state-action pairs Γ = {(s, a) : s ∈ S, a ∈ As}
• Policy π: maps s ∈ S to distribution over As

• Proper: reaches g with probability 1

• Cost-to-go function Jπ(s) = E[
∑I

i=1 c(s i , ai)|P, π, s1 = s]
• Expected hitting time Tπ(s) = E[I |P, π, s1 = s]
• D = maxs minπ∈Πproper T

π(s),T? = Tπ?(s0).

Objective: minimize regret w.r.t. the best stationary proper policy in hindsight

RK =
K∑

k=1

(
Ik∑
i=1

ck(s ik , a
i
k)− Jπ

?

k (s0)

)
,

where π? = argminπ∈Πproper

∑K
k=1 J

π?

k (s0)
9 / 31

Occupancy Measure

A proper policy π induces an occupancy measure qπ ∈ RΓ
≥0 with

qπ(s, a) = E

[
I∑

i=1

I{s i = s, ai = a}

∣∣∣∣∣P, π, s1 = s0

]
,

which is the expected number of visits to (s, a) when executing π.

• One-to-one correspondence: πq(a|s) ∝ q(s, a)

• Jπk (s0) = 〈qπ, ck〉 ,Tπ(s0) =
∑

(s,a) qπ(s, a)

• E[RK] = E
[∑K

k=1 〈qπk − qπ? , ck〉
]

Converting into online linear optimization. Apply Online Mirror Descent (OMD)!

10 / 31

Occupancy Measure

A proper policy π induces an occupancy measure qπ ∈ RΓ
≥0 with

qπ(s, a) = E

[
I∑

i=1

I{s i = s, ai = a}

∣∣∣∣∣P, π, s1 = s0

]
,

which is the expected number of visits to (s, a) when executing π.

• One-to-one correspondence: πq(a|s) ∝ q(s, a)

• Jπk (s0) = 〈qπ, ck〉 ,Tπ(s0) =
∑

(s,a) qπ(s, a)

• E[RK] = E
[∑K

k=1 〈qπk − qπ? , ck〉
]

Converting into online linear optimization. Apply Online Mirror Descent (OMD)!

10 / 31

Occupancy Measure

A proper policy π induces an occupancy measure qπ ∈ RΓ
≥0 with

qπ(s, a) = E

[
I∑

i=1

I{s i = s, ai = a}

∣∣∣∣∣P, π, s1 = s0

]
,

which is the expected number of visits to (s, a) when executing π.

• One-to-one correspondence: πq(a|s) ∝ q(s, a)

• Jπk (s0) = 〈qπ, ck〉 ,Tπ(s0) =
∑

(s,a) qπ(s, a)

• E[RK] = E
[∑K

k=1 〈qπk − qπ? , ck〉
]

Converting into online linear optimization. Apply Online Mirror Descent (OMD)!

10 / 31

Occupancy Measure

A proper policy π induces an occupancy measure qπ ∈ RΓ
≥0 with

qπ(s, a) = E

[
I∑

i=1

I{s i = s, ai = a}

∣∣∣∣∣P, π, s1 = s0

]
,

which is the expected number of visits to (s, a) when executing π.

• One-to-one correspondence: πq(a|s) ∝ q(s, a)

• Jπk (s0) = 〈qπ, ck〉 ,Tπ(s0) =
∑

(s,a) qπ(s, a)

• E[RK] = E
[∑K

k=1 〈qπk − qπ? , ck〉
]

Converting into online linear optimization. Apply Online Mirror Descent (OMD)!

10 / 31

Occupancy Measure

A proper policy π induces an occupancy measure qπ ∈ RΓ
≥0 with

qπ(s, a) = E

[
I∑

i=1

I{s i = s, ai = a}

∣∣∣∣∣P, π, s1 = s0

]
,

which is the expected number of visits to (s, a) when executing π.

• One-to-one correspondence: πq(a|s) ∝ q(s, a)

• Jπk (s0) = 〈qπ, ck〉 ,Tπ(s0) =
∑

(s,a) qπ(s, a)

• E[RK] = E
[∑K

k=1 〈qπk − qπ? , ck〉
]

Converting into online linear optimization. Apply Online Mirror Descent (OMD)!

10 / 31

Occupancy Measure

Define the decision set of occupancy measures:

∆(T) =

{
q ∈ RΓ

≥0 :
∑

(s,a)∈Γ

q(s, a) ≤ T ,

∑
a∈As

q(s, a)−
∑

(s′,a′)∈Γ

P(s|s ′, a′)q(s ′, a′) = I{s = s0}, ∀s ∈ S

}

T is an upper bound on expected hitting time.

11 / 31

Outline

Full information, Expected Regret

Key challenge: achieve optimal bound without knowing T?

Solution: a new multi-scale expert algorithm as meta learner

12 / 31

Full Information, Expected Regret

Algorithm 1 SSP-O-REPS (Rosenberg and Mansour, 2020)

Input: upper bound on expected hitting time T .

Define: regularizer ψ(q) = 1
η

∑
(s,a) q(s, a) ln q(s, a) and η = min

{
1
2 ,

√
T ln(SAT)

DK

}
.

Initialization: q1 = argminq∈∆(T) ψ(q).

for k = 1, . . . ,K do
Execute πqk , receive ck , and update qk+1 = argminq∈∆(T) 〈q, ck〉+ Dψ(q, qk).

end

Rosenberg and Mansour (2020) proves E[RK] = Õ
(
T
√
K
)

.

We improve their analysis by the fact
∑K

k=1 J
π?

k (s0) ≤ DK :

Theorem

Algorithm 1 ensures E[RK] = Õ
(√

DTK
)

as long as T ≥ T?.

(Problem: need to know T?)

13 / 31

Full Information, Expected Regret

Algorithm 1 SSP-O-REPS (Rosenberg and Mansour, 2020)

Input: upper bound on expected hitting time T .

Define: regularizer ψ(q) = 1
η

∑
(s,a) q(s, a) ln q(s, a) and η = min

{
1
2 ,

√
T ln(SAT)

DK

}
.

Initialization: q1 = argminq∈∆(T) ψ(q).

for k = 1, . . . ,K do
Execute πqk , receive ck , and update qk+1 = argminq∈∆(T) 〈q, ck〉+ Dψ(q, qk).

end

Rosenberg and Mansour (2020) proves E[RK] = Õ
(
T
√
K
)

.

We improve their analysis by the fact
∑K

k=1 J
π?

k (s0) ≤ DK :

Theorem

Algorithm 1 ensures E[RK] = Õ
(√

DTK
)

as long as T ≥ T?.

(Problem: need to know T?)

13 / 31

Full Information, Expected Regret

Algorithm 1 SSP-O-REPS (Rosenberg and Mansour, 2020)

Input: upper bound on expected hitting time T .

Define: regularizer ψ(q) = 1
η

∑
(s,a) q(s, a) ln q(s, a) and η = min

{
1
2 ,

√
T ln(SAT)

DK

}
.

Initialization: q1 = argminq∈∆(T) ψ(q).

for k = 1, . . . ,K do
Execute πqk , receive ck , and update qk+1 = argminq∈∆(T) 〈q, ck〉+ Dψ(q, qk).

end

Rosenberg and Mansour (2020) proves E[RK] = Õ
(
T
√
K
)

.

We improve their analysis by the fact
∑K

k=1 J
π?

k (s0) ≤ DK :

Theorem

Algorithm 1 ensures E[RK] = Õ
(√

DTK
)

as long as T ≥ T?.

(Problem: need to know T?)

13 / 31

Full Information, Expected Regret

Algorithm 1 SSP-O-REPS (Rosenberg and Mansour, 2020)

Input: upper bound on expected hitting time T .

Define: regularizer ψ(q) = 1
η

∑
(s,a) q(s, a) ln q(s, a) and η = min

{
1
2 ,

√
T ln(SAT)

DK

}
.

Initialization: q1 = argminq∈∆(T) ψ(q).

for k = 1, . . . ,K do
Execute πqk , receive ck , and update qk+1 = argminq∈∆(T) 〈q, ck〉+ Dψ(q, qk).

end

Rosenberg and Mansour (2020) proves E[RK] = Õ
(
T
√
K
)

.

We improve their analysis by the fact
∑K

k=1 J
π?

k (s0) ≤ DK :

Theorem

Algorithm 1 ensures E[RK] = Õ
(√

DTK
)

as long as T ≥ T?. (Problem: need to know T?)

13 / 31

Full Information, Expected Regret

Question: how to deal with unknown T??

Solution: run multiple O-REPS-SSP instances with different T and learn the best.
• Maintain N ≈ log2 K SSP-O-REPS instances, where the j-th instance sets T ≈ 2j .

• Each instance is an action of the meta-algorithm. Define meta-loss `k(j) =
〈
qjk , ck

〉
.

• Issue: losses have different scales, `k(j) ≤ b(j) ≈ 2j .
• Natural first attempt: apply multi-scale expert algorithm (Bubeck et al., 2017):

ψ(p) =
N∑
j=1

1

ηj
p(j) ln p(j), p1(j) ∝ ηj

• However, known multi-scale algorithms only ensure Õ
(
b(j?)

√
K
)

regret, not optimal.

• Our solution: inspired by other works for adaptive regret bound (Steinhardt and Liang,
2014; Wei and Luo, 2018), we change `k(j) to `k(j) + 4ηj`

2
k(j) (penalizing long horizon

policy), which gives Õ
(√

b(j?)E[
∑K

k=1 `k(j?)]

)
regret.

14 / 31

Full Information, Expected Regret

Question: how to deal with unknown T??
Solution: run multiple O-REPS-SSP instances with different T and learn the best.
• Maintain N ≈ log2 K SSP-O-REPS instances, where the j-th instance sets T ≈ 2j .

• Each instance is an action of the meta-algorithm. Define meta-loss `k(j) =
〈
qjk , ck

〉
.

• Issue: losses have different scales, `k(j) ≤ b(j) ≈ 2j .
• Natural first attempt: apply multi-scale expert algorithm (Bubeck et al., 2017):

ψ(p) =
N∑
j=1

1

ηj
p(j) ln p(j), p1(j) ∝ ηj

• However, known multi-scale algorithms only ensure Õ
(
b(j?)

√
K
)

regret, not optimal.

• Our solution: inspired by other works for adaptive regret bound (Steinhardt and Liang,
2014; Wei and Luo, 2018), we change `k(j) to `k(j) + 4ηj`

2
k(j) (penalizing long horizon

policy), which gives Õ
(√

b(j?)E[
∑K

k=1 `k(j?)]

)
regret.

14 / 31

Full Information, Expected Regret

Question: how to deal with unknown T??
Solution: run multiple O-REPS-SSP instances with different T and learn the best.
• Maintain N ≈ log2 K SSP-O-REPS instances, where the j-th instance sets T ≈ 2j .

• Each instance is an action of the meta-algorithm. Define meta-loss `k(j) =
〈
qjk , ck

〉
.

• Issue: losses have different scales, `k(j) ≤ b(j) ≈ 2j .

• Natural first attempt: apply multi-scale expert algorithm (Bubeck et al., 2017):

ψ(p) =
N∑
j=1

1

ηj
p(j) ln p(j), p1(j) ∝ ηj

• However, known multi-scale algorithms only ensure Õ
(
b(j?)

√
K
)

regret, not optimal.

• Our solution: inspired by other works for adaptive regret bound (Steinhardt and Liang,
2014; Wei and Luo, 2018), we change `k(j) to `k(j) + 4ηj`

2
k(j) (penalizing long horizon

policy), which gives Õ
(√

b(j?)E[
∑K

k=1 `k(j?)]

)
regret.

14 / 31

Full Information, Expected Regret

Question: how to deal with unknown T??
Solution: run multiple O-REPS-SSP instances with different T and learn the best.
• Maintain N ≈ log2 K SSP-O-REPS instances, where the j-th instance sets T ≈ 2j .

• Each instance is an action of the meta-algorithm. Define meta-loss `k(j) =
〈
qjk , ck

〉
.

• Issue: losses have different scales, `k(j) ≤ b(j) ≈ 2j .
• Natural first attempt: apply multi-scale expert algorithm (Bubeck et al., 2017):

ψ(p) =
N∑
j=1

1

ηj
p(j) ln p(j), p1(j) ∝ ηj

• However, known multi-scale algorithms only ensure Õ
(
b(j?)

√
K
)

regret, not optimal.

• Our solution: inspired by other works for adaptive regret bound (Steinhardt and Liang,
2014; Wei and Luo, 2018), we change `k(j) to `k(j) + 4ηj`

2
k(j) (penalizing long horizon

policy), which gives Õ
(√

b(j?)E[
∑K

k=1 `k(j?)]

)
regret.

14 / 31

Full Information, Expected Regret

Question: how to deal with unknown T??
Solution: run multiple O-REPS-SSP instances with different T and learn the best.
• Maintain N ≈ log2 K SSP-O-REPS instances, where the j-th instance sets T ≈ 2j .

• Each instance is an action of the meta-algorithm. Define meta-loss `k(j) =
〈
qjk , ck

〉
.

• Issue: losses have different scales, `k(j) ≤ b(j) ≈ 2j .
• Natural first attempt: apply multi-scale expert algorithm (Bubeck et al., 2017):

ψ(p) =
N∑
j=1

1

ηj
p(j) ln p(j), p1(j) ∝ ηj

• However, known multi-scale algorithms only ensure Õ
(
b(j?)

√
K
)

regret, not optimal.

• Our solution: inspired by other works for adaptive regret bound (Steinhardt and Liang,
2014; Wei and Luo, 2018), we change `k(j) to `k(j) + 4ηj`

2
k(j) (penalizing long horizon

policy), which gives Õ
(√

b(j?)E[
∑K

k=1 `k(j?)]

)
regret.

14 / 31

Full Information, Expected Regret

Question: how to deal with unknown T??
Solution: run multiple O-REPS-SSP instances with different T and learn the best.
• Maintain N ≈ log2 K SSP-O-REPS instances, where the j-th instance sets T ≈ 2j .

• Each instance is an action of the meta-algorithm. Define meta-loss `k(j) =
〈
qjk , ck

〉
.

• Issue: losses have different scales, `k(j) ≤ b(j) ≈ 2j .
• Natural first attempt: apply multi-scale expert algorithm (Bubeck et al., 2017):

ψ(p) =
N∑
j=1

1

ηj
p(j) ln p(j), p1(j) ∝ ηj

• However, known multi-scale algorithms only ensure Õ
(
b(j?)

√
K
)

regret, not optimal.

• Our solution: inspired by other works for adaptive regret bound (Steinhardt and Liang,
2014; Wei and Luo, 2018), we change `k(j) to `k(j) + 4ηj`

2
k(j) (penalizing long horizon

policy), which gives Õ
(√

b(j?)E[
∑K

k=1 `k(j?)]

)
regret.

14 / 31

Full Information, Expected Regret

Algorithm 2 Adaptive SSP-O-REPS with Multi-scale Experts

Define: Ω =
{
p ∈ RN

≥0 :
∑N

j=1 p(j) = 1
}

and ψ(p) =
∑N

j=1
1
ηj
p(j) ln p(j).

Initialize: p1 ∈ Ω such that p1(j) ∝ ηj .
Initialize: N instances of SSP-O-REPS, where the j-th instance uses parameter T = b(j).
for k = 1, . . . ,K do

For each j ∈ [N], obtain occupancy measure qjk from SSP-O-REPS instance j .

Sample jk ∼ pk , execute πk induced by qjkk , receive ck , and feed ck to all instances.

Compute `k and ak : `k(j) = 〈qjk , ck〉, ak(j) = 4ηj`
2
k(j), ∀j ∈ [N].

Update pk+1 = argminp∈Ω 〈p, `k + ak〉+ Dψ(p, pk).

end

Theorem

Algorithm 2 ensures E[RK] = Õ
(√

DT?K
)

without knowing T? (which is optimal).

15 / 31

Full Information, Expected Regret

Algorithm 2 Adaptive SSP-O-REPS with Multi-scale Experts

Define: Ω =
{
p ∈ RN

≥0 :
∑N

j=1 p(j) = 1
}

and ψ(p) =
∑N

j=1
1
ηj
p(j) ln p(j).

Initialize: p1 ∈ Ω such that p1(j) ∝ ηj .
Initialize: N instances of SSP-O-REPS, where the j-th instance uses parameter T = b(j).
for k = 1, . . . ,K do

For each j ∈ [N], obtain occupancy measure qjk from SSP-O-REPS instance j .

Sample jk ∼ pk , execute πk induced by qjkk , receive ck , and feed ck to all instances.

Compute `k and ak : `k(j) = 〈qjk , ck〉, ak(j) = 4ηj`
2
k(j), ∀j ∈ [N].

Update pk+1 = argminp∈Ω 〈p, `k + ak〉+ Dψ(p, pk).

end

Theorem

Algorithm 2 ensures E[RK] = Õ
(√

DT?K
)

without knowing T? (which is optimal).

15 / 31

Outline

Full Information, High Probability Bound

Key challenge: control the variance of learner’s cost

Solution: loop-free reduction + skewed occupancy measure

16 / 31

Full Information, High Probability Bound

RK =
K∑

k=1

〈Nk − qπ? , ck〉 =
K∑

k=1

〈Nk − qk , ck〉︸ ︷︷ ︸
Deviation

+
K∑

k=1

〈qk − qπ? , ck〉︸ ︷︷ ︸
REG

,

where Nk(s, a) =
∑Ik

i=1 I{s ik = s, aik = a}.

Issue: there is no good upper bound on 〈Nk , ck〉.

Lemma (Quantifying Deviation in SSP)

Consider executing a stationary policy π in episode k. Then Ek [〈Nk , ck〉2] ≤ 2 〈qπ, Jπk 〉.

17 / 31

Full Information, High Probability Bound

RK =
K∑

k=1

〈Nk − qπ? , ck〉 =
K∑

k=1

〈Nk − qk , ck〉︸ ︷︷ ︸
Deviation

+
K∑

k=1

〈qk − qπ? , ck〉︸ ︷︷ ︸
REG

,

where Nk(s, a) =
∑Ik

i=1 I{s ik = s, aik = a}.

Issue: there is no good upper bound on 〈Nk , ck〉.

Lemma (Quantifying Deviation in SSP)

Consider executing a stationary policy π in episode k. Then Ek [〈Nk , ck〉2] ≤ 2 〈qπ, Jπk 〉.

17 / 31

Full Information, High Probability Bound

RK =
K∑

k=1

〈Nk − qπ? , ck〉 =
K∑

k=1

〈Nk − qk , ck〉︸ ︷︷ ︸
Deviation

+
K∑

k=1

〈qk − qπ? , ck〉︸ ︷︷ ︸
REG

,

where Nk(s, a) =
∑Ik

i=1 I{s ik = s, aik = a}.

Issue: there is no good upper bound on 〈Nk , ck〉.

Lemma (Quantifying Deviation in SSP)

Consider executing a stationary policy π in episode k. Then Ek [〈Nk , ck〉2] ≤ 2 〈qπ, Jπk 〉.

17 / 31

Full Information, High Probability Bound

Lemma (Quantifying Deviation in SSP)

Consider executing a stationary policy π in episode k. Then E[〈Nk , ck〉2] ≤ 2 〈qπ, Jπk 〉.

Observation 1: for the optimal policy π?:

K∑
k=1

〈
qπ? , J

π?

k

〉
=
∑
s∈S

qπ?(s)
K∑

k=1

Jπ
?

k (s) ≤ DK
∑
s∈S

qπ?(s) = DT?K .

It is thus tempting to enforce
∑K

k=1

〈
qπk , J

πk
k

〉
≤ DT?K . But how?

• It depends on all cost functions c1, . . . , cK .

• Non-convex w.r.t. occupancy measure.

18 / 31

Full Information, High Probability Bound

Lemma (Quantifying Deviation in SSP)

Consider executing a stationary policy π in episode k. Then E[〈Nk , ck〉2] ≤ 2 〈qπ, Jπk 〉.

Observation 1: for the optimal policy π?:

K∑
k=1

〈
qπ? , J

π?

k

〉
=
∑
s∈S

qπ?(s)
K∑

k=1

Jπ
?

k (s) ≤ DK
∑
s∈S

qπ?(s) = DT?K .

It is thus tempting to enforce
∑K

k=1

〈
qπk , J

πk
k

〉
≤ DT?K . But how?

• It depends on all cost functions c1, . . . , cK .

• Non-convex w.r.t. occupancy measure.

18 / 31

Full Information, High Probability Bound

Observation 2: the variance upper bound takes a much simpler form in a loop-free MDP.

Loop-free layered structure:

• State space is of the form S × [H].

• Transition from (s, h) to (s ′, h′) is only possible if h′ = h + 1
(except transition to the goal state).

Lemma (Quantifying Deviation in loop-free MDP)

If M has a loop-free layered structure, then

〈qπ, Jπk 〉 =
∑

(s,a)

∑H
h=1 h · qπ(s, a, h)ck(s, a, h) =

〈
qπ, ~h ◦ ck

〉
,

where we define ~h ◦ f (s, a, h) = h · f (s, a, h). For simplicity, we write qπ((s, h), a) as
qπ(s, a, h), and ck((s, h), a) as ck(s, a, h).

This inspires us to approximate the SSP instance by a loop-free MDP.

19 / 31

Full Information, High Probability Bound

Observation 2: the variance upper bound takes a much simpler form in a loop-free MDP.

Loop-free layered structure:

• State space is of the form S × [H].

• Transition from (s, h) to (s ′, h′) is only possible if h′ = h + 1
(except transition to the goal state).

Lemma (Quantifying Deviation in loop-free MDP)

If M has a loop-free layered structure, then

〈qπ, Jπk 〉 =
∑

(s,a)

∑H
h=1 h · qπ(s, a, h)ck(s, a, h) =

〈
qπ, ~h ◦ ck

〉
,

where we define ~h ◦ f (s, a, h) = h · f (s, a, h). For simplicity, we write qπ((s, h), a) as
qπ(s, a, h), and ck((s, h), a) as ck(s, a, h).

This inspires us to approximate the SSP instance by a loop-free MDP.

19 / 31

Full Information, High Probability Bound

Observation 2: the variance upper bound takes a much simpler form in a loop-free MDP.

Loop-free layered structure:

• State space is of the form S × [H].

• Transition from (s, h) to (s ′, h′) is only possible if h′ = h + 1
(except transition to the goal state).

Lemma (Quantifying Deviation in loop-free MDP)

If M has a loop-free layered structure, then

〈qπ, Jπk 〉 =
∑

(s,a)

∑H
h=1 h · qπ(s, a, h)ck(s, a, h) =

〈
qπ, ~h ◦ ck

〉
,

where we define ~h ◦ f (s, a, h) = h · f (s, a, h). For simplicity, we write qπ((s, h), a) as
qπ(s, a, h), and ck((s, h), a) as ck(s, a, h).

This inspires us to approximate the SSP instance by a loop-free MDP.

19 / 31

Full Information, High Probability Bound

Observation 2: the variance upper bound takes a much simpler form in a loop-free MDP.

Loop-free layered structure:

• State space is of the form S × [H].

• Transition from (s, h) to (s ′, h′) is only possible if h′ = h + 1
(except transition to the goal state).

Lemma (Quantifying Deviation in loop-free MDP)

If M has a loop-free layered structure, then

〈qπ, Jπk 〉 =
∑

(s,a)

∑H
h=1 h · qπ(s, a, h)ck(s, a, h) =

〈
qπ, ~h ◦ ck

〉
,

where we define ~h ◦ f (s, a, h) = h · f (s, a, h). For simplicity, we write qπ((s, h), a) as
qπ(s, a, h), and ck((s, h), a) as ck(s, a, h).

This inspires us to approximate the SSP instance by a loop-free MDP.
19 / 31

First Idea: Loop-free Reduction

Construct M̃ from M: duplicate each state by attaching a time step h for H1 steps, and then
connect all states to some dummy state that lasts for another H2 steps.

For simplicity, write q(s, a, h) = q((s, h), a), c(s, a, h) = c̃((s, h), a), and define H = H1 + H2.
20 / 31

First Idea: Loop-free Reduction

Given π̃ in M̃, define non-stationary policy σ(π̃) in M which

1. follows π̃(·|(s, h)) at state s for time step h ≤ H1

2. then execute the fast policy πf until reaching g

Lemma

Suppose H1 & maxs T
π?(s),H2 & D. Let π̃1, . . . , π̃K be policies for M̃ with occupancy

measure q1, . . . , qK . Then the regret of executing σ(π̃1), . . . , σ(π̃K) in M satisfies for any
λ ∈ (0, 2/H], with probability 1− δ,

RK ≤
K∑

k=1

〈
Ñk − qπ̃? , ck

〉
+ Õ (1)

≤
K∑

k=1

〈qk − qπ̃? , ck〉︸ ︷︷ ︸
Reg

+λ
K∑

k=1

〈
qk , ~h ◦ ck

〉
︸ ︷︷ ︸

Var

+
2 ln (2/δ)

λ
+ Õ (1) .

Note: applying standard loop-free algorithms does not solve our problem!

21 / 31

First Idea: Loop-free Reduction

Given π̃ in M̃, define non-stationary policy σ(π̃) in M which

1. follows π̃(·|(s, h)) at state s for time step h ≤ H1

2. then execute the fast policy πf until reaching g

Lemma

Suppose H1 & maxs T
π?(s),H2 & D. Let π̃1, . . . , π̃K be policies for M̃ with occupancy

measure q1, . . . , qK . Then the regret of executing σ(π̃1), . . . , σ(π̃K) in M satisfies for any
λ ∈ (0, 2/H], with probability 1− δ,

RK ≤
K∑

k=1

〈
Ñk − qπ̃? , ck

〉
+ Õ (1)

≤
K∑

k=1

〈qk − qπ̃? , ck〉︸ ︷︷ ︸
Reg

+λ
K∑

k=1

〈
qk , ~h ◦ ck

〉
︸ ︷︷ ︸

Var

+
2 ln (2/δ)

λ
+ Õ (1) .

Note: applying standard loop-free algorithms does not solve our problem!

21 / 31

First Idea: Loop-free Reduction

Given π̃ in M̃, define non-stationary policy σ(π̃) in M which

1. follows π̃(·|(s, h)) at state s for time step h ≤ H1

2. then execute the fast policy πf until reaching g

Lemma

Suppose H1 & maxs T
π?(s),H2 & D. Let π̃1, . . . , π̃K be policies for M̃ with occupancy

measure q1, . . . , qK . Then the regret of executing σ(π̃1), . . . , σ(π̃K) in M satisfies for any
λ ∈ (0, 2/H], with probability 1− δ,

RK ≤
K∑

k=1

〈
Ñk − qπ̃? , ck

〉
+ Õ (1)

≤
K∑

k=1

〈qk − qπ̃? , ck〉︸ ︷︷ ︸
Reg

+λ
K∑

k=1

〈
qk , ~h ◦ ck

〉
︸ ︷︷ ︸

Var

+
2 ln (2/δ)

λ
+ Õ (1) .

Note: applying standard loop-free algorithms does not solve our problem!
21 / 31

First Idea: Loop-free Reduction

Given π̃ in M̃, define non-stationary policy σ(π̃) in M which

1. follows π̃(·|(s, h)) at state s for time step h ≤ H1

2. then execute the fast policy πf until reaching g

Lemma

Suppose H1 & maxs T
π?(s),H2 & D. Let π̃1, . . . , π̃K be policies for M̃ with occupancy

measure q1, . . . , qK . Then the regret of executing σ(π̃1), . . . , σ(π̃K) in M satisfies for any
λ ∈ (0, 2/H], with probability 1− δ,

RK ≤
K∑

k=1

〈
Ñk − qπ̃? , ck

〉
+ Õ (1) ≤

K∑
k=1

〈qk − qπ̃? , ck〉︸ ︷︷ ︸
Reg

+λ
K∑

k=1

〈
qk , ~h ◦ ck

〉
︸ ︷︷ ︸

Var

+
2 ln (2/δ)

λ
+ Õ (1) .

Note: applying standard loop-free algorithms does not solve our problem!
21 / 31

Second Idea: Skewed Occupancy Measure Space

RK .
K∑

k=1

〈qk − qπ̃? , ck〉+ λ

K∑
k=1

〈
qk , ~h ◦ ck

〉
︸ ︷︷ ︸

Var

+
1

λ
.

It is still hard to enforce Var ≤ DT?K . Instead, we have the following observation:

RK .
K∑

k=1

〈
(qk + λ~h ◦ qk)− (qπ̃? + λ~h ◦ qπ̃?), ck

〉
+ λ

K∑
k=1

〈
qπ̃? , ~h ◦ ck

〉
+

1

λ

.
K∑

k=1

〈φπk − φπ̃? , ck〉+ λDT?K +
1

λ
. (φπ = qπ + λ~h ◦ qπ)

It thus motivates us to perform OMD over a skewed occupancy measure space:

Ω =
{
φ = q + λ~h ◦ q : q ∈ ∆̃(T?)

}
.

22 / 31

Second Idea: Skewed Occupancy Measure Space

RK .
K∑

k=1

〈qk − qπ̃? , ck〉+ λ

K∑
k=1

〈
qk , ~h ◦ ck

〉
︸ ︷︷ ︸

Var

+
1

λ
.

It is still hard to enforce Var ≤ DT?K . Instead, we have the following observation:

RK .
K∑

k=1

〈
(qk + λ~h ◦ qk)− (qπ̃? + λ~h ◦ qπ̃?), ck

〉
+ λ

K∑
k=1

〈
qπ̃? , ~h ◦ ck

〉
+

1

λ

.
K∑

k=1

〈φπk − φπ̃? , ck〉+ λDT?K +
1

λ
. (φπ = qπ + λ~h ◦ qπ)

It thus motivates us to perform OMD over a skewed occupancy measure space:

Ω =
{
φ = q + λ~h ◦ q : q ∈ ∆̃(T?)

}
.

22 / 31

Second Idea: Skewed Occupancy Measure Space

RK .
K∑

k=1

〈qk − qπ̃? , ck〉+ λ

K∑
k=1

〈
qk , ~h ◦ ck

〉
︸ ︷︷ ︸

Var

+
1

λ
.

It is still hard to enforce Var ≤ DT?K . Instead, we have the following observation:

RK .
K∑

k=1

〈
(qk + λ~h ◦ qk)− (qπ̃? + λ~h ◦ qπ̃?), ck

〉
+ λ

K∑
k=1

〈
qπ̃? , ~h ◦ ck

〉
+

1

λ

.
K∑

k=1

〈φπk − φπ̃? , ck〉+ λDT?K +
1

λ
. (φπ = qπ + λ~h ◦ qπ)

It thus motivates us to perform OMD over a skewed occupancy measure space:

Ω =
{
φ = q + λ~h ◦ q : q ∈ ∆̃(T?)

}
.

22 / 31

Full Information, High Probability Bound

Algorithm 3 SSP-O-REPS with Loop-free Reduction and Skewed Occupancy Measure

Parameters: η = min
{

1
2 ,
√

T?
DK

}
, λ =

√
ln(1/δ)
DT?K

,H2 = d4D ln 4K
δ e

Define: H = H1 + H2, regularizer ψ(φ) = 1
η

∑H
h=1

∑
(s,a)∈Γ̃

φ(s, a, h) lnφ(s, a, h)

Initialization: φ1 = q1 + λ~h ◦ q1 = argminφ∈Ω ψ(φ).

for k = 1, . . . ,K do
Execute σ(π̃k) where π̃k is such that π̃k(a|(s, h)) ∝ qk(s, a, h), and receive ck .
Update φk+1 = qk+1 + λ~h ◦ qk+1 = argminφ∈Ω 〈φ, ck〉+ Dψ(φ, φk).

end

Theorem

Algorithm 3 ensures that RK = Õ
(√

DT?K
)

with high probability.

Open Problem: How to achieve the same without knowing T??

23 / 31

Full Information, High Probability Bound

Algorithm 3 SSP-O-REPS with Loop-free Reduction and Skewed Occupancy Measure

Parameters: η = min
{

1
2 ,
√

T?
DK

}
, λ =

√
ln(1/δ)
DT?K

,H2 = d4D ln 4K
δ e

Define: H = H1 + H2, regularizer ψ(φ) = 1
η

∑H
h=1

∑
(s,a)∈Γ̃

φ(s, a, h) lnφ(s, a, h)

Initialization: φ1 = q1 + λ~h ◦ q1 = argminφ∈Ω ψ(φ).

for k = 1, . . . ,K do
Execute σ(π̃k) where π̃k is such that π̃k(a|(s, h)) ∝ qk(s, a, h), and receive ck .
Update φk+1 = qk+1 + λ~h ◦ qk+1 = argminφ∈Ω 〈φ, ck〉+ Dψ(φ, φk).

end

Theorem

Algorithm 3 ensures that RK = Õ
(√

DT?K
)

with high probability.

Open Problem: How to achieve the same without knowing T??
23 / 31

Outline

Bandit Feedback, Expected Bound

Key challenge: large variance of unbiased cost estimators

Solution: log-barrier regularizer + skewed occupancy measure

24 / 31

Bandit Feedback, Expected Bound

• Standard technique: construct an importance-weighted unbiased cost estimator. The
natural estimator is ĉk(s, a) = Nk (s,a)ck (s,a)

qk (s,a) .

• With the entropy regularizer, the stability term of OMD is∑
(s,a) qk(s, a)Ek [ĉ2

k (s, a)] =
∑

(s,a)
Ek [N2

k (s,a)]ck (s,a)
qk (s,a) , which could be prohibitively large.

We resolve these problems with Log-barrier regularizer ψ(φ) = −
∑

(s,a) ln(
∑H

h=1φ(s, a, h)).

• It leads to a smaller stability term:∑
(s,a)

q2
k(s, a)Ek [ĉ2

k (s, a)] =
∑
(s,a)

Ek [N2
k (s, a)]c2

k (s, a) ≤ Ek [〈Nk , ck〉2].

Exactly the variance of actual cost and can be handled by skewed occupancy measure!

• Summing over H inside to avoid H dependency (leveraging the fact c(s, a, h) = c(s, a)).

25 / 31

Bandit Feedback, Expected Bound

• Standard technique: construct an importance-weighted unbiased cost estimator. The
natural estimator is ĉk(s, a) = Nk (s,a)ck (s,a)

qk (s,a) .

• With the entropy regularizer, the stability term of OMD is∑
(s,a) qk(s, a)Ek [ĉ2

k (s, a)] =
∑

(s,a)
Ek [N2

k (s,a)]ck (s,a)
qk (s,a) , which could be prohibitively large.

We resolve these problems with Log-barrier regularizer ψ(φ) = −
∑

(s,a) ln(
∑H

h=1φ(s, a, h)).

• It leads to a smaller stability term:∑
(s,a)

q2
k(s, a)Ek [ĉ2

k (s, a)] =
∑
(s,a)

Ek [N2
k (s, a)]c2

k (s, a) ≤ Ek [〈Nk , ck〉2].

Exactly the variance of actual cost and can be handled by skewed occupancy measure!

• Summing over H inside to avoid H dependency (leveraging the fact c(s, a, h) = c(s, a)).

25 / 31

Bandit Feedback, Expected Bound

• Standard technique: construct an importance-weighted unbiased cost estimator. The
natural estimator is ĉk(s, a) = Nk (s,a)ck (s,a)

qk (s,a) .

• With the entropy regularizer, the stability term of OMD is∑
(s,a) qk(s, a)Ek [ĉ2

k (s, a)] =
∑

(s,a)
Ek [N2

k (s,a)]ck (s,a)
qk (s,a) , which could be prohibitively large.

We resolve these problems with Log-barrier regularizer ψ(φ) = −
∑

(s,a) ln(
∑H

h=1φ(s, a, h)).

• It leads to a smaller stability term:∑
(s,a)

q2
k(s, a)Ek [ĉ2

k (s, a)] =
∑
(s,a)

Ek [N2
k (s, a)]c2

k (s, a) ≤ Ek [〈Nk , ck〉2].

Exactly the variance of actual cost and can be handled by skewed occupancy measure!

• Summing over H inside to avoid H dependency (leveraging the fact c(s, a, h) = c(s, a)).

25 / 31

Bandit Feedback, Expected Bound

• Standard technique: construct an importance-weighted unbiased cost estimator. The
natural estimator is ĉk(s, a) = Nk (s,a)ck (s,a)

qk (s,a) .

• With the entropy regularizer, the stability term of OMD is∑
(s,a) qk(s, a)Ek [ĉ2

k (s, a)] =
∑

(s,a)
Ek [N2

k (s,a)]ck (s,a)
qk (s,a) , which could be prohibitively large.

We resolve these problems with Log-barrier regularizer ψ(φ) = −
∑

(s,a) ln(
∑H

h=1φ(s, a, h)).

• It leads to a smaller stability term:∑
(s,a)

q2
k(s, a)Ek [ĉ2

k (s, a)] =
∑
(s,a)

Ek [N2
k (s, a)]c2

k (s, a) ≤ Ek [〈Nk , ck〉2].

Exactly the variance of actual cost and can be handled by skewed occupancy measure!

• Summing over H inside to avoid H dependency (leveraging the fact c(s, a, h) = c(s, a)).

25 / 31

Bandit Feedback, Expected Bound

• Standard technique: construct an importance-weighted unbiased cost estimator. The
natural estimator is ĉk(s, a) = Nk (s,a)ck (s,a)

qk (s,a) .

• With the entropy regularizer, the stability term of OMD is∑
(s,a) qk(s, a)Ek [ĉ2

k (s, a)] =
∑

(s,a)
Ek [N2

k (s,a)]ck (s,a)
qk (s,a) , which could be prohibitively large.

We resolve these problems with Log-barrier regularizer ψ(φ) = −
∑

(s,a) ln(
∑H

h=1φ(s, a, h)).

• It leads to a smaller stability term:∑
(s,a)

q2
k(s, a)Ek [ĉ2

k (s, a)] =
∑
(s,a)

Ek [N2
k (s, a)]c2

k (s, a) ≤ Ek [〈Nk , ck〉2].

Exactly the variance of actual cost and can be handled by skewed occupancy measure!

• Summing over H inside to avoid H dependency (leveraging the fact c(s, a, h) = c(s, a)).

25 / 31

Bandit Feedback, Expected Bound

Algorithm 4 Log-barrier Policy Search for SSP

Define: regularizer ψ(φ) = − 1
η

∑
(s,a)∈Γ̃

lnφ(s, a) where φ(s, a) =
∑H

h=1 φ(s, a, h)

Initialization: φ1 = q1 + λ~h ◦ q1 = argminφ∈Ω ψ(φ).

for k = 1, . . . ,K do
Execute σ(π̃k) where π̃k is such that π̃k(a|(s, h)) ∝ qk(s, a, h).

Construct cost estimator ĉk ∈ RΓ̃
≥0 such that ĉk(s, a) = Ñk (s,a)ck (s,a)

qk (s,a) .

Update φk+1 = qk+1 + λ~h ◦ qk+1 = argminφ∈Ω 〈φ, ĉk〉+ Dψ(φ, φk).

end

Theorem

Algorithm 4 ensures E[RK] = Õ
(√

DT?SAK
)

(which is optimal).

26 / 31

Bandit Feedback, Expected Bound

Algorithm 4 Log-barrier Policy Search for SSP

Define: regularizer ψ(φ) = − 1
η

∑
(s,a)∈Γ̃

lnφ(s, a) where φ(s, a) =
∑H

h=1 φ(s, a, h)

Initialization: φ1 = q1 + λ~h ◦ q1 = argminφ∈Ω ψ(φ).

for k = 1, . . . ,K do
Execute σ(π̃k) where π̃k is such that π̃k(a|(s, h)) ∝ qk(s, a, h).

Construct cost estimator ĉk ∈ RΓ̃
≥0 such that ĉk(s, a) = Ñk (s,a)ck (s,a)

qk (s,a) .

Update φk+1 = qk+1 + λ~h ◦ qk+1 = argminφ∈Ω 〈φ, ĉk〉+ Dψ(φ, φk).

end

Theorem

Algorithm 4 ensures E[RK] = Õ
(√

DT?SAK
)

(which is optimal).

26 / 31

Outline

Bandit Feedback, High Probability Bound

Key challenge: large variance of the cost estimators for π?

Solution: skewed occupancy measure + increasing learning rate + negative bias injected to
cost function (positive bias + negative bias)

27 / 31

Bandit Feedback, High Probability Bound

Question: how to obtain a high probability bound?

• The key is to bound the deviation of π?:
∑K

k=1 〈qπ? , ĉk − ck〉.
• By Ek [Ñ2

k (s, a)] ≤
∑

h h · qk(s, a, h) in the loop-free setting:

Ek [ĉ2
k (s, a)] =

Ek [Ñ2
k (s, a)]c2

k (s, a)

q2
k(s, a)

≤
∑

h h · qk(s, a, h)ck(s, a)

q2
k(s, a)

≤ ρK (s, a)bk(s, a),

where ρK (s, a) = maxk
1

qk (s,a) and bk(s, a) =
∑

h hqk (s,a,h)ck (s,a)
qk (s,a) .

• By Freedman’s inequality, the deviation is bounded by

∑
(s,a)

qπ̃?(s, a)

√√√√ρK (s, a)
K∑

k=1

bk(s, a) ≤ 1

η
〈qπ̃? , ρK 〉+ η

K∑
k=1

〈qπ̃? , bk〉 ,

28 / 31

Bandit Feedback, High Probability Bound

Question: how to obtain a high probability bound?

• The key is to bound the deviation of π?:
∑K

k=1 〈qπ? , ĉk − ck〉.

• By Ek [Ñ2
k (s, a)] ≤

∑
h h · qk(s, a, h) in the loop-free setting:

Ek [ĉ2
k (s, a)] =

Ek [Ñ2
k (s, a)]c2

k (s, a)

q2
k(s, a)

≤
∑

h h · qk(s, a, h)ck(s, a)

q2
k(s, a)

≤ ρK (s, a)bk(s, a),

where ρK (s, a) = maxk
1

qk (s,a) and bk(s, a) =
∑

h hqk (s,a,h)ck (s,a)
qk (s,a) .

• By Freedman’s inequality, the deviation is bounded by

∑
(s,a)

qπ̃?(s, a)

√√√√ρK (s, a)
K∑

k=1

bk(s, a) ≤ 1

η
〈qπ̃? , ρK 〉+ η

K∑
k=1

〈qπ̃? , bk〉 ,

28 / 31

Bandit Feedback, High Probability Bound

Question: how to obtain a high probability bound?

• The key is to bound the deviation of π?:
∑K

k=1 〈qπ? , ĉk − ck〉.
• By Ek [Ñ2

k (s, a)] ≤
∑

h h · qk(s, a, h) in the loop-free setting:

Ek [ĉ2
k (s, a)] =

Ek [Ñ2
k (s, a)]c2

k (s, a)

q2
k(s, a)

≤
∑

h h · qk(s, a, h)ck(s, a)

q2
k(s, a)

≤ ρK (s, a)bk(s, a),

where ρK (s, a) = maxk
1

qk (s,a) and bk(s, a) =
∑

h hqk (s,a,h)ck (s,a)
qk (s,a) .

• By Freedman’s inequality, the deviation is bounded by

∑
(s,a)

qπ̃?(s, a)

√√√√ρK (s, a)
K∑

k=1

bk(s, a) ≤ 1

η
〈qπ̃? , ρK 〉+ η

K∑
k=1

〈qπ̃? , bk〉 ,

28 / 31

Bandit Feedback, High Probability Bound

Question: how to obtain a high probability bound?

• The key is to bound the deviation of π?:
∑K

k=1 〈qπ? , ĉk − ck〉.
• By Ek [Ñ2

k (s, a)] ≤
∑

h h · qk(s, a, h) in the loop-free setting:

Ek [ĉ2
k (s, a)] =

Ek [Ñ2
k (s, a)]c2

k (s, a)

q2
k(s, a)

≤
∑

h h · qk(s, a, h)ck(s, a)

q2
k(s, a)

≤ ρK (s, a)bk(s, a),

where ρK (s, a) = maxk
1

qk (s,a) and bk(s, a) =
∑

h hqk (s,a,h)ck (s,a)
qk (s,a) .

• By Freedman’s inequality, the deviation is bounded by

∑
(s,a)

qπ̃?(s, a)

√√√√ρK (s, a)
K∑

k=1

bk(s, a) ≤ 1

η
〈qπ̃? , ρK 〉+ η

K∑
k=1

〈qπ̃? , bk〉 ,

28 / 31

Bandit Feedback, High Probability Bound

By Freedman’s inequality, the deviation is bounded by

∑
(s,a)

qπ̃?(s, a)

√√√√ρK (s, a)
K∑

k=1

bk(s, a) ≤ 1

η
〈qπ̃? , ρK 〉+ η

K∑
k=1

〈qπ̃? , bk〉 ,

• The first term 1
η 〈qπ̃? , ρK 〉 appears in (Lee et al., 2020a) already and can be handled by

an increasing learning rate schedule.

• To handle the second term, we inject a negative bias: replacing ĉk by ĉk − ηbk .

• Gives a negative term −η
∑K

k=1 〈qπ̃? , bk〉. Cancel out the second term.

• Incurs a bias η
∑K

k=1 〈qk , bk〉 = η
∑K

k=1

〈
qk , ~h ◦ ck

〉
. Again handled by the skewed

occupancy measure.

• Since ck is unknown, we use b̂k instead of bk with b̂k(s, a) =
∑

h qk (s,a,h)ĉk (s,a)
qk (s,a) .

• We apply both positive (skewed occupancy measure) and negative bias (increasing
learning rate, −ηb̂k)!

29 / 31

Bandit Feedback, High Probability Bound

By Freedman’s inequality, the deviation is bounded by

∑
(s,a)

qπ̃?(s, a)

√√√√ρK (s, a)
K∑

k=1

bk(s, a) ≤ 1

η
〈qπ̃? , ρK 〉+ η

K∑
k=1

〈qπ̃? , bk〉 ,

• The first term 1
η 〈qπ̃? , ρK 〉 appears in (Lee et al., 2020a) already and can be handled by

an increasing learning rate schedule.
• To handle the second term, we inject a negative bias: replacing ĉk by ĉk − ηbk .

• Gives a negative term −η
∑K

k=1 〈qπ̃? , bk〉. Cancel out the second term.

• Incurs a bias η
∑K

k=1 〈qk , bk〉 = η
∑K

k=1

〈
qk , ~h ◦ ck

〉
. Again handled by the skewed

occupancy measure.

• Since ck is unknown, we use b̂k instead of bk with b̂k(s, a) =
∑

h qk (s,a,h)ĉk (s,a)
qk (s,a) .

• We apply both positive (skewed occupancy measure) and negative bias (increasing
learning rate, −ηb̂k)!

29 / 31

Bandit Feedback, High Probability Bound

By Freedman’s inequality, the deviation is bounded by

∑
(s,a)

qπ̃?(s, a)

√√√√ρK (s, a)
K∑

k=1

bk(s, a) ≤ 1

η
〈qπ̃? , ρK 〉+ η

K∑
k=1

〈qπ̃? , bk〉 ,

• The first term 1
η 〈qπ̃? , ρK 〉 appears in (Lee et al., 2020a) already and can be handled by

an increasing learning rate schedule.
• To handle the second term, we inject a negative bias: replacing ĉk by ĉk − ηbk .

• Gives a negative term −η
∑K

k=1 〈qπ̃? , bk〉. Cancel out the second term.

• Incurs a bias η
∑K

k=1 〈qk , bk〉 = η
∑K

k=1

〈
qk , ~h ◦ ck

〉
. Again handled by the skewed

occupancy measure.

• Since ck is unknown, we use b̂k instead of bk with b̂k(s, a) =
∑

h qk (s,a,h)ĉk (s,a)
qk (s,a) .

• We apply both positive (skewed occupancy measure) and negative bias (increasing
learning rate, −ηb̂k)!

29 / 31

Bandit Feedback, High Probability Bound

By Freedman’s inequality, the deviation is bounded by

∑
(s,a)

qπ̃?(s, a)

√√√√ρK (s, a)
K∑

k=1

bk(s, a) ≤ 1

η
〈qπ̃? , ρK 〉+ η

K∑
k=1

〈qπ̃? , bk〉 ,

• The first term 1
η 〈qπ̃? , ρK 〉 appears in (Lee et al., 2020a) already and can be handled by

an increasing learning rate schedule.
• To handle the second term, we inject a negative bias: replacing ĉk by ĉk − ηbk .

• Gives a negative term −η
∑K

k=1 〈qπ̃? , bk〉. Cancel out the second term.

• Incurs a bias η
∑K

k=1 〈qk , bk〉 = η
∑K

k=1

〈
qk , ~h ◦ ck

〉
. Again handled by the skewed

occupancy measure.

• Since ck is unknown, we use b̂k instead of bk with b̂k(s, a) =
∑

h qk (s,a,h)ĉk (s,a)
qk (s,a) .

• We apply both positive (skewed occupancy measure) and negative bias (increasing
learning rate, −ηb̂k)!

29 / 31

Bandit Feedback, High Probability Bound

By Freedman’s inequality, the deviation is bounded by

∑
(s,a)

qπ̃?(s, a)

√√√√ρK (s, a)
K∑

k=1

bk(s, a) ≤ 1

η
〈qπ̃? , ρK 〉+ η

K∑
k=1

〈qπ̃? , bk〉 ,

• The first term 1
η 〈qπ̃? , ρK 〉 appears in (Lee et al., 2020a) already and can be handled by

an increasing learning rate schedule.
• To handle the second term, we inject a negative bias: replacing ĉk by ĉk − ηbk .

• Gives a negative term −η
∑K

k=1 〈qπ̃? , bk〉. Cancel out the second term.

• Incurs a bias η
∑K

k=1 〈qk , bk〉 = η
∑K

k=1

〈
qk , ~h ◦ ck

〉
. Again handled by the skewed

occupancy measure.

• Since ck is unknown, we use b̂k instead of bk with b̂k(s, a) =
∑

h qk (s,a,h)ĉk (s,a)
qk (s,a) .

• We apply both positive (skewed occupancy measure) and negative bias (increasing
learning rate, −ηb̂k)!

29 / 31

Bandit Feedback, High Probability Bound

By Freedman’s inequality, the deviation is bounded by

∑
(s,a)

qπ̃?(s, a)

√√√√ρK (s, a)
K∑

k=1

bk(s, a) ≤ 1

η
〈qπ̃? , ρK 〉+ η

K∑
k=1

〈qπ̃? , bk〉 ,

• The first term 1
η 〈qπ̃? , ρK 〉 appears in (Lee et al., 2020a) already and can be handled by

an increasing learning rate schedule.
• To handle the second term, we inject a negative bias: replacing ĉk by ĉk − ηbk .

• Gives a negative term −η
∑K

k=1 〈qπ̃? , bk〉. Cancel out the second term.

• Incurs a bias η
∑K

k=1 〈qk , bk〉 = η
∑K

k=1

〈
qk , ~h ◦ ck

〉
. Again handled by the skewed

occupancy measure.

• Since ck is unknown, we use b̂k instead of bk with b̂k(s, a) =
∑

h qk (s,a,h)ĉk (s,a)
qk (s,a) .

• We apply both positive (skewed occupancy measure) and negative bias (increasing
learning rate, −ηb̂k)!

29 / 31

Bandit Feedback, High Probability Bound

Algorithm 5 Log-barrier Policy Search for SSP (High Probability)

Initialization: for all (s, a) ∈ Γ̃, η1(s, a) = η, ρ1(s, a) = 2T .
for k = 1, . . . ,K do

Execute σ(π̃k) where π̃k is such that π̃k(a|(s, h)) ∝ qk(s, a, h).

φk+1 = qk+1 + λ~h ◦ qk+1 = argminφ∈Ω

〈
φ, ĉk − γb̂k

〉
+ Dψk

(φ, φk).

for ∀(s, a) ∈ Γ̃ do
if 1

φk+1(s,a) > ρk(s, a) then ρk+1(s, a) = 2
φk+1(s,a) , ηk+1(s, a) = βηk(s, a) ;

else ρk+1(s, a) = ρk(s, a), ηk+1(s, a) = ηk(s, a) ;

end

end

Theorem

Algorithm 5 ensures RK = Õ
(√

DT?SAK
)

with high probability.

30 / 31

Bandit Feedback, High Probability Bound

Algorithm 5 Log-barrier Policy Search for SSP (High Probability)

Initialization: for all (s, a) ∈ Γ̃, η1(s, a) = η, ρ1(s, a) = 2T .
for k = 1, . . . ,K do

Execute σ(π̃k) where π̃k is such that π̃k(a|(s, h)) ∝ qk(s, a, h).

φk+1 = qk+1 + λ~h ◦ qk+1 = argminφ∈Ω

〈
φ, ĉk − γb̂k

〉
+ Dψk

(φ, φk).

for ∀(s, a) ∈ Γ̃ do
if 1

φk+1(s,a) > ρk(s, a) then ρk+1(s, a) = 2
φk+1(s,a) , ηk+1(s, a) = βηk(s, a) ;

else ρk+1(s, a) = ρk(s, a), ηk+1(s, a) = ηk(s, a) ;

end

end

Theorem

Algorithm 5 ensures RK = Õ
(√

DT?SAK
)

with high probability.

30 / 31

Open Problems

• How to achieve high probability bound without knowing T??
• Minimax optimal algorithms for the unknown transition setting.

• The bounds in our follow-up work are not optimal yet.

Thank You!

31 / 31

References

• Sébastien Bubeck, Nikhil R Devanur, Zhiyi Huang, and Rad Niazadeh. Online auctions
and multiscale online learning. In Proceedings of the 2017 ACM Conference on
Economics and Computation, pages 497–514, 2017

• Chung-Wei Lee, Haipeng Luo, Chen-Yu Wei, and Mengxiao Zhang. Bias no more:
high-probability data-dependent regret bounds for adversarial bandits and mdps.
Advances in Neural Information Processing Systems, 33, 2020a.

• Aviv Rosenberg and Yishay Mansour. Stochastic shortest path with adversarially
changing costs. arXiv preprint arXiv:2006.11561, 2020

• Aviv Rosenberg, Alon Cohen, Yishay Mansour, and Haim Kaplan. Near-optimal regret
bounds for stochastic shortest path. In Proceedings of the 37th International Conference
on Machine Learning, pages 8210–8219, 2020.

• Jean Tarbouriech, Evrard Garcelon, Michal Valko, Matteo Pirotta, and Alessandro
Lazaric. Noregret exploration in goal-oriented reinforcement learning. In International
Conference on Machine Learning, pages 9428–9437. PMLR, 2020.

31 / 31

References

• Jaksch, Thomas, Ronald Ortner, and Peter Auer. ”Near-optimal Regret Bounds for
Reinforcement Learning.” Journal of Machine Learning Research 11.4 (2010).

• Bartlett, P. L. and Tewari, A. Regal: A regularization based algorithm for reinforcement
learning in weakly communicating mdps. In Proceedings of the Twenty-Fifth Conference
on Uncertainty in Artificial Intelligence, pp. 35–42. AUAI Press, 2009.

• Even-Dar, Eyal, Yishay Mansour, and Peter Bartlett. ”Learning Rates for Q-learning.”
Journal of machine learning Research 5.1 (2003).

• Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L Littman.
Pac model-free reinforcement learning. In Proceedings of the 23rd international
conference on Machine learning, pages 881–888. ACM, 2006.

• Azar, Mohammad Gheshlaghi, Ian Osband, and Rémi Munos. ”Minimax regret bounds for
reinforcement learning.” International Conference on Machine Learning. PMLR, 2017.

• Osband, Ian and Van Roy, Benjamin. On lower bounds for regret in reinforcement
learning. stat, 1050:9, 2016a.

31 / 31

References

• Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning
provably efficient? In Advances in neural information processing systems, pages
4863–4873, 2018.

• Wei, Chen-Yu, and Haipeng Luo. ”More adaptive algorithms for adversarial bandits.”
Conference On Learning Theory. PMLR, 2018.

• Jacob Steinhardt and Percy Liang. Adaptivity and optimism: An improved exponentiated
gradient algorithm. In International Conference on Machine Learning, pages 1593–1601,
2014.

31 / 31

Backup Slides

31 / 31

Outline

Lower Bound

31 / 31

Lower Bound

Main idea: an analogy to an expert / MAB problem with loss scale T? and total losses DK .

• Uniformly sample a good state j? ∈ [N] and
fixed throughout the K episodes
• In each episode:

• xj? ∼ Bernoulli(D
2T?

)

• xj ∼ Bernoulli(D
2T?

+ ε) for any j 6= j?

Full information: Ω(
√
DT?K)

Bandit feedback: Ω(
√
DT?SAK)

Stochastic cost (Cohen et al., 2020): Ω(D
√
SAK)

Our setting is harder due to the larger variance
of costs (with T? dependency).

31 / 31

Lower Bound

Main idea: an analogy to an expert / MAB problem with loss scale T? and total losses DK .

• Uniformly sample a good state j? ∈ [N] and
fixed throughout the K episodes
• In each episode:

• xj? ∼ Bernoulli(D
2T?

)

• xj ∼ Bernoulli(D
2T?

+ ε) for any j 6= j?

Full information: Ω(
√
DT?K)

Bandit feedback: Ω(
√
DT?SAK)

Stochastic cost (Cohen et al., 2020): Ω(D
√
SAK)

Our setting is harder due to the larger variance
of costs (with T? dependency).

31 / 31

Lower Bound

Main idea: an analogy to an expert / MAB problem with loss scale T? and total losses DK .

• Uniformly sample a good state j? ∈ [N] and
fixed throughout the K episodes
• In each episode:

• xj? ∼ Bernoulli(D
2T?

)

• xj ∼ Bernoulli(D
2T?

+ ε) for any j 6= j?

Full information: Ω(
√
DT?K)

Bandit feedback: Ω(
√
DT?SAK)

Stochastic cost (Cohen et al., 2020): Ω(D
√
SAK)

Our setting is harder due to the larger variance
of costs (with T? dependency).

31 / 31

Lower Bound

Main idea: an analogy to an expert / MAB problem with loss scale T? and total losses DK .

• Uniformly sample a good state j? ∈ [N] and
fixed throughout the K episodes
• In each episode:

• xj? ∼ Bernoulli(D
2T?

)

• xj ∼ Bernoulli(D
2T?

+ ε) for any j 6= j?

Full information: Ω(
√
DT?K)

Bandit feedback: Ω(
√
DT?SAK)

Stochastic cost (Cohen et al., 2020): Ω(D
√
SAK)

Our setting is harder due to the larger variance
of costs (with T? dependency).

31 / 31

Lower Bound

Main idea: an analogy to an expert / MAB problem with loss scale T? and total losses DK .

• Uniformly sample a good state j? ∈ [N] and
fixed throughout the K episodes
• In each episode:

• xj? ∼ Bernoulli(D
2T?

)

• xj ∼ Bernoulli(D
2T?

+ ε) for any j 6= j?

Full information: Ω(
√
DT?K)

Bandit feedback: Ω(
√
DT?SAK)

Stochastic cost (Cohen et al., 2020): Ω(D
√
SAK)

Our setting is harder due to the larger variance
of costs (with T? dependency).

31 / 31

	Introduction
	Full Information
	Bandit Feedback

