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Pricing Game



Duopoly

● Two companies dominate the market

● They sell the same or highly substitutable products



Bertrand Duopoly

● Each company determines the price the product:  𝑝1, 𝑝2

● The marginal cost is the same:  𝑐1 = 𝑐2 = 𝑐

● The lower priced company wins all demand; each gets half demand if prices 

are the same

● Companies 𝑖’s profit:  𝑅𝑖 = 𝑝𝑖 − 𝑐 𝑞𝑖

Price relation \ demand 𝒒𝟏 𝒒𝟐

𝒑𝟏 < 𝒑𝟐 𝐷(𝑝1, 𝑝2) 0

𝒑𝟏 > 𝒑𝟐 0 𝐷(𝑝1, 𝑝2)

𝒑𝟏 = 𝒑𝟐
1

2
𝐷(𝑝1, 𝑝2)

1

2
𝐷(𝑝1, 𝑝2)



Bertrand Duopoly

● 𝑝1 = 𝑝2 = 𝑐 is the unique Nash equilibrium (NE), called “Bertrand NE” 

● 𝑝1 = 𝑝2 > 𝑐  ⇒  both of them want to slightly decrease the price

● 𝑝1, 𝑝2 ≥ 𝑐 and 𝑝1 ≠ 𝑝2  ⇒  the lower priced one wants to slightly increase the price

● 𝑝1 < 𝑐 or 𝑝2 < 𝑐  ⇒  the lower priced one wants set price = 𝑐 

● There is no profit at NE! 

● Collusion:  𝑝1 = 𝑝2 > 𝑐

● Both companies get positive profit

● But this is not stable…?  (everyone wants to deviate)



Prisoner’s Dilemma

Cooperate Defect

Cooperate -1,-1 -10,0

Defect 0,-10 -6,-6

High Low

High 5,5 0,6

Low 6,0 3,3

C D

C x,x z,w

D w,z y,y

w > x > y > z
General form: 

Unique NE:  (D,D) 

Prisoner’s Dilemma Pricing game



One-Shot Game vs. Repeated Game

● One-shot game:  play the game once

● Repeated game:  play the game repeatedly

In repeated games, the players can make decisions based on the history.  

This enlarges the policy space, and new NEs become possible.  

For example, if both players use the policy:   

Then they are in a NE. 

Of course, if both players “always defect,” they are also in a NE (but a different one). 

“Start from always cooperate. Switch to always defect if the other player 

ever plays defect.” (the “grim-trigger” policy)



Repeated Game (slightly more formalization)

● Assume perfect information:  every player knows the actions taken by the 

other players in all previous rounds

● State: the information the player can base their decision on. 

● Full state:  At round 𝑡, the state is  

● Memory-limited state (memory size = 𝑘):  At round 𝑡, the state is

● Policy:  a mapping from state to action (or distribution over actions) 

𝒂𝟏, 𝒂𝟐, … ,  𝒂𝒕−𝟏 ∈ 𝓐𝑡−1

𝒂𝒕−𝒌, 𝒂𝒕−𝒌+𝟏, … ,  𝒂𝒕−𝟏 ∈ 𝓐𝑘

where 𝓐 = 𝒜1 × 𝒜2 × ⋯ × 𝒜𝑁

𝓐𝑘 → 𝒜𝑖 (or 𝓐𝑘 → Δ(𝒜𝑖))



Repeated Game (slightly more formalization)

Repeated prisoner’s dilemma with memory size k = 1

State space = {CC, DD, CD, DC} 

Always-defect policy:  

𝜋 CC = D
𝜋 DD = D
𝜋 CD = D
𝜋 DC = D

Grim-trigger policy:  

𝜋 CC = C
𝜋 DD = D
𝜋 CD = D
𝜋 DC = D

My action in the 

previous round
Opponent’s action in 

the previous round



Summary for the paper today

● If both players run Q-learning (introduced later) individually in a pricing game, 

then they converge to prices higher than the Bertrand Nash price. 

● Since Q-learning is an optimization algorithm, the higher prices could be due to  

● Collusion, or

● Failure of optimization

● The paper confirms that it is due to collusion 

● The learned policies are robust under forced deviation

● The learned policies have the punishment mechanism 



Implications (negative side)

● The antitrust laws (https://www.justice.gov/atr/antitrust-laws-and-you)

The collusion by Q-learners are legal, because the collusion is not based on explicit agreement.  

But it still harms the consumer.



Implications (positive side) 

● For example, for multi-agent systems, this indicates a simple and 

decentralized algorithm that achieves high social welfare or global optimal 

strategy. 



Learning in Games



Learning in Games

● Game theory focuses a lot on characterizing the (Nash) equilibrium

● “If everyone uses the equilibrium policy, then everyone doesn’t want to deviate”

● However, it is sometimes unclear how the players reach such steady state. 



Learning in Games

Example.   Gradient descent /ascent in two-player zero-sum games leads to 

divergence from the NE.   

𝑥𝑡+1 = 𝑥𝑡 + 𝜂∇𝑥𝑓(𝑥𝑡 , 𝑦𝑡)

𝑦𝑡+1 = 𝑦𝑡 − 𝜂∇𝑦𝑓(𝑥𝑡, 𝑦𝑡)



Learning in Games

● There are games with multiple NEs

● Different initialization and policy-update algorithms converge to different NEs 

● For example, repeated pricing game.

● Usually, games with dominant strategies lead to simpler dynamics 

● Every player’s best strategy does not depend on the others’ strategies

● For example, repeated second-price auction, repeated selfish routing.  

I’m stacking based 

on where you place 

the blocks. 

I’m moving the 

blocks based on 

how you stack!



Reinforcement Learning and Q-Learning



Reinforcement Learning (RL)

● A framework originally developed for a single player to find optimal policy in a 

static environment. 

● State: stacking 4 most recent frames (sufficient for 

us to make decisions, probably)

● Action: left / right

● Reward:  the reward we get in the game

RL:  by playing the game repeatedly, find a good mapping from state to 

action (i.e., a good policy) that maximizes total reward.



Reinforcement Learning (RL)

● State: 

● Position of the robot

● Signals from the sensor (e.g., can detect the 

objects in 4 neighboring squares)

● Action: E / W / N / S

● Reward:  

● Fire:  -30 

● Diamond: +20

● Every step before reaching EXIT:  -2 

Exit



Q-Learning

● Idea:  dynamic programming 

● Try to find a value function 𝑄 satisfying 

𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛿 𝔼𝑠′∼𝑃(⋅|𝑠,𝑎) max
𝑎′

 𝑄(𝑠′, 𝑎′)

then  𝜋 𝑠 = argmax
𝑎

 𝑄(𝑠, 𝑎) is an optimal policy (i.e., getting highest cumulative 

reward in the long-run) 

● But we don’t know 𝑅(𝑠, 𝑎) and 𝑃(𝑠′|𝑠, 𝑎) in advance

discount factor ∈ (0,1)

Reward function State transition probability



Q-Learning with 𝝐-Greedy Exploration

For 𝑡 = 1, 2, …

      

      Choose action 𝑎𝑡 = ൝
 argmax

𝑎
 𝑄(𝑠𝑡, 𝑎)

random 

      Observe instantaneous reward 𝑅𝑡 and next state 𝑠𝑡+1.

      

      Update

               𝑄 𝑠𝑡, 𝑎𝑡 ← 1 − 𝛼 𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛼 𝑅𝑡 + 𝛿 max
𝑎

 𝑄(𝑠𝑡+1, 𝑎)  

with probability 1 − 𝜖

with probability 𝜖



Theory for Q-Learning (Tsitsiklis, 1994)

If 

1) state transition probability P(s’|s,a) is fixed over time, 

2) reward function R(s,a) is fixed over time, and 

3) every s,a is visited infinitely often, 

then Q-learning converges to the fixed point of the Bellman optimality 

equation (and gives the optimal policy). 

However, this theorem does not apply to the pricing game setting

● The reward function 𝑅(𝑠, 𝑎) and the transition 𝑃(⋅ |𝑠, 𝑎) depend on the policy of the 

other player, which changes over time 



Empirical Results
Calvano, Calzolari, Denicolo, Pastorello. Artificial Intellifence, Algorithmic Pricing, and Collusion. 2020.



Experiment Setting

Demand assumption:  

𝑞𝑖,𝑡 =
exp

𝑎𝑖 − 𝑝𝑖,𝑡

𝜇

σ𝑗=1
2 exp

𝑎𝑗 − 𝑝𝑗,𝑡

𝜇
+ exp

𝑎0
𝜇

Profit:  

𝑅𝑖,𝑡 = 𝑝𝑖,𝑡 − 𝑐𝑖 𝑞𝑖,𝑡

They use parameters:  𝑐1 = 𝑐2 = 1,  𝑎1 = 𝑎2 = 2, 𝑎0 = 0, 𝜇 = 1/4

𝑎𝑖:  the quality of company 𝑖’s product

𝑝𝑖,𝑡:  company 𝑖’s price at round 𝑡

𝜇:  𝜇 = 0 means products are perfectly substitutable 

𝑐𝑖:  marginal cost of company 𝑖 



Experiment Setting

● Price discretization:  15 possible prices

● State = (my price at round t-1,  my opponent’s price at round t-1)

● Q-learning parameters (𝛼, 𝛽):

 𝑄𝑡+1 𝑠, 𝑎 = 1 − 𝛼 𝑄𝑡 𝑠, 𝑎 + 𝛼 𝑅𝑡 + 𝛿 max
𝑎′

 𝑄𝑡(𝑠′, 𝑎′)

 𝜖𝑡 = 𝑒−𝛽𝑡 

Learning rate

Exploration rate



Evaluating the Degree of Collusion

Δ =
ത𝑅 − 𝑅Bertrand

𝑅Monopoly − 𝑅Bertrand

𝑅Monopoly:  profit in full cooperation

𝑅Bertrand:  profit in full competition

(i.e., equilibrium profit in one-shot game)



Frequency of Playing Nash

Takeaway:  

In many cases, Q-learners do learn 

NE, so the high price is NOT due to 

failure of optimization. 

Whether the policies of the two players 

best responses to each other  

Recall:  There are multiple NEs. 

Q-learners tend to find NEs with 

colluded prices. 

 



The effect of Discount Factor 𝜹

Takeaway:  Larger discount factor 

leads to more collusion. 



Deviation and Punishment



Some Theoretical Analysis
Bertrand, Duque, Calvano, Gidel.  Q-Learnings Can Provably Collude in the Iterated Prisoner’s Dilemma. 2023.  



Setting

● In Prisoner’s dilemma, running Q-learning with 

● Sufficiently large discount factor 𝛿

● Some conditions on the Q-value initialization

● Symmetric initialization

the policies of the players can adapt from Always-defect to Lose-shift to Pavlov

  

Lose-shift:  Play ቊ
C, if players play (D,D) in the previous round 

D, otherwise

Pavlov:  Play ቊ
C, if players play (C,C) or (D,D) in the previous round 

D, otherwise



Experiments



Summary

● Repeated games have more complex structure than one-shot games

● One-shot pricing game / prisoner’s dilemma → unique NE

● Repeated pricing game / prisoner’s dilemma → multiple NEs

● The field of learning in games discusses the evolution of the players’ policies 

over time

● Could converge towards NE

● Could diverge from NE

● Heavily depends on initialization and the learning algorithms they use

● In pricing game / prisoner’s dilemma, independent Q-learners tend to collude / 

cooperate
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