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Overview
We study online RL in infinite-horizon average-reward MDPs with linear
function approximation.

Existing algorithms and regret bounds:
Politex (Abbasi-Yadkori et al.’19a): T 3/4

EE-Politex (Abbasi-Yadkori et al.’19b): T 4/5

AAPI (Hao et al.’20): T 2/3

Lower bound:
√

T

Existing algorithms make strong uniformly mixing (UM) and uniformly
excited feature (UEF) assumptions

Two contributions:√
T regret bound under the same assumptions as Politex/AAPI

First attempt to relax the UM and UEF assumptions
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Motivation
Recently there is significant progress in online RL with function approximation:
LSVI-UCB (Jin et al.’20), ELEANOR (Zanette et al.’20), F-LSVI (Wang et al.’20)...

However, most of them study the finite-horizon (episodic) setting, and we lack
comparable results for infinite-horizon discounted / average-reward settings.

Infinite-horizon formulation is particularly relevant when the task is continual or
non-stopping:

traffic control datacenter optimization trading self-driving
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Problem Setting



Markov Decision Processes

We assume that A is finite, but S can be infinite.
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Average-reward Setting and Regret

Jπ(s) , lim inf
n→∞

1
n
E

[
n∑

t=1

r(st ,at )

∣∣∣∣ at ∼ π(· | st , sτ,aτ,τ < t), s1 = s

]
J∗(s) , sup

π
Jπ(s)

Goal: behave as good as J∗(s1) without knowing p, r

Two facts that make the learning problem (too) difficult for online RL:
The optimal policy can be history-dependent (when |S| =∞)
J∗(s) depends on s
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Assumption

The Bellman Optimality Equation holds:

q∗(s,a) = r(s,a)− J∗ + Es′∼p(·|s,a)

[
v∗(s′)

]
, v∗(s) = max

a
q∗(s,a)

with some uniformly bounded v∗(·), q∗(·, ·), and J∗.
q∗ and v∗ are called (optimal) bias functions.

The assumption implies J∗(s) = J∗ and a stationary optimal policy π∗ : S → A.
E.g., weakly communicating MDP (tabular case)

RegT , TJ∗ −
T∑

t=1

r(st ,at )

In the tabular case: Θ
(√

sp(v∗)SAT
)

, where sp(v∗) , sups,s′ |v∗(s)− v∗(s′)|
(Zhang&Ji’19, Jaksch et al.’10)
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Linear Function Approximation
When the state or action space is very large, learning them independently could be
inefficient.

Linear Function Approximation Schemes:

given Φ(s,a) ∈ Rd ∀s,a

Examples

1 q∗(s,a) = Φ(s,a)>w∗ (Linear q∗)
2 qπ(s,a) = Φ(s,a)>wπ ∀π (Linear qπ ∀π)
3 p(s′|s,a) = Φ(s,a)>Ψ(s′), r(s,a) = Φ(s,a)>Θ (Linear MDP)

(Linear MDP) ⊂ (Linear qπ ∀π) ⊂ (Linear q∗)
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Other Assumptions Made in Previous Works

(Uniformly Mixing) [Politex, EE-Politex, AAPI] For any policy π, any state
distributions ν,

‖Pπν− μπ‖TV ≤ e−1/tmix‖ν− μπ‖TV

where μπ is the unique stationary state distirbution under π.

(Uniformly Excited Features) [Politex, AAPI] For any policy π,

λmin

(
Es∼μπ,a∼π(·|s)

[
Φ(s,a)Φ(s,a)>

])
≥ σ, (1)

[EE-Politex] assumes that (1) holds for some known policy πe
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Comparison with Previous Works

Algorithm Regret
Assumptions

Explorability Structure

Politex (Abbasi-Yadkori et al.) O(T
3
4 )

UM + UEF

Linear qπ ∀πAAPI (Hao et al.) O(T
2
3 )

EE-Politex (Abbasi-Yadkori et al.) O(T
4
5 ) UM + πe

MDP-EXP2 (Part II) O(
√

T ) UM + UEF

FOPO (Part I) O(
√

T )
BOE Linear MDP

Optimistic-LSVI (Part I) O(T
3
4 )

UM: Uniformly Mixing UEF: Uniformly Excited Features BOE: Bellman Optimality Eqn.
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BOE Linear MDP
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3
4 )

UM: Uniformly Mixing UEF: Uniformly Excited Features BOE: Bellman Optimality Eqn.

Relations between the Assumptions:
(UM + UEF) ⊂ (UM + πe) ⊂ BOE
(Linear MDP) ⊂ (Linear qπ ∀π)
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Comparison with Previous Works

Algorithm Regret
Assumptions

Explorability Structure

Politex (Abbasi-Yadkori et al.) O(T
3
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√

T )
BOE Linear MDP

Optimistic-LSVI (Part I) O(T
3
4 )

UM: Uniformly Mixing UEF: Uniformly Excited Features BOE: Bellman Optimality Eqn.

Contributions
Improving Politex/AAPI’s regret bound under the same setting (Part II)
First attempt to relax the UM and UEF assumptions (Part I)
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Part I: Linear MDP



Recap of the Assumptions
1 p(s′|s,a) = Φ(s,a)>Ψ(s′), r(s,a) = Φ(s,a)>Θ

2 Bellman optimality equation (BOE) holds:

q∗(s,a) = r(s,a)− J∗ + Es′∼p(·|s,a)

[
v∗(s′)

]
, v∗(s) = max

a
q∗(s,a)

3 Φ(s,a)1 = 1 (W.L.O.G.)

The assumptions imply q∗(s,a) = Φ(s,a)>w∗
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Algorithm: Fixed-point OPtimization with Optimism (FOPO)

FOPO is based on the “optimism under the face of uncertainty” principle:

Λt , I +
∑t−1
τ=1 Φ(sτ,aτ)Φ(sτ,aτ)>

Every time when det(Λt ) doubles, solve

max
wt ,J,b

J

s.t. wt = Λ−1
t

t−1∑
τ=1

Φ(sτ,aτ)
(

r(sτ,aτ)− J + max
a

Φ(sτ+1,a)>wt

)
+ b

‖wt‖ ≤ sp(v∗)
√

d , ‖b‖Λt ≤ β = Θ (sp(v∗)d log T )

Else: wt ← wt−1
Choose at = argmaxa Φ(st ,a)>wt
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Algorithm: Fixed-point OPtimization with Optimism (FOPO)

FOPO is based on the global optimism idea (Zanette et al’20, Neu&Pike-Burke’20).

Theorem

FOPO achieves RegT = Õ
(

sp(v∗)
√

d3T
)

.

Issues of FOPO: not computationally tractable.

Remark. Achieving O(sp(v∗)
√

T ) with a computationally efficient algorithm is
already highly non-trivial in the tabular case: REGAL (Bartlett&Tewari’09), SCAL
(Fruit et al’18), SCAL+ (Qian et al.’18)
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(

sp(v∗)
√

d3T
)

.

Issues of FOPO: not computationally tractable.

Remark. Achieving O(sp(v∗)
√

T ) with a computationally efficient algorithm is
already highly non-trivial in the tabular case: REGAL (Bartlett&Tewari’09), SCAL
(Fruit et al’18), SCAL+ (Qian et al.’18)

Chen-Yu Wei, Mehdi Jafarnia-Jahromi, Haipeng Luo, Rahul Jain 21st March 2021 11 / 26



Making FOPO Efficient
Attempt 1.

1 Avoid solving a fixed-point problem of wt .

2 Use local exploration bonus instead of global optimism (Neu&Pike-Burke’20).
3 Reduce the average-reward problem to a discounted problem (Wei et al.’20).

Counterpart of LSVI-UCB (Jin et al’20) for the discounted setting:

wt = Λ−1
t

t−1∑
τ=1

Φ(sτ,aτ) (r(sτ,aτ) + γVt−1(sτ+1)) ,

Vt−1(·) = max
a

(
Φ(·,a)>wt−1 + bonus(·,a)

)
Unfortunately, we are unable to show sub-linear regret for this algorithm.
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Making FOPO Efficient: Optimistic LSVI
Idea. Reduction to the episodic setting (Jin et al.’20)

wk
h = Λ−1

t

t−1∑
τ=1

Φ(sτ,aτ)
(

r(sτ,aτ) + V k
h+1(sτ+1)

)
,

V k
h+1(·) = max

a

(
Φ(·,a)>wk

h+1 + bonus(·,a)
)

Theorem

By reduction to the episodic setting, we get Õ
(√

sp(v∗)(dT )
3
4

)
regret efficiently.
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Summary for Part I (Linear MDPs)
1 A computationally intractable algorithm with O

(
sp(v∗)

√
d3T

)
regret.

2 A computationally efficient algorithm with O
(√

sp(v∗)(dT )
3
4

)
regret (by

reducing the problem to the episodic setting)

Open Problems
1 An O(

√
T ) computationally tractable algorithm for linear MDPs.

2 Sample complexity bound for online RL + linear MDPs + infinite-horizon
discounted setting.
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Part II: MDP-EXP2



Recap of the Assumptions
1 Uniformly Mixing: for any policy π, any state distribution ν,

‖Pπν− μπ‖TV ≤ e−1/tmix‖ν− μπ‖TV

2 Uniformly Excited Features: for any π

λmin

(
Es∼μπ,a∼π(·|s)

[
Φ(s,a)Φ(s,a)>

])
≥ σ

Uniformly Mixing implies Jπ(s) = Jπ and

qπ(s,a) = r(s,a)− Jπ + Es′∼p(·|s,a)

[
vπ(s′)

]
3 Linear qπ: for any π, there exists wπ ∈ Rd ,

qπ(s,a) = Φ(s,a)>wπ

4 Φ1(s,a) = 1 (W.L.O.G.)
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Detour: Adversarial Linear Bandit Algorithm – EXP2
(Dani et al’08, Bubeck et al’12)

(linear bandit ≈ single state MDP)

Given action set A, and feature mappings {Φ(a)}a∈A ⊂ Rd

π1 = 1
|A|

For t = 1, . . . ,T :
Sample at ∼ πt ∈ ∆A, and observe reward Φ(at )

>wt (wt can be adversarially
chosen)
Construct ŵt with E[ŵt ] = wt (unbiased estimator)
Update action distribution with exponential weight:

πt+1(a) ∝ πt (a) exp
(
ηΦ(a)>ŵt

)
Regret ,

∑
t

∑
a

(π∗(a)−πt (a)) Φ(a)>wt
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Reduction from MDP to Adversarial LB

Based on the “performance difference lemma”,

Regret =
∑

k

∑
s,a

μπ∗(s) (π∗(a|s)−πk (a|s)) qπk (s,a)

=
∑

s

μπ∗(s)

(∑
k

∑
a

(π∗(a|s)−πk (a|s)) Φ(s,a)>wπk

)
︸ ︷︷ ︸

the regret of the linear bandit problem on state s

Unlike in LB, the learner does not observe Φ(st ,at )
>wπk

=
∑

s

μπ∗(s)

(∑
k

∑
a

(π∗(a|s)−πk (a|s))
(

Φ(s,a)>wπk + c
))

It suffices to construct a ŵk with E
[
Φ(s,a)>ŵk

]
= Φ(s,a)>wπk + c
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Constructing (Nearly) Unbiased Estimators

Q: for a fixed π, how to construct ŵ with E
[
Φ(s,a)>ŵ

]
= Φ(s,a)>wπ + c?

𝑁 steps

(𝑠 1 , 𝑎(1))

𝑁 steps

𝑅(1)

(𝑠 2 , 𝑎(2))

𝑅(2)

(𝑠 𝑚 , 𝑎(𝑚))

𝑅(𝑚)……

:  a trajectory of length 𝑁 where we collect samples

1 Execute π for 2mN steps, where m = Θ
( 1
σ
)

and N = Θ (tmix)

2 Collect m trajectories each of length N

3 ŵ = Λ−1

(
m∑

i=1

Φ(s(i),a(i))R(i)

)
, Λ ,

m∑
i=1

∑
a

πk (a|s(i))Φ(s(i),a)Φ(s(i),a)>

Nearly unbiased estimator: E
[
Φ(s,a)>ŵ

]
≈ Φ(s,a)>wπ + NJπ
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3 ŵ = Λ−1

(
m∑

i=1

Φ(s(i),a(i))R(i)

)
, Λ ,

m∑
i=1

∑
a

πk (a|s(i))Φ(s(i),a)Φ(s(i),a)>

Nearly unbiased estimator: E
[
Φ(s,a)>ŵ
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3 ŵ = Λ−1

(
m∑

i=1

Φ(s(i),a(i))R(i)

)
, Λ ,

m∑
i=1

∑
a

πk (a|s(i))Φ(s(i),a)Φ(s(i),a)>

Nearly unbiased estimator: E
[
Φ(s,a)>ŵ
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MDP-EXP2

For epoch k = 1, . . . ,K :

1 Execute πk for Θ
(

tmix
σ

)
steps and construct ŵk as described previously

2 Update the policy:

πk+1(a|s) ∝ πk (a|s) exp
(
ηΦ(s,a)>ŵk

)

Theorem

EXP-MDP2 achieves E[RegT ] = Õ
(

1
σ

√
t3
mixT

)
.
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Comparison with Previous Analysis

Politex and AAPI are also based on the exponential weight update algorithm, but
only get O(T 3/4) or O(T 2/3) regret.

Politex and AAPI use LSPE to construct ŵk , and argue that
it is ε-accurate (i.e.

∥∥ŵk − wπk
∥∥ ≤ ε) after collecting O

(
1
ε2

)
samples.

In MDP-EXP2, we use EXP2 to construct ŵk , and argue that
it is unbiased with constant variance after collecting O (1) samples.

(O hides some constants related to tmix and σ)
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∥∥ŵk − wπk
∥∥ ≤ ε) after collecting O

(
1
ε2

)
samples.

In MDP-EXP2, we use EXP2 to construct ŵk , and argue that
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Connection with Natural Policy Gradient
It is a folklore (Agarwal et al.’20, Bhandari&Russo’19) that the Exponential Weight
algorithm has deep connection with Natural Policy Gradient (Kakade’02) over
softmax policies, as well as TRPO, PPO (Neu et al’17).

πk (a|s) ∝ exp(Θ>k Φ(s,a))

MDP-EXP2:

Θk+1 ← Θk + η
(

m∑
i=1

E
[
Φ(s(i),a)Φ(s(i),a)>

])−1( m∑
i=1

Φ(s(i),a(i))R(i)

)
NPG:

Θk+1 ← Θk + η
(
E
[(
∇Θ logπk (a|s)

)(
∇Θ logπk (a|s)

)>])
︸ ︷︷ ︸

Fisher information matrix

−1
(

m∑
i=1

∇Θ logπk (a(i)|s(i))R(i)

)
︸ ︷︷ ︸

REINFORCE gradient estimator
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Open Problems
1 Is the same regret bound achievable if the learner does not know tmix and σ?
2 How to relax those explorability assumptions? (adding bonus?)

Open Problems from Part I:
1 An O(

√
T ) computationally tractable algorithm for linear MDPs.

2 Sample complexity bound for online RL + linear MDPs + infinite-horizon
discounted setting.
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Summary of the Results

Algorithm Regret
Assumptions

Explorability Structure

Politex (Abbasi-Yadkori et al.’19a) O(T
3
4 )

UM + UEF

Linear qπ ∀πAAPI (Hao et al.’20) O(T
2
3 )

EE-Politex (Abbasi-Yadkori et al.’19b) O(T
4
5 ) UM + πe

MDP-EXP2 O(
√

T ) UM + UEF

FOPO O(
√

T )
BOE Linear MDP

Optimistic-LSVI O(T
3
4 )

UM: Uniformly Mixing UEF: Uniformly Excited Features BOE: Bellman Optimality Eqn.

Contributions
Improving Politex/AAPI’s regret bound under the same setting
First attempt to relax the UM and UEF assumptions
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