Learning Infinite-horizon Average-reward MDPs with Linear Function Approximation

Chen-Yu Wei, Mehdi Jafarnia-Jahromi, Haipeng Luo, Rahul Jain University of Southern California

We study online RL in infinite-horizon average-reward MDPs with linear function approximation.

- We study online RL in infinite-horizon average-reward MDPs with linear function approximation.
- Existing algorithms and regret bounds:
 - **Politex** (Abbasi-Yadkori et al.'19a): $T^{3/4}$
 - **EE-Politex** (Abbasi-Yadkori et al.'19b): $T^{4/5}$
 - **AAPI** (Hao et al.'20): *T*^{2/3}

- We study online RL in infinite-horizon average-reward MDPs with linear function approximation.
- Existing algorithms and regret bounds:
 - **Politex** (Abbasi-Yadkori et al.'19a): $T^{3/4}$
 - **EE-Politex** (Abbasi-Yadkori et al.'19b): $T^{4/5}$
 - **AAPI** (Hao et al.'20): *T*^{2/3}
 - Lower bound: \sqrt{T}

- We study online RL in infinite-horizon average-reward MDPs with linear function approximation.
- Existing algorithms and regret bounds:
 - **Politex** (Abbasi-Yadkori et al.'19a): $T^{3/4}$
 - **EE-Politex** (Abbasi-Yadkori et al.'19b): $T^{4/5}$
 - **AAPI** (Hao et al.'20): *T*^{2/3}
 - Lower bound: \sqrt{T}

 Existing algorithms make strong uniformly mixing (UM) and uniformly excited feature (UEF) assumptions

- We study online RL in infinite-horizon average-reward MDPs with linear function approximation.
- Existing algorithms and regret bounds:
 - **Politex** (Abbasi-Yadkori et al.'19a): $T^{3/4}$
 - **EE-Politex** (Abbasi-Yadkori et al.'19b): $T^{4/5}$
 - **AAPI** (Hao et al.'20): *T*^{2/3}
 - Lower bound: \sqrt{T}
- Existing algorithms make strong uniformly mixing (UM) and uniformly excited feature (UEF) assumptions

Two contributions:

- \sqrt{T} regret bound under the same assumptions as Politex/AAPI
- First attempt to relax the UM and UEF assumptions

Recently there is significant progress in online RL with function approximation: LSVI-UCB (Jin et al.'20), ELEANOR (Zanette et al.'20), *F*-LSVI (Wang et al.'20)...

Recently there is significant progress in online RL with function approximation: LSVI-UCB (Jin et al.'20), ELEANOR (Zanette et al.'20), *F*-LSVI (Wang et al.'20)...

However, most of them study the **finite-horizon (episodic)** setting, and we lack comparable results for **infinite-horizon discounted** / **average-reward** settings.

Recently there is significant progress in online RL with function approximation: LSVI-UCB (Jin et al.'20), ELEANOR (Zanette et al.'20), *F*-LSVI (Wang et al.'20)...

However, most of them study the **finite-horizon (episodic)** setting, and we lack comparable results for **infinite-horizon discounted** / **average-reward** settings.

Infinite-horizon formulation is particularly relevant when the task is *continual* or *non-stopping*:

Recently there is significant progress in online RL with function approximation: LSVI-UCB (Jin et al.'20), ELEANOR (Zanette et al.'20), *F*-LSVI (Wang et al.'20)...

However, most of them study the **finite-horizon (episodic)** setting, and we lack comparable results for **infinite-horizon discounted** / **average-reward** settings.

Infinite-horizon formulation is particularly relevant when the task is *continual* or *non-stopping*:

traffic control

Chen-Yu Wei, Mehdi Jafarnia-Jahromi, Haipeng Luo, Rahul Jain

Recently there is significant progress in online RL with function approximation: LSVI-UCB (Jin et al.'20), ELEANOR (Zanette et al.'20), *F*-LSVI (Wang et al.'20)...

However, most of them study the **finite-horizon (episodic)** setting, and we lack comparable results for **infinite-horizon discounted** / **average-reward** settings.

Infinite-horizon formulation is particularly relevant when the task is *continual* or *non-stopping*:

traffic control datacenter optimization

Chen-Yu Wei, Mehdi Jafarnia-Jahromi, Haipeng Luo, Rahul Jain

Recently there is significant progress in online RL with function approximation: LSVI-UCB (Jin et al.'20), ELEANOR (Zanette et al.'20), *F*-LSVI (Wang et al.'20)...

However, most of them study the **finite-horizon (episodic)** setting, and we lack comparable results for **infinite-horizon discounted** / **average-reward** settings.

Infinite-horizon formulation is particularly relevant when the task is *continual* or *non-stopping*:

Recently there is significant progress in online RL with function approximation: LSVI-UCB (Jin et al.'20), ELEANOR (Zanette et al.'20), *F*-LSVI (Wang et al.'20)...

However, most of them study the **finite-horizon (episodic)** setting, and we lack comparable results for **infinite-horizon discounted** / **average-reward** settings.

Infinite-horizon formulation is particularly relevant when the task is *continual* or *non-stopping*:

Problem Setting

Markov Decision Processes

We assume that \mathcal{A} is finite, but \mathcal{S} can be infinite.

Average-reward Setting and Regret

$$J^{\pi}(s) \triangleq \liminf_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\sum_{t=1}^{n} r(s_t, a_t) \mid a_t \sim \pi(\cdot \mid s_t, s_\tau, a_\tau, \tau < t), \quad s_1 = s \right]$$
$$J^*(s) \triangleq \sup_{\pi} J^{\pi}(s)$$

Average-reward Setting and Regret

$$J^{\pi}(s) \triangleq \liminf_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\sum_{t=1}^{n} r(s_t, a_t) \mid a_t \sim \pi(\cdot \mid s_t, s_\tau, a_\tau, \tau < t), \quad s_1 = s \right]$$
$$J^*(s) \triangleq \sup_{\pi} J^{\pi}(s)$$

Goal: behave as good as $J^*(s_1)$ without knowing p, r

Average-reward Setting and Regret

$$J^{\pi}(s) \triangleq \liminf_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\sum_{t=1}^{n} r(s_t, a_t) \mid a_t \sim \pi(\cdot \mid s_t, s_\tau, a_\tau, \tau < t), \quad s_1 = s \right]$$
$$J^*(s) \triangleq \sup_{\pi} J^{\pi}(s)$$

Goal: behave as good as $J^*(s_1)$ without knowing p, r

Two facts that make the learning problem (too) difficult for online RL:

- The optimal policy can be history-dependent (when $|S| = \infty$)
- $J^*(s)$ depends on s

The Bellman Optimality Equation holds:

$$q^*(s,a) = r(s,a) - J^* + \mathbb{E}_{s' \sim
ho(\cdot \mid s,a)} \left[oldsymbol{v}^*(s')
ight], \qquad oldsymbol{v}^*(s) = \max_a q^*(s,a)$$

with some uniformly bounded $v^*(\cdot)$, $q^*(\cdot, \cdot)$, and J^* . q^* and v^* are called *(optimal) bias functions*.

The Bellman Optimality Equation holds:

$$q^*(s,a) = r(s,a) - J^* + \mathbb{E}_{s' \sim
ho(\cdot \mid s,a)} \left[v^*(s')
ight], \qquad v^*(s) = \max_a q^*(s,a)$$

with some uniformly bounded $v^*(\cdot)$, $q^*(\cdot, \cdot)$, and J^* . q^* and v^* are called *(optimal) bias functions*.

The assumption implies $J^*(s) = J^*$ and a stationary optimal policy $\pi^* : S \to A$. E.g., weakly communicating MDP (tabular case)

The Bellman Optimality Equation holds:

$$q^*(s,a) = r(s,a) - J^* + \mathbb{E}_{s' \sim
ho(\cdot \mid s,a)} \left[oldsymbol{v}^*(s')
ight], \qquad oldsymbol{v}^*(s) = \max_a q^*(s,a)$$

with some uniformly bounded $v^*(\cdot)$, $q^*(\cdot, \cdot)$, and J^* . q^* and v^* are called *(optimal) bias functions*.

The assumption implies $J^*(s) = J^*$ and a stationary optimal policy $\pi^* : S \to A$. E.g., weakly communicating MDP (tabular case)

$$\mathsf{Reg}_{\mathcal{T}} \triangleq \mathcal{T} J^* - \sum_{t=1}^{\mathcal{T}} r(s_t, a_t)$$

The Bellman Optimality Equation holds:

$$q^*(s,a) = r(s,a) - J^* + \mathbb{E}_{s' \sim
ho(\cdot \mid s,a)} \left[v^*(s')
ight], \qquad v^*(s) = \max_a q^*(s,a)$$

with some uniformly bounded $v^*(\cdot)$, $q^*(\cdot, \cdot)$, and J^* . q^* and v^* are called *(optimal) bias functions*.

The assumption implies $J^*(s) = J^*$ and a stationary optimal policy $\pi^* : S \to A$. E.g., weakly communicating MDP (tabular case)

$$\operatorname{\mathsf{Reg}}_{T} \triangleq TJ^* - \sum_{t=1}^{T} r(s_t, a_t)$$

In the **tabular case**: $\Theta\left(\sqrt{\operatorname{sp}(v^*)SAT}\right)$, where $\operatorname{sp}(v^*) \triangleq \operatorname{sup}_{s,s'} |v^*(s) - v^*(s')|$ (Zhang&Ji'19, Jaksch et al.'10)

Chen-Yu Wei, Mehdi Jafarnia-Jahromi, Haipeng Luo, Rahul Jain

When the state or action space is very large, learning them independently could be inefficient.

Linear Function Approximation Schemes:

When the state or action space is very large, learning them independently could be inefficient.

Linear Function Approximation Schemes: given $\Phi(s, a) \in \mathbb{R}^d \quad \forall s, a$

Examples

When the state or action space is very large, learning them independently could be inefficient.

Linear Function Approximation Schemes: given $\Phi(s, a) \in \mathbb{R}^d \quad \forall s, a$

Examples 1 $q^*(s, a) = \Phi(s, a)^\top w^*$ (Linear q^*)

When the state or action space is very large, learning them independently could be inefficient.

Linear Function Approximation Schemes: given $\Phi(s, a) \in \mathbb{R}^d \quad \forall s, a$

 Examples
 (Linear q^*)

 1
 $q^*(s, a) = \Phi(s, a)^\top w^*$ (Linear q^*)

 2
 $q^{\pi}(s, a) = \Phi(s, a)^\top w^{\pi} \ \forall \pi$ (Linear $q^{\pi} \ \forall \pi$)

When the state or action space is very large, learning them independently could be inefficient.

Linear Function Approximation Schemes: given $\Phi(s, a) \in \mathbb{R}^d \quad \forall s, a$

Examples		
1 $q^*(s,a) = \Phi(s,a)^ op w^*$		(Linear q^*)
2 $q^{\pi}(s,a) = \Phi(s,a)^{ op} w^{\pi} \ orall \pi$		(Linear q^{π} $orall\pi$)
3 $p(s' s,a) = \Phi(s,a)^{ op} \Psi(s'),$	$r(s,a) = \Phi(s,a)^{ op} \Theta$	(Linear MDP)

When the state or action space is very large, learning them independently could be inefficient.

Linear Function Approximation Schemes: given $\Phi(s, a) \in \mathbb{R}^d \quad \forall s, a$

Examples

1	$q^*(s,a) = \Phi(s,a)^ op w^*$		(Linear q^*)
2	$q^{\pi}(s,a) = \Phi(s,a)^{ op} w^{\pi} \ orall \pi$		(Linear q^{π} $orall\pi$)
3	$p(s' s,a) = \Phi(s,a)^ op \Psi(s'),$	$r(m{s},m{a})=\Phi(m{s},m{a})^ op \Theta$	(Linear MDP)

(Linear MDP) \subset (Linear $q^{\pi} \forall \pi$) \subset (Linear q^*)

Other Assumptions Made in Previous Works

(Uniformly Mixing) [Politex, EE-Politex, AAPI] For any policy π, any state distributions ν,

$$\|\mathbb{P}^{\pi}
u - \mu^{\pi}\|_{\mathsf{TV}} \leq e^{-1/t_{\mathsf{mix}}} \|
u - \mu^{\pi}\|_{\mathsf{TV}}$$

where μ^{π} is the unique *stationary state distirbution* under π .

Other Assumptions Made in Previous Works

(Uniformly Mixing) [Politex, EE-Politex, AAPI] For any policy π, any state distributions ν,

$$\|\mathbb{P}^{\pi}
u - \mu^{\pi}\|_{\mathsf{TV}} \leq e^{-1/t_{\mathsf{mix}}} \|
u - \mu^{\pi}\|_{\mathsf{TV}}$$

where μ^{π} is the unique *stationary state distirbution* under π .

(Uniformly Excited Features) [Politex, AAPI] For any policy *π*,

$$\lambda_{\min}\left(\mathbb{E}_{s \sim \mu^{\pi}, a \sim \pi(\cdot|s)}\left[\Phi(s, a)\Phi(s, a)^{\top}\right]\right) \geq \sigma,$$
 (1)

Other Assumptions Made in Previous Works

(Uniformly Mixing) [Politex, EE-Politex, AAPI] For any policy π, any state distributions ν,

$$\|\mathbb{P}^{\pi}
u - \mu^{\pi}\|_{\mathsf{TV}} \leq e^{-1/t_{\mathsf{mix}}} \|
u - \mu^{\pi}\|_{\mathsf{TV}}$$

where μ^{π} is the unique stationary state distirbution under π .

(Uniformly Excited Features) [Politex, AAPI] For any policy *π*,

$$\lambda_{\min}\left(\mathbb{E}_{s \sim \mu^{\pi}, a \sim \pi(\cdot|s)}\left[\Phi(s, a)\Phi(s, a)^{\top}\right]\right) \geq \sigma,$$
 (1)

[EE-Politex] assumes that (1) holds for some known policy π_e

Algorithm	Assu		nptions
	negrei	Explorability	Structure
Politex (Abbasi-Yadkori et al.)	$O(T^{\frac{3}{4}})$	$-$ UM + UEF Linear q^{τ}	
AAPI (Hao et al.)	$O(T^{\frac{2}{3}})$		Linear $a^{\pi} \forall \pi$

Algorithm	Regret	Assumptions	
	negret	Explorability	Structure
Politex (Abbasi-Yadkori et al.)	$O(T^{\frac{3}{4}})$	UM + UEF	Linear q^{π} $orall \pi$
AAPI (Hao et al.)	$O(T^{\frac{2}{3}})$		
EE-Politex (Abbasi-Yadkori et al.)	$O(T^{\frac{4}{5}})$	UM + π_e	

Algorithm	Regret	Assumptions	
	negret	Explorability	Structure
Politex (Abbasi-Yadkori et al.)	$O(T^{\frac{3}{4}})$	UM + UEF	
AAPI (Hao et al.)	$O(T^{\frac{2}{3}})$		
EE-Politex (Abbasi-Yadkori et al.)	$O(T^{\frac{4}{5}})$	$UM + \pi_e$	
MDP-EXP2 (Part II)	$O(\sqrt{T})$	UM + UEF	

Algorithm	Regret	Assur	nptions
	negret	Explorability	Structure
Politex (Abbasi-Yadkori et al.)	$O(T^{\frac{3}{4}})$	- UM + UEF UM + π_e Linear q^{π}	
AAPI (Hao et al.)	$O(T^{\frac{2}{3}})$		
EE-Politex (Abbasi-Yadkori et al.)	$O(T^{\frac{4}{5}})$		
MDP-EXP2 (Part II)	$O(\sqrt{T})$	UM + UEF	
FOPO (Part I)	$O(\sqrt{T})$	BOE	Linear MDP
		DOL	

Algorithm	Regret	Assumptions		
	negret	Explorability	Structure	
Politex (Abbasi-Yadkori et al.)	$O(T^{\frac{3}{4}})$	UM + UEF	Lipoor o ^π ∀π	
AAPI (Hao et al.)	$O(T^{\frac{2}{3}})$			
EE-Politex (Abbasi-Yadkori et al.)	$O(T^{\frac{4}{5}})$	UM + π_e		
MDP-EXP2 (Part II)	$O(\sqrt{T})$	UM + UEF		
FOPO (Part I)	$O(\sqrt{T})$	BOE		
Optimistic-LSVI (Part I)	$O(T^{\frac{3}{4}})$			
Comparison with Previous Works

Algorithm	Regret	Assumptions	
		Explorability	Structure
Politex (Abbasi-Yadkori et al.)	$O(T^{\frac{3}{4}})$	UM + UEF	Linear q^{π} $orall \pi$
AAPI (Hao et al.)	$O(T^{\frac{2}{3}})$		
EE-Politex (Abbasi-Yadkori et al.)	$O(T^{\frac{4}{5}})$	$UM + \pi_e$	
MDP-EXP2 (Part II)	$O(\sqrt{T})$	UM + UEF	
FOPO (Part I)	$O(\sqrt{T})$	BOE	Linear MDP
Optimistic-LSVI (Part I)	$O(T^{\frac{3}{4}})$		

UM: Uniformly Mixing UEF: Uniformly Excited Features BOE: Bellman Optimality Eqn.

Relations between the Assumptions:

■ (UM + UEF)
$$\subset$$
 (UM + π_e) \subset BOE

(Linear MDP)
$$\subset$$
 (Linear $q^{\pi} \forall \pi$)

Comparison with Previous Works

Algorithm	Regret	Assumptions	
		Explorability	Structure
Politex (Abbasi-Yadkori et al.)	$O(T^{\frac{3}{4}})$	UM + UEF	Linear q^{π} $orall \pi$
AAPI (Hao et al.)	$O(T^{\frac{2}{3}})$		
EE-Politex (Abbasi-Yadkori et al.)	$O(T^{\frac{4}{5}})$	$UM + \pi_e$	
MDP-EXP2 (Part II)	$O(\sqrt{T})$	UM + UEF	
FOPO (Part I)	$O(\sqrt{T})$	BOE	Linear MDP
Optimistic-LSVI (Part I)	$O(T^{\frac{3}{4}})$		

UM: Uniformly Mixing UEF: Uniformly Excited Features BOE: Bellman Optimality Eqn.

Contributions

- Improving Politex/AAPI's regret bound under the same setting (Part II)
- First attempt to relax the UM and UEF assumptions (Part I)

Chen-Yu Wei, Mehdi Jafarnia-Jahromi, Haipeng Luo, Rahul Jain

Part I: Linear MDP

1 $p(s'|s,a) = \Phi(s,a)^\top \Psi(s'), \quad r(s,a) = \Phi(s,a)^\top \Theta$

2 Bellman optimality equation (BOE) holds:

$$q^*(s, a) = r(s, a) - J^* + \mathbb{E}_{s' \sim p(\cdot|s, a)} [v^*(s')], \quad v^*(s) = \max_a q^*(s, a)$$

 $\Phi(s, a)_1 = 1$ (W.L.O.G.)

The assumptions imply $q^*(s,a) = \Phi(s,a)^ op w^*$

3

FOPO is based on the "optimism under the face of uncertainty" principle:

FOPO is based on the "optimism under the face of uncertainty" principle:

 $\Lambda_t \triangleq I + \sum_{\tau=1}^{t-1} \Phi(s_{\tau}, a_{\tau}) \Phi(s_{\tau}, a_{\tau})^{\top}$

Every time when $det(\Lambda_t)$ doubles, solve max J w. J.b s.t. $\mathbf{w}_t = \Lambda_t^{-1} \sum_{\tau}^{t-\tau} \Phi(\mathbf{s}_{\tau}, \mathbf{a}_{\tau}) \left(r(\mathbf{s}_{\tau}, \mathbf{a}_{\tau}) - J + \max_a \Phi(\mathbf{s}_{\tau+1}, \mathbf{a})^\top \mathbf{w}_t \right) + b$ $\tau = 1$ $\|\boldsymbol{w}_t\| < \operatorname{sp}(\boldsymbol{v}^*)\sqrt{d}, \quad \|\boldsymbol{b}\|_{\Lambda_t} < \boldsymbol{\beta} = \Theta(\operatorname{sp}(\boldsymbol{v}^*)d\log T)$ Else: $w_t \leftarrow w_{t-1}$ Choose $a_t = \operatorname{argmax}_a \Phi(s_t, a)^\top W_t$

FOPO is based on the **global optimism** idea (Zanette et al'20, Neu&Pike-Burke'20).

FOPO is based on the **global optimism** idea (Zanette et al'20, Neu&Pike-Burke'20).

Theorem

FOPO achieves
$$\operatorname{Reg}_{T} = \widetilde{O}\left(\operatorname{sp}(v^{*})\sqrt{d^{3}T}\right)$$
.

FOPO is based on the **global optimism** idea (Zanette et al'20, Neu&Pike-Burke'20).

Theorem

FOPO achieves
$$\operatorname{Reg}_{T} = \widetilde{O}\left(\operatorname{sp}(v^{*})\sqrt{d^{3}T}\right).$$

Issues of FOPO: not computationally tractable.

FOPO is based on the **global optimism** idea (Zanette et al'20, Neu&Pike-Burke'20).

Theorem

FOPO achieves
$$\operatorname{\mathsf{Reg}}_{\mathcal{T}} = \widetilde{O}\left(\operatorname{\mathsf{sp}}(v^*)\sqrt{d^3\mathcal{T}}
ight).$$

Issues of FOPO: not computationally tractable.

Remark. Achieving $O(\operatorname{sp}(v^*)\sqrt{T})$ with a **computationally efficient** algorithm is already highly non-trivial in the tabular case: REGAL (Bartlett&Tewari'09), SCAL (Fruit et al'18), SCAL+ (Qian et al.'18)

Attempt 1.

1 Avoid solving a fixed-point problem of w_t .

Attempt 1.

- 1 Avoid solving a fixed-point problem of w_t .
- 2 Use local exploration bonus instead of global optimism (Neu&Pike-Burke'20).

Attempt 1.

- 1 Avoid solving a fixed-point problem of w_t .
- 2 Use local exploration bonus instead of global optimism (Neu&Pike-Burke'20).
- **3** Reduce the average-reward problem to a discounted problem (Wei et al.'20).

Attempt 1.

- 1 Avoid solving a fixed-point problem of w_t .
- 2 Use local exploration bonus instead of global optimism (Neu&Pike-Burke'20).
- **3** Reduce the average-reward problem to a discounted problem (Wei et al.'20).

Counterpart of LSVI-UCB (Jin et al'20) for the discounted setting:

$$w_t = \Lambda_t^{-1} \sum_{\tau=1}^{t-1} \Phi(s_{\tau}, a_{\tau}) \left(r(s_{\tau}, a_{\tau}) + \gamma V_{t-1}(s_{\tau+1}) \right)$$
$$V_{t-1}(\cdot) = \max_a \left(\Phi(\cdot, a)^\top w_{t-1} + \operatorname{bonus}(\cdot, a) \right)$$

Attempt 1.

- 1 Avoid solving a fixed-point problem of w_t .
- 2 Use local exploration bonus instead of global optimism (Neu&Pike-Burke'20).
- **3** Reduce the average-reward problem to a discounted problem (Wei et al.'20).

Counterpart of LSVI-UCB (Jin et al'20) for the discounted setting:

$$w_t = \Lambda_t^{-1} \sum_{\tau=1}^{t-1} \Phi(s_{\tau}, a_{\tau}) \left(r(s_{\tau}, a_{\tau}) + \gamma V_{t-1}(s_{\tau+1}) \right),$$
$$V_{t-1}(\cdot) = \max_a \left(\Phi(\cdot, a)^\top w_{t-1} + \operatorname{bonus}(\cdot, a) \right)$$

Unfortunately, we are unable to show sub-linear regret for this algorithm.

Making FOPO Efficient: Optimistic LSVI

Idea. Reduction to the episodic setting (Jin et al.'20)

Making FOPO Efficient: Optimistic LSVI

Idea. Reduction to the episodic setting (Jin et al.'20)

Theorem

By reduction to the episodic setting, we get $\tilde{O}\left(\sqrt{\operatorname{sp}(\nu^*)}(dT)^{\frac{3}{4}}\right)$ regret efficiently.

Summary for Part I (Linear MDPs)

1 A computationally **intractable** algorithm with $O\left(\operatorname{sp}(v^*)\sqrt{d^3T}\right)$ regret.

2 A computationally **efficient** algorithm with $O\left(\sqrt{\operatorname{sp}(v^*)}(dT)^{\frac{3}{4}}\right)$ regret (by reducing the problem to the episodic setting)

Summary for Part I (Linear MDPs)

- **1** A computationally **intractable** algorithm with $O\left(\operatorname{sp}(v^*)\sqrt{d^3T}\right)$ regret.
- 2 A computationally **efficient** algorithm with $O\left(\sqrt{\operatorname{sp}(v^*)}(dT)^{\frac{3}{4}}\right)$ regret (by reducing the problem to the episodic setting)

Open Problems

- **1** An $O(\sqrt{T})$ computationally tractable algorithm for linear MDPs.
- 2 Sample complexity bound for online RL + linear MDPs + infinite-horizon discounted setting.

Part II: MDP-EXP2

1 Uniformly Mixing: for any policy π , any state distribution ν ,

$$\|\mathbb{P}^{\pi}
u - \mu^{\pi}\|_{\mathsf{TV}} \leq e^{-1/t_{\mathsf{mix}}} \|
u - \mu^{\pi}\|_{\mathsf{TV}}$$

2 Uniformly Excited Features: for any π

$$\lambda_{\mathsf{min}}\left(\mathbb{E}_{s\sim\mu^{\pi},a\sim\pi(\cdot|s)}\left[\Phi(s,a)\Phi(s,a)^{ op}
ight]
ight)\geq\sigma^{-1}$$

1 Uniformly Mixing: for any policy π , any state distribution ν ,

$$\|\mathbb{P}^{\pi} \nu - \mu^{\pi}\|_{\mathsf{TV}} \leq e^{-1/t_{\mathsf{mix}}} \|
u - \mu^{\pi}\|_{\mathsf{TV}}$$

2 Uniformly Excited Features: for any π

$$\lambda_{\mathsf{min}}\left(\mathbb{E}_{\boldsymbol{s}\sim\mu^{\pi}, \boldsymbol{a}\sim\pi(\cdot|\boldsymbol{s})}\left[\Phi(\boldsymbol{s}, \boldsymbol{a})\Phi(\boldsymbol{s}, \boldsymbol{a})^{ op}
ight]
ight)\geq\sigma$$

Uniformly Mixing implies
$$J^{\pi}(s) = J^{\pi}$$
 and

$$q^{\pi}(s,a) = r(s,a) - J^{\pi} + \mathbb{E}_{s' \sim \mathcal{P}(\cdot|s,a)} \left[v^{\pi}(s')
ight]$$

1 Uniformly Mixing: for any policy π , any state distribution ν ,

$$\|\mathbb{P}^{\pi}
u - \mu^{\pi}\|_{\mathsf{TV}} \leq e^{-1/t_{\mathsf{mix}}} \|
u - \mu^{\pi}\|_{\mathsf{TV}}$$

2 Uniformly Excited Features: for any π

$$\lambda_{\mathsf{min}}\left(\mathbb{E}_{\boldsymbol{s}\sim\mu^{\pi}, \boldsymbol{a}\sim\pi(\cdot|\boldsymbol{s})}\left[\Phi(\boldsymbol{s}, \boldsymbol{a})\Phi(\boldsymbol{s}, \boldsymbol{a})^{ op}
ight]
ight)\geq\sigma$$

Uniformly Mixing implies $J^{\pi}(s) = J^{\pi}$ and

$$q^{\pi}(s,a) = r(s,a) - J^{\pi} + \mathbb{E}_{s' \sim
ho(\cdot \mid s,a)} \left[v^{\pi}(s')
ight]$$

3 Linear q^{π} : for any π , there exists $w^{\pi} \in \mathbb{R}^d$,

$$q^{\pi}(s,a) = \Phi(s,a)^{\top} w^{\pi}$$

1 Uniformly Mixing: for any policy π , any state distribution ν ,

$$\|\mathbb{P}^{\pi}
u - \mu^{\pi}\|_{\mathsf{TV}} \leq e^{-1/t_{\mathsf{mix}}} \|
u - \mu^{\pi}\|_{\mathsf{TV}}$$

2 Uniformly Excited Features: for any π

$$\lambda_{\mathsf{min}}\left(\mathbb{E}_{\boldsymbol{s}\sim\mu^{\pi}, \boldsymbol{a}\sim\pi(\cdot|\boldsymbol{s})}\left[\Phi(\boldsymbol{s}, \boldsymbol{a})\Phi(\boldsymbol{s}, \boldsymbol{a})^{ op}
ight]
ight)\geq\sigma$$

Uniformly Mixing implies $J^{\pi}(s) = J^{\pi}$ and

$$q^{\pi}(s,a) = r(s,a) - J^{\pi} + \mathbb{E}_{s' \sim \mathcal{P}(\cdot \mid s,a)} \left[v^{\pi}(s')
ight]$$

3 Linear q^{π} : for any π , there exists $w^{\pi} \in \mathbb{R}^d$,

$$q^{\pi}(s,a) = \Phi(s,a)^{ op} w^{\pi}$$

4 $\Phi_1(s, a) = 1$ (W.L.O.G.)

Chen-Yu Wei, Mehdi Jafarnia-Jahromi, Haipeng Luo, Rahul Jain

(Dani et al'08, Bubeck et al'12)

(linear bandit \approx single state MDP)

(Dani et al'08, Bubeck et al'12)

(linear bandit \approx single state MDP) Given action set A, and feature mappings $\{\Phi(a)\}_{a \in A} \subset \mathbb{R}^d$

 $\pi_1 = \frac{1}{|A|}$ For t = 1, ..., T:

Sample $a_t \sim \pi_t \in \Delta_A$, and observe reward $\Phi(a_t)^\top w_t$ (w_t can be adversarially chosen)

(Dani et al'08, Bubeck et al'12)

(linear bandit \approx single state MDP) Given action set A, and feature mappings $\{\Phi(a)\}_{a \in A} \subset \mathbb{R}^d$

 $\pi_1 = \frac{1}{|A|}$ For t = 1, ..., T:

- Sample $a_t \sim \pi_t \in \Delta_A$, and observe reward $\Phi(a_t)^\top w_t$ (w_t can be adversarially chosen)
- **Construct** \widehat{w}_t with $\mathbb{E}[\widehat{w}_t] = w_t$ (unbiased estimator)

(Dani et al'08, Bubeck et al'12)

(linear bandit \approx single state MDP) Given action set A, and feature mappings $\{\Phi(a)\}_{a \in A} \subset \mathbb{R}^d$

 $\pi_1 = \frac{1}{|A|}$ For t = 1, ..., T:

- Sample $a_t \sim \pi_t \in \Delta_A$, and observe reward $\Phi(a_t)^\top w_t$ (w_t can be adversarially chosen)
- **Construct** \widehat{w}_t with $\mathbb{E}[\widehat{w}_t] = w_t$ (unbiased estimator)
- Update action distribution with exponential weight:

$${\pi}_{t+1}({a}) \propto {\pi}_t({a}) \exp\left(\eta \Phi({a})^{ op} \widehat{{oldsymbol w}}_t
ight)$$

(Dani et al'08, Bubeck et al'12)

(linear bandit \approx single state MDP) Given action set A, and feature mappings $\{\Phi(a)\}_{a \in A} \subset \mathbb{R}^d$

 $\pi_1 = \frac{1}{|A|}$ For t = 1, ..., T:

- Sample $a_t \sim \pi_t \in \Delta_A$, and observe reward $\Phi(a_t)^\top w_t$ (w_t can be adversarially chosen)
- **Construct** \widehat{w}_t with $\mathbb{E}[\widehat{w}_t] = w_t$ (unbiased estimator)
- Update action distribution with exponential weight:

$$\pi_{t+1}(a) \propto \pi_t(a) \exp\left(\eta \Phi(a)^\top \widehat{w}_t\right)$$

Regret
$$\triangleq \sum_{t} \sum_{a} (\pi^*(a) - \pi_t(a)) \Phi(a)^\top w_t$$

Based on the "performance difference lemma",

$$\textbf{Regret} = \sum_k \sum_{s,a} \mu^{\pi^*}(s) \left(\pi^*(a|s) - \pi_k(a|s)\right) q^{\pi_k}(s,a)$$

Based on the "performance difference lemma",

$$\begin{array}{l} \textbf{Regret} = \sum_{k} \sum_{s,a} \mu^{\pi^*}(s) \left(\pi^*(a|s) - \pi_k(a|s)\right) q^{\pi_k}(s,a) \\ = \sum_{s} \mu^{\pi^*}(s) \underbrace{\left(\sum_{k} \sum_{a} \left(\pi^*(a|s) - \pi_k(a|s)\right) \Phi(s,a)^\top w^{\pi_k}\right)}_{\text{Product}} \end{array}$$

the regret of the linear bandit problem on state s

Based on the "performance difference lemma",

$$\begin{array}{l} \textbf{Regret} = \sum_{k} \sum_{s,a} \mu^{\pi^*}(s) \left(\pi^*(a|s) - \pi_k(a|s)\right) q^{\pi_k}(s,a) \\ = \sum_{s} \mu^{\pi^*}(s) \underbrace{\left(\sum_{k} \sum_{a} \left(\pi^*(a|s) - \pi_k(a|s)\right) \Phi(s,a)^\top w^{\pi_k}\right)}_{\text{Product}} \end{array}$$

the regret of the linear bandit problem on state s

Unlike in LB, the learner does not observe $\Phi(s_t, a_t)^\top w^{\pi_k}$

Based on the "performance difference lemma",

$$\begin{aligned} \text{Regret} &= \sum_{k} \sum_{s,a} \mu^{\pi^{*}}(s) \left(\pi^{*}(a|s) - \pi_{k}(a|s) \right) q^{\pi_{k}}(s,a) \\ &= \sum_{s} \mu^{\pi^{*}}(s) \underbrace{\left(\sum_{k} \sum_{a} \left(\pi^{*}(a|s) - \pi_{k}(a|s) \right) \Phi(s,a)^{\top} w^{\pi_{k}} \right)}_{\text{Product}} \end{aligned}$$

the regret of the linear bandit problem on state s

Unlike in LB, the learner does not observe $\Phi(s_t, a_t)^\top w^{\pi_k}$

$$=\sum_{s}\mu^{\pi^*}(s)\left(\sum_{k}\sum_{a}\left(\pi^*(a|s)-\pi_k(a|s)\right)\left(\Phi(s,a)^{\top}w^{\pi_k}+c\right)\right)$$

It suffices to construct a \widehat{w}_k with $\mathbb{E}\left[\Phi(s, a)^\top \widehat{w}_k\right] = \Phi(s, a)^\top w^{\pi_k} + c$

Constructing (Nearly) Unbiased Estimators

Q: for a fixed π , how to construct \widehat{w} with $\mathbb{E}\left[\Phi(s, a)^{\top}\widehat{w}\right] = \Phi(s, a)^{\top}w^{\pi} + c$?

Constructing (Nearly) Unbiased Estimators

Q: for a fixed π , how to construct \widehat{w} with $\mathbb{E}\left[\Phi(s, a)^{\top}\widehat{w}\right] = \Phi(s, a)^{\top}w^{\pi} + c$?

Q: for a fixed π , how to construct \widehat{w} with $\mathbb{E}\left[\Phi(s, a)^{\top}\widehat{w}\right] = \Phi(s, a)^{\top}w^{\pi} + c$?

1 Execute π for 2*mN* steps, where $m = \Theta\left(\frac{1}{\sigma}\right)$ and $N = \Theta(t_{mix})$

Q: for a fixed π , how to construct \widehat{w} with $\mathbb{E}\left[\Phi(s, a)^{\top}\widehat{w}\right] = \Phi(s, a)^{\top}w^{\pi} + c$?

1 Execute π for 2*mN* steps, where $m = \Theta\left(\frac{1}{\sigma}\right)$ and $N = \Theta(t_{mix})$ 2 Collect *m* trajectories each of length *N*

Q: for a fixed π , how to construct \widehat{w} with $\mathbb{E}\left[\Phi(s, a)^{\top}\widehat{w}\right] = \Phi(s, a)^{\top}w^{\pi} + c$?

1 Execute π for 2*mN* steps, where $m = \Theta\left(\frac{1}{\sigma}\right)$ and $N = \Theta\left(t_{\text{mix}}\right)$ 2 Collect *m* trajectories each of length *N* 3 $\widehat{w} = \Lambda^{-1}\left(\sum_{i=1}^{m} \Phi(s^{(i)}, a^{(i)})R^{(i)}\right), \quad \Lambda \triangleq \sum_{i=1}^{m} \sum_{a} \pi_{k}(a|s^{(i)})\Phi(s^{(i)}, a)\Phi(s^{(i)}, a)^{\top}$

Q: for a fixed π , how to construct \widehat{w} with $\mathbb{E}\left[\Phi(s, a)^{\top}\widehat{w}\right] = \Phi(s, a)^{\top}w^{\pi} + c$?

1 Execute π for 2*mN* steps, where $m = \Theta\left(\frac{1}{\sigma}\right)$ and $N = \Theta\left(t_{\text{mix}}\right)$ 2 Collect *m* trajectories each of length *N* 3 $\widehat{w} = \Lambda^{-1}\left(\sum_{i=1}^{m} \Phi(s^{(i)}, a^{(i)})R^{(i)}\right), \quad \Lambda \triangleq \sum_{i=1}^{m} \sum_{a} \pi_{k}(a|s^{(i)})\Phi(s^{(i)}, a)\Phi(s^{(i)}, a)^{\top}$ Nearly unbiased estimator: $\mathbb{E}\left[\Phi(s, a)^{\top}\widehat{w}\right] \approx \Phi(s, a)^{\top}w^{\pi} + NJ^{\pi}$

MDP-EXP2

For epoch $k = 1, \ldots, K$:

1 Execute π_k for $\Theta\left(\frac{t_{\text{mix}}}{\sigma}\right)$ steps and construct \hat{w}_k as described previously 2 Update the policy:

$$\pi_{k+1}(\boldsymbol{a}|\boldsymbol{s}) \propto \pi_k(\boldsymbol{a}|\boldsymbol{s}) \exp\left(\eta \Phi(\boldsymbol{s}, \boldsymbol{a})^{ op} \widehat{\boldsymbol{w}}_k
ight)$$

MDP-EXP2

For epoch $k = 1, \ldots, K$:

1 Execute π_k for $\Theta\left(\frac{t_{\text{mix}}}{\sigma}\right)$ steps and construct \hat{w}_k as described previously 2 Update the policy:

$$\pi_{k+1}(a|s) \propto \pi_k(a|s) \exp\left(\eta \Phi(s,a)^{ op} \widehat{w}_k
ight)$$

Theorem

EXP-MDP2 achieves
$$\mathbb{E}[\operatorname{Reg}_{\mathcal{T}}] = \widetilde{O}\left(\frac{1}{\sigma}\sqrt{t_{\min}^3\mathcal{T}}\right).$$

Comparison with Previous Analysis

Politex and **AAPI** are also based on the exponential weight update algorithm, but only get $O(T^{3/4})$ or $O(T^{2/3})$ regret.

Comparison with Previous Analysis

Politex and **AAPI** are also based on the exponential weight update algorithm, but only get $O(T^{3/4})$ or $O(T^{2/3})$ regret.

Politex and **AAPI** use LSPE to construct \widehat{w}_k , and argue that it is ϵ -accurate (i.e. $\|\widehat{w}_k - w^{\pi_k}\| \le \epsilon$) after collecting $O\left(\frac{1}{\epsilon^2}\right)$ samples.

(*O* hides some constants related to t_{mix} and σ)

Comparison with Previous Analysis

Politex and **AAPI** are also based on the exponential weight update algorithm, but only get $O(T^{3/4})$ or $O(T^{2/3})$ regret.

- **Politex** and **AAPI** use LSPE to construct \widehat{w}_k , and argue that it is ϵ -accurate (i.e. $\|\widehat{w}_k w^{\pi_k}\| \le \epsilon$) after collecting $O\left(\frac{1}{\epsilon^2}\right)$ samples.
- In **MDP-EXP2**, we use EXP2 to construct \hat{w}_k , and argue that it is unbiased with constant variance after collecting O(1) samples.

(*O* hides some constants related to t_{mix} and σ)

It is a folklore (Agarwal et al.'20, Bhandari&Russo'19) that the **Exponential Weight** algorithm has deep connection with **Natural Policy Gradient** (Kakade'02) over softmax policies, as well as TRPO, PPO (Neu et al'17).

It is a folklore (Agarwal et al.'20, Bhandari&Russo'19) that the **Exponential Weight** algorithm has deep connection with **Natural Policy Gradient** (Kakade'02) over softmax policies, as well as TRPO, PPO (Neu et al'17).

 $\pi_k(a|s) \propto \exp(\Theta_k^{ op} \Phi(s,a))$

It is a folklore (Agarwal et al.'20, Bhandari&Russo'19) that the **Exponential Weight** algorithm has deep connection with **Natural Policy Gradient** (Kakade'02) over softmax policies, as well as TRPO, PPO (Neu et al'17).

$$\pi_k(a|s) \propto \exp(\Theta_k^ op \Phi(s,a))$$

MDP-EXP2:

$$\Theta_{k+1} \leftarrow \Theta_k + \eta \left(\sum_{i=1}^m \mathbb{E} \left[\Phi(\boldsymbol{s}^{(i)}, \boldsymbol{a}) \Phi(\boldsymbol{s}^{(i)}, \boldsymbol{a})^\top \right] \right)^{-1} \left(\sum_{i=1}^m \Phi(\boldsymbol{s}^{(i)}, \boldsymbol{a}^{(i)}) \boldsymbol{R}^{(i)} \right)$$

It is a folklore (Agarwal et al.'20, Bhandari&Russo'19) that the **Exponential Weight** algorithm has deep connection with **Natural Policy Gradient** (Kakade'02) over softmax policies, as well as TRPO, PPO (Neu et al'17).

$$\pi_k(a|s) \propto \exp(\Theta_k^ op \Phi(s,a))$$

MDP-EXP2:

$$\Theta_{k+1} \leftarrow \Theta_k + \eta \left(\sum_{i=1}^m \mathbb{E} \left[\Phi(s^{(i)}, a) \Phi(s^{(i)}, a)^\top \right] \right)^{-1} \left(\sum_{i=1}^m \Phi(s^{(i)}, a^{(i)}) R^{(i)} \right)$$

NPG:

$$\Theta_{k+1} \leftarrow \Theta_k + \eta \underbrace{\left(\mathbb{E} \left[\left(\nabla_{\Theta} \log \pi_k(a|s) \right) \left(\nabla_{\Theta} \log \pi_k(a|s) \right)^\top \right] \right)^{-1}}_{\text{Fisher information matrix}} - \underbrace{\left(\sum_{i=1}^m \nabla_{\Theta} \log \pi_k(a^{(i)}|s^{(i)}) R^{(i)} \right)}_{\text{Fisher information matrix}} \right)$$

REINFORCE gradient estimator

Open Problems

- **1** Is the same regret bound achievable if the learner does not know t_{mix} and σ ?
- 2 How to relax those explorability assumptions? (adding bonus?)

Open Problems

- 1 Is the same regret bound achievable if the learner does not know t_{mix} and σ ?
- 2 How to relax those explorability assumptions? (adding bonus?)

Open Problems from Part I:

- **1** An $O(\sqrt{T})$ computationally tractable algorithm for linear MDPs.
- 2 Sample complexity bound for online RL + linear MDPs + infinite-horizon discounted setting.

Summary of the Results

Algorithm	Regret	Assumptions	
		Explorability	Structure
Politex (Abbasi-Yadkori et al.'19a)	$O(T^{\frac{3}{4}})$	UM + UEF	Linear q^{π} $orall \pi$
AAPI (Hao et al.'20)	$O(T^{\frac{2}{3}})$		
EE-Politex (Abbasi-Yadkori et al.'19b)	$O(T^{\frac{4}{5}})$	$UM + \pi_e$	
MDP-EXP2	$O(\sqrt{T})$	UM + UEF	
FOPO	$O(\sqrt{T})$	BOE	Linear MDP
Optimistic-LSVI	$O(T^{\frac{3}{4}})$		

UM: Uniformly Mixing UEF: Uniformly Excited Features BOE: Bellman Optimality Eqn.

Contributions

- Improving Politex/AAPI's regret bound under the same setting
- First attempt to relax the UM and UEF assumptions

Chen-Yu Wei, Mehdi Jafarnia-Jahromi, Haipeng Luo, Rahul Jain

References

- (Yasin Abbasi-Yadkori, Peter Bartlett, Kush Bhatia, Nevena Lazic, Csaba Szepesvari, Gellert Weisz'19a) POLITEX: Regret Bounds for Policy Iteration using Expert Prediction
- (Yasin Abbasi-Yadkori, Nevena Lazic, Csaba Szepesvari, Gellert Weisz'19b)
 Exploration-Enhanced POLITEX
- (Alekh Agarwal, Sham M. Kakade, Jason D. Lee, Gaurav Mahajan'19) On the Theory of Policy Gradient Methods: Optimality, Approximation, and Distribution Shift
- (Peter Bartlett, Ambuj Tewari'09) REGAL: A Regularization based Algorithm for Reinforcement Learning in Weakly Communicating MDPs
- (Jalaj Bhandari, Daniel Russo'19) Global Optimality Guarantees For Policy Gradient Methods
- (Sébastien Bubeck, Nicolò Cesa-Bianchi, Sham M. Kakade'12) Towards minimax policies for online linear optimization with bandit feedback
- (Varsha Dani, Thomas P. Hayes, Sham M. Kakade'08) The Price of Bandit Information for Online Optimization

References

- (Ronan Fruit, Matteo Pirotta, Alessandro Lazaric, Ronald Ortner'18) Efficient Bias-Span-Constrained Exploration-Exploitation in Reinforcement Learning
- (Botao Hao, Nevena Lazic, Yasin Abbasi-Yadkori, Pooria Joulani, Csaba Szepesvari'20) Provably Efficient Adaptive Approximate Policy Iteration
- (Thomas Jaksch, Ronald Ortner, Peter Auer'10) Near-optimal Regret Bounds for Reinforcement Learning
- (Chi Jin, Zhuoran Yang, Zhaoran Wang, Michael I. Jordan'20) Provably Efficient Reinforcement Learning with Linear Function Approximation
- (Sham M. Kakade'02) A Natural Policy Gradient
- (Gergely Neu, Ciara Pike-Burke'20) A Unifying View of Optimism in Episodic Reinforcement Learning
- (Gergely Neu, Anders Jonsson, Vicenç Gómez'17) A Unified View of Entropy-regularized Markov decision processes

References

- (Jian Qian, Ronan Fruit, Matteo Pirotta, Alessandro Lazaric'19) Exploration Bonus for Regret Minimization in Discrete and Continuous Average Markov Decision Processes
- (Ruosong Wang, Simon S. Du, Lin F. Yang, Ruslan Salakhutdinov'20) On Reward-Free Reinforcement Learning with Linear Function Approximation
- (Chen-Yu Wei, Mehdi Jafarnia-Jahromi, Haipeng Luo, Hiteshi Sharma, Rahul Jain'20) Model-free Reinforcement Learning in Infinite-horizon Average-reward Markov Decision Processes
- (Zihan Zhang, Xiangyang Ji'19) Regret Minimization for Reinforcement Learning by Evaluating the Optimal Bias Function