Bandit Multiclass Linear Classification:
Efficient Algorithms for the Separable Case

Alina Beygelzimer (Yahoo)
David Pal (Expedia)

Balazs Szorenyi (Yahoo)
Devanathan Thiruvenkatachari (NYU)
Chen-Yu Wei (USC)
Chicheng Zhang (UArizona)

ICML 2019

Bandit Classification

Fort=1,2,...,T:

1. Adversary chooses (xt, yt), where
x¢ € R9 is the feature vector
vt € [K] is the label

and reveal x; to the learner

2. Learner predicts a label y; € [K].
3. Learner observes feedback 1 [y; # yt].

Goal: minimize the total number of mistakes

-
Z L[ye # yil
t=1

Linearly Separable Data

Consider the ideal case: assume the incoming samples are linearly
separable with a margin ~:

(wl - w27x> =0

DA

Linearly Separable Data

Consider the ideal case: assume the incoming samples are linearly
separable with a margin ~:

Iwi, wa, ..., wk € RY, > |w;||> <1, such that
for all (x,y) in the dataset,

T T
w, X > W, X+, forall y' #y

(w; —wo,z) =0

Class 1 Class 2

Class 3
(w; —ws,z) =0 (wy — w3, x) =0

Mistake Bounds for Linearly Separable Data

Bounds on #mistakes:
1. [Kakade et al'08): O (K2d|n %)

2. [Daniely and Helbertal'13]: o) <7—K2>

3. [Kakade et al'08, Beygelzimer et al'17, Foster et al'18]:

0 (VAT + %)

O(f) 2 O(f - polylog(f))

Mistake Bounds for Linearly Separable Data

Bounds on #mistakes:
1. [Kakade et al'08): O (szln %)

2. [Daniely and Helbertal'13]: o) (7’2)

3. [Kakade et al'08, Beygelzimer et al'17, Foster et al'18]:

O(3VKT + %)
O(f) 2 O(f - polylog(f))

1&2. finite #mistakes, but exponential running time
3. polynomial-time algorithm, but infinite #mistakes

Mistake Bounds for Linearly Separable Data

Bounds on #mistakes:
1. [Kakade et al'08): O (K2d|n %)

2. [Daniely and Helbertal'13]: o) (7’2)

3. [Kakade et al'08, Beygelzimer et al'17, Foster et al'18]:
0 (LVKT + %)

O(f) 2 O(f - polylog(f))

1&2. finite #mistakes, but exponential running time
3. polynomial-time algorithm, but infinite #mistakes

=> is there a polynomial-time algorithm with finite mistake bound?

Result Overview

» First polynomial-time algorithm with finite mistake bound
» far from optimal — the mistake bound is exponential in some
parameters
» Some negative results characterizing the difficulty of this
problem

Result Overview

» First polynomial-time algorithm with finite mistake bound
» far from optimal — the mistake bound is exponential in some
parameters
» Some negative results characterizing the difficulty of this
problem

Open Problem Is there a polynomial time algorithm with a finite
and polynomial mistake bound?

Result Overview

#mistake running time
some previous works | finite and polynomial | exponential
other previous works infinite polynomial

this work finite and exponential | polynomial
our hope finite and polynomial | polynomial

Table: Bandit classification with linearly separable data

Outline

» Review of previous approaches

» Our approach

The Matrix Representation of Linear Classifiers

W e RK*d

K: #classes, d: feature dimension

T T

— W — Wy X
—w) — | | Wy x
WX =) X =)
T | T
— Wy —— Wy X
w scores

For a feature vector x, the linear classifier W chooses the label

argmax(Wx);
i€[K]

A set of data is linearly separable

I

3 linear classifer W* that always chooses the correct label

i.e., for all (x,y) in the dataset, argmax;c[;)(W*x); = y

Halving Algorithm [Kakade et al'08]

In each round t:

> Majority vote:

ye = argmax | {W € H; : W chooses label i} |.
i€[K]

> If Y # ye: Heg1 < {W € H; : W does not choose y; }

Halving Algorithm [Kakade et al'08]

In each round t:

> Majority vote:

ye = argmax | {W € H; : W chooses label i} |.

ie[K]

> If Y # ye: Heg1 < {W € H; : W does not choose y; }

Every time Vi # yt, [Hep1| < (1— %) [Hel
I\ Kd
il =0 (%)

~

Bandit Perceptron Approaches [Kakade et al'08, etc.]

_—

/ . W, \
(o« V(W)
t+1

{ W, | Space of W
A 4

~— _—

online surrogate loss minimization
e.g. Le(W) = [y — (Wxt)y, + maxiz, (Wx)i],

Bandit Perceptron Approaches [Kakade et al'08,

-

< ey fwvtvvm\w Space of W
~— -

online surrogate loss minimization
e.g. Le(W) = [y — (Wxt)y, + maxiz, (Wx)i],

EWxe,ye)
3

25

2

15

1

0.5

-y 0 Y Wr), - max(Wx)

etc.]

Bandit Perceptron Approaches [Kakade et al'08, etc.]

e
/ t:l‘ *UVF:(Wz)\

(W,) Space of W
AN J P

- _—

online surrogate loss minimization
e.g. Le(W) = [y — (Wxt)y, + maxiz, (Wx)i],

In each round t:
> o W:'s choice of label with probability 1 — ¢
e Uniform([K]) with probability e

» If y; = y;, create surrogate loss ¢;(+), and update
Wt+]_ — Wt - nVﬁt(Wt)

Bandit Perceptron Approaches [Kakade et al'08, etc.]

p AN
‘ A e /‘ Space of W

//

online surrogate loss minimization
e.g. Le(W) = [y — (Wxt)y, + maxiz, (Wx)i],

In each round t:
> o W;'s choice of label with probability 1 — ¢
y Uniform([K]) with probability €

» If y; = y;, create surrogate loss ¢;(+), and update
Wt+]_ — Wt - nVﬁt(Wt)

Fact: It is difficult to design a convex surrogate loss if you only
have a wrong label but do not know the true label. (Why?)

A Difference between Halving and Bandit Perceptron

» Halving makes great progress when it makes a mistake:
[Her] < (1= 1/K)[Hel

» Bandit Perceptron makes no progress when it makes a mistake

A Difference between Halving and Bandit Perceptron

» Halving makes great progress when it makes a mistake:
[Her] < (1= 1/K)[Hel

» Bandit Perceptron makes no progress when it makes a mistake

We showed: if an algorithm does not update itself when it makes
a mistake, then the adversary can force

#mistake > min {ﬁ, 2Q(d)} .

A Difference between Halving and Bandit Perceptron

» Halving makes great progress when it makes a mistake:
[Her] < (1= 1/K)[Hel

» Bandit Perceptron makes no progress when it makes a mistake

We showed: if an algorithm does not update itself when it makes
a mistake, then the adversary can force

#mistake > min {ﬁ, 2Q(d)} .

Lesson learned: our algorithm should update when it makes a
mistake

Our Algorithm

The simple idea of our algorithm:

» When can we efficiently update when y; # y;?

Our Algorithm

The simple idea of our algorithm:

» When can we efficiently update when y; # y;?
= binary classification (can know y; when only seeing

]l[j/\t # yil)

Our Algorithm

The simple idea of our algorithm:

» When can we efficiently update when y; # y;?
= binary classification (can know y; when only seeing
1[y: # yt])

» Reduce our problem to binary classification

Our Algorithm: Bandit-OvA

.| . %ep—vesmo Case 1: > 1 of them respond YES
s cell y: < any one of those YES labels
/ Nor-lnear Qnary Classier & If ¥+ # y:, update y;-th sub-learner
e SGmeemeee L[/ Case 2: all of them respond NO
‘I‘. Non—]inear BAinarVACIasAsifierZ j/\ti_ uniform from/\{l’ R K}
! : If v = y:, update y;-th sub-learner

® e =
—ee| oL e —YES/NO

E[#mistakes(alg)] < K) ; #mistakes(/)

Non-linear Binary Classifier K

Our Algorithm: Bandit-OvA

» Each sub-learner learns the support of class i, which lies in an
intersection of K — 1 halfspaces with a margin.

(wy —wo,) =0

Class 3
(wy — w3, x) =0 (wy — w3,) =0

Our Algorithm: Bandit-OvA

» Each sub-learner learns the support of class i, which lies in an
intersection of K — 1 halfspaces with a margin.

(wy —wo,) =0

Class 1 @2

Class 3
(wy —w3,z) =0 (wy — w3,) =0

» Sub-learner = 2-class Kernel Perceptron with rational
kernel [Klivans and Servedio’04, Shalev-Shwartz et al'11]:

Our Algorithm: Bandit-OvA

» Each sub-learner learns the support of class i, which lies in an
intersection of K — 1 halfspaces with a margin.

(wy —wo,) =0

Class 1 @2

Class 3
(wy —w3,z) =0 (wy — w3,) =0

» Sub-learner = 2-class Kernel Perceptron with rational
kernel [Klivans and Servedio’04, Shalev-Shwartz et al'11]:

> mistakes(sub-learner) < O (7—%2) = 26<min{Klog2(1/7)’mlogK}>

Difficulty of designing a surrogate loss when y; # y;

» When the learner makes a mistake (y; # y:), the set of W's
we want to penalize is

{W: (Wx)y, > (Wxe)i, Vi # 3e}

-
U

Difficult to design a convex surrogate loss £:(W).

A Side Result Indicating the Difficulty

» The offline problem is NP-hard:

Given a mixed-labeled dataset which consists of two types of

samples:
(x,y) : x belongs to class y
(x,¥) : x does not belong to class y
Given that this dataset is separable with v = % and K = 3.

Find a linear classifier W*.

Summary

> We studied the problem of bandit multiclass classification
with linearly separable data

» We developed the first polynomial time algorithm that has
finite number of mistakes

» It remains open how to make the number of mistakes
polynomial (or proving that this is computationally hard)

Thank you!

