
Bandit Multiclass Linear Classification:
Efficient Algorithms for the Separable Case

Alina Beygelzimer (Yahoo)
David Pal (Expedia)

Balazs Szorenyi (Yahoo)
Devanathan Thiruvenkatachari (NYU)

Chen-Yu Wei (USC)
Chicheng Zhang (UArizona)

ICML 2019

Bandit Classification

For t = 1, 2, . . . ,T :

1. Adversary chooses (xt , yt), where
xt ∈ Rd is the feature vector
yt ∈ [K] is the label

and reveal xt to the learner

2. Learner predicts a label ŷt ∈ [K].

3. Learner observes feedback 1 [ŷt 6= yt].

Goal: minimize the total number of mistakes

T∑
t=1

1 [ŷt 6= yt]

Linearly Separable Data
Consider the ideal case: assume the incoming samples are linearly
separable with a margin γ:

∃w1,w2, . . . ,wK ∈ Rd ,
∑

j ‖wj‖2 ≤ 1, such that

for all (x , y) in the dataset,

w>y x > w>y ′x + γ, for all y ′ 6= y

Class 1

Class 3

〈w1 − w2, x〉 = 0

〈w1 − w3, x〉 = 0 〈w2 − w3, x〉 = 0

Class 2

Linearly Separable Data
Consider the ideal case: assume the incoming samples are linearly
separable with a margin γ:

∃w1,w2, . . . ,wK ∈ Rd ,
∑

j ‖wj‖2 ≤ 1, such that

for all (x , y) in the dataset,

w>y x > w>y ′x + γ, for all y ′ 6= y

Class 1

Class 3

〈w1 − w2, x〉 = 0

〈w1 − w3, x〉 = 0 〈w2 − w3, x〉 = 0

Class 2

Mistake Bounds for Linearly Separable Data

Bounds on #mistakes:

1. [Kakade et al’08]: Õ
(
K 2d ln 1

γ

)
2. [Daniely and Helbertal’13]: Õ

(
K
γ2

)
3. [Kakade et al’08, Beygelzimer et al’17, Foster et al’18]:

Õ
(

1
γ

√
KT + K

γ2

)
Õ(f) , O (f · polylog(f))

1&2. finite #mistakes, but exponential running time
3. polynomial-time algorithm, but infinite #mistakes

⇒ is there a polynomial-time algorithm with finite mistake bound?

Mistake Bounds for Linearly Separable Data

Bounds on #mistakes:

1. [Kakade et al’08]: Õ
(
K 2d ln 1

γ

)
2. [Daniely and Helbertal’13]: Õ

(
K
γ2

)
3. [Kakade et al’08, Beygelzimer et al’17, Foster et al’18]:

Õ
(

1
γ

√
KT + K

γ2

)
Õ(f) , O (f · polylog(f))

1&2. finite #mistakes, but exponential running time
3. polynomial-time algorithm, but infinite #mistakes

⇒ is there a polynomial-time algorithm with finite mistake bound?

Mistake Bounds for Linearly Separable Data

Bounds on #mistakes:

1. [Kakade et al’08]: Õ
(
K 2d ln 1

γ

)
2. [Daniely and Helbertal’13]: Õ

(
K
γ2

)
3. [Kakade et al’08, Beygelzimer et al’17, Foster et al’18]:

Õ
(

1
γ

√
KT + K

γ2

)
Õ(f) , O (f · polylog(f))

1&2. finite #mistakes, but exponential running time
3. polynomial-time algorithm, but infinite #mistakes

⇒ is there a polynomial-time algorithm with finite mistake bound?

Result Overview

I First polynomial-time algorithm with finite mistake bound
I far from optimal — the mistake bound is exponential in some

parameters

I Some negative results characterizing the difficulty of this
problem

Open Problem Is there a polynomial time algorithm with a finite
and polynomial mistake bound?

Result Overview

I First polynomial-time algorithm with finite mistake bound
I far from optimal — the mistake bound is exponential in some

parameters

I Some negative results characterizing the difficulty of this
problem

Open Problem Is there a polynomial time algorithm with a finite
and polynomial mistake bound?

Result Overview

#mistake running time

some previous works finite and polynomial exponential

other previous works infinite polynomial

this work finite and exponential polynomial

our hope finite and polynomial polynomial

Table: Bandit classification with linearly separable data

Outline

I Review of previous approaches

I Our approach

The Matrix Representation of Linear Classifiers

W ∈ RK×d
K : #classes, d : feature dimension

Wx =

−−−− w>1 −−−−
−−−− w>2 −−−−

...
−−−− w>K −−−−

︸ ︷︷ ︸

W

 |x
|

 =

w>1 x
w>2 x

...
w>K x

︸ ︷︷ ︸

scores

For a feature vector x , the linear classifier W chooses the label

argmax
i∈[K]

(Wx)i

A set of data is linearly separable~w�
∃ linear classifer W ∗ that always chooses the correct label

i.e., for all (x , y) in the dataset, argmaxi∈[K](W
∗x)i = y

Halving Algorithm [Kakade et al’08]

In each round t:

I Majority vote:

ŷt = argmax
i∈[K]

∣∣∣ {W ∈ Ht : W chooses label i}
∣∣∣.

I If ŷt 6= yt : Ht+1 ← {W ∈ Ht : W does not choose ŷt}

Every time ŷt 6= yt , |Ht+1| ≤
(
1− 1

K

)
|Ht |

|H1| = O
(
d
γ

)Kd

Halving Algorithm [Kakade et al’08]

In each round t:

I Majority vote:

ŷt = argmax
i∈[K]

∣∣∣ {W ∈ Ht : W chooses label i}
∣∣∣.

I If ŷt 6= yt : Ht+1 ← {W ∈ Ht : W does not choose ŷt}

Every time ŷt 6= yt , |Ht+1| ≤
(
1− 1

K

)
|Ht |

|H1| = O
(
d
γ

)Kd

Bandit Perceptron Approaches [Kakade et al’08, etc.]

online surrogate loss minimization
e.g. `t(W) = [γ − (Wxt)yt + maxi 6=yt (Wxt)i]+

In each round t:

I ŷt =

{
Wt ’s choice of label with probability 1− ε
Uniform([K]) with probability ε

I If ŷt = yt , create surrogate loss `t(·), and update
Wt+1 ←Wt − η∇`t(Wt).

Fact: It is difficult to design a convex surrogate loss if you only
have a wrong label but do not know the true label. (Why?)

Bandit Perceptron Approaches [Kakade et al’08, etc.]

online surrogate loss minimization
e.g. `t(W) = [γ − (Wxt)yt + maxi 6=yt (Wxt)i]+

In each round t:

I ŷt =

{
Wt ’s choice of label with probability 1− ε
Uniform([K]) with probability ε

I If ŷt = yt , create surrogate loss `t(·), and update
Wt+1 ←Wt − η∇`t(Wt).

Fact: It is difficult to design a convex surrogate loss if you only
have a wrong label but do not know the true label. (Why?)

Bandit Perceptron Approaches [Kakade et al’08, etc.]

online surrogate loss minimization
e.g. `t(W) = [γ − (Wxt)yt + maxi 6=yt (Wxt)i]+

In each round t:

I ŷt =

{
Wt ’s choice of label with probability 1− ε
Uniform([K]) with probability ε

I If ŷt = yt , create surrogate loss `t(·), and update
Wt+1 ←Wt − η∇`t(Wt).

Fact: It is difficult to design a convex surrogate loss if you only
have a wrong label but do not know the true label. (Why?)

Bandit Perceptron Approaches [Kakade et al’08, etc.]

online surrogate loss minimization
e.g. `t(W) = [γ − (Wxt)yt + maxi 6=yt (Wxt)i]+

In each round t:

I ŷt =

{
Wt ’s choice of label with probability 1− ε
Uniform([K]) with probability ε

I If ŷt = yt , create surrogate loss `t(·), and update
Wt+1 ←Wt − η∇`t(Wt).

Fact: It is difficult to design a convex surrogate loss if you only
have a wrong label but do not know the true label. (Why?)

A Difference between Halving and Bandit Perceptron

I Halving makes great progress when it makes a mistake:
|Ht+1| ≤ (1− 1/K)|Ht |

I Bandit Perceptron makes no progress when it makes a mistake

We showed: if an algorithm does not update itself when it makes
a mistake, then the adversary can force

#mistake ≥ min
{√

T , 2Ω(d)
}
.

Lesson learned: our algorithm should update when it makes a
mistake

A Difference between Halving and Bandit Perceptron

I Halving makes great progress when it makes a mistake:
|Ht+1| ≤ (1− 1/K)|Ht |

I Bandit Perceptron makes no progress when it makes a mistake

We showed: if an algorithm does not update itself when it makes
a mistake, then the adversary can force

#mistake ≥ min
{√

T , 2Ω(d)
}
.

Lesson learned: our algorithm should update when it makes a
mistake

A Difference between Halving and Bandit Perceptron

I Halving makes great progress when it makes a mistake:
|Ht+1| ≤ (1− 1/K)|Ht |

I Bandit Perceptron makes no progress when it makes a mistake

We showed: if an algorithm does not update itself when it makes
a mistake, then the adversary can force

#mistake ≥ min
{√

T , 2Ω(d)
}
.

Lesson learned: our algorithm should update when it makes a
mistake

Our Algorithm

The simple idea of our algorithm:

I When can we efficiently update when ŷt 6= yt?

⇒ binary classification (can know yt when only seeing
1[ŷt 6= yt])

I Reduce our problem to binary classification

Our Algorithm

The simple idea of our algorithm:

I When can we efficiently update when ŷt 6= yt?
⇒ binary classification (can know yt when only seeing
1[ŷt 6= yt])

I Reduce our problem to binary classification

Our Algorithm

The simple idea of our algorithm:

I When can we efficiently update when ŷt 6= yt?
⇒ binary classification (can know yt when only seeing
1[ŷt 6= yt])

I Reduce our problem to binary classification

Our Algorithm: Bandit-OvA

Case 1: ≥ 1 of them respond YES
ŷt ← any one of those YES labels
If ŷt 6= yt , update ŷt-th sub-learner

Case 2: all of them respond NO
ŷt ← uniform from {1, . . . ,K}
If ŷt = yt , update ŷt-th sub-learner

E[#mistakes(alg)] ≤ K
∑

i #mistakes(i)

Our Algorithm: Bandit-OvA

I Each sub-learner learns the support of class i , which lies in an
intersection of K − 1 halfspaces with a margin.

Class 1

Class 3

〈w1 − w2, x〉 = 0

〈w1 − w3, x〉 = 0 〈w2 − w3, x〉 = 0

Class 2

I Sub-learner = 2-class Kernel Perceptron with rational
kernel [Klivans and Servedio’04, Shalev-Shwartz et al’11]:

K (x , x ′) =
1

1− 1
2〈x , x ′〉

I #mistakes(sub-learner) ≤ O
(

1
γ′2

)
= 2

Õ
(

min
{
K log2(1/γ),

√
1/γ log K

})

Our Algorithm: Bandit-OvA

I Each sub-learner learns the support of class i , which lies in an
intersection of K − 1 halfspaces with a margin.

Class 1

Class 3

〈w1 − w2, x〉 = 0

〈w1 − w3, x〉 = 0 〈w2 − w3, x〉 = 0

Class 2

I Sub-learner = 2-class Kernel Perceptron with rational
kernel [Klivans and Servedio’04, Shalev-Shwartz et al’11]:

K (x , x ′) =
1

1− 1
2〈x , x ′〉

I #mistakes(sub-learner) ≤ O
(

1
γ′2

)
= 2

Õ
(

min
{
K log2(1/γ),

√
1/γ log K

})

Our Algorithm: Bandit-OvA

I Each sub-learner learns the support of class i , which lies in an
intersection of K − 1 halfspaces with a margin.

Class 1

Class 3

〈w1 − w2, x〉 = 0

〈w1 − w3, x〉 = 0 〈w2 − w3, x〉 = 0

Class 2

I Sub-learner = 2-class Kernel Perceptron with rational
kernel [Klivans and Servedio’04, Shalev-Shwartz et al’11]:

K (x , x ′) =
1

1− 1
2〈x , x ′〉

I #mistakes(sub-learner) ≤ O
(

1
γ′2

)
= 2

Õ
(

min
{
K log2(1/γ),

√
1/γ log K

})

Difficulty of designing a surrogate loss when ŷt 6= yt

I When the learner makes a mistake (ŷt 6= yt), the set of W ’s
we want to penalize is{

W : (Wxt)ŷt > (Wxt)i , ∀i 6= ŷt
}

Difficult to design a convex surrogate loss `t(W).

A Side Result Indicating the Difficulty

I The offline problem is NP-hard:

Given a mixed-labeled dataset which consists of two types of
samples:

(x , y) : x belongs to class y

(x , y) : x does not belong to class y

Given that this dataset is separable with γ = 1
2 and K = 3.

Find a linear classifier W ∗.

Summary

I We studied the problem of bandit multiclass classification
with linearly separable data

I We developed the first polynomial time algorithm that has
finite number of mistakes

I It remains open how to make the number of mistakes
polynomial (or proving that this is computationally hard)

Thank you!

