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Bandit Classification

Fort=1,2,...,T:

1. Adversary chooses (xt, yt), where
x¢ € R9 is the feature vector
vt € [K] is the label

and reveal x; to the learner

2. Learner predicts a label y; € [K].
3. Learner observes feedback 1 [y; # yt].

Goal: minimize the total number of mistakes

-
Z L[ye # yil
t=1



Linearly Separable Data

Consider the ideal case: assume the incoming samples are linearly
separable with a margin ~:

(wl - w27x> =0
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Linearly Separable Data

Consider the ideal case: assume the incoming samples are linearly
separable with a margin ~:

Iwi, wa, ..., wk € RY, > |w;||> <1, such that
for all (x,y) in the dataset,

T T
w, X > W, X+, forall y' #y

(w; —wo,z) =0

Class 1 Class 2

Class 3
(w; —ws,z) =0 (wy — w3, x) =0



Mistake Bounds for Linearly Separable Data

Bounds on #mistakes:
1. [Kakade et al'08): O (K2d|n %)

2. [Daniely and Helbertal'13]: o) <7—K2>

3. [Kakade et al'08, Beygelzimer et al'17, Foster et al'18]:

0 (VAT + %)

O(f) 2 O(f - polylog(f))
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Mistake Bounds for Linearly Separable Data

Bounds on #mistakes:
1. [Kakade et al'08): O (K2d|n %)

2. [Daniely and Helbertal'13]: o) (7’2)

3. [Kakade et al'08, Beygelzimer et al'17, Foster et al'18]:
0 (LVKT + %)

O(f) 2 O(f - polylog(f))

1&2. finite #mistakes, but exponential running time
3. polynomial-time algorithm, but infinite #mistakes

=> is there a polynomial-time algorithm with finite mistake bound?



Result Overview

» First polynomial-time algorithm with finite mistake bound
» far from optimal — the mistake bound is exponential in some
parameters
» Some negative results characterizing the difficulty of this
problem



Result Overview

» First polynomial-time algorithm with finite mistake bound
» far from optimal — the mistake bound is exponential in some
parameters
» Some negative results characterizing the difficulty of this
problem

Open Problem Is there a polynomial time algorithm with a finite
and polynomial mistake bound?



Result Overview

#mistake running time
some previous works | finite and polynomial | exponential
other previous works infinite polynomial

this work finite and exponential | polynomial
our hope finite and polynomial | polynomial

Table: Bandit classification with linearly separable data




Outline

» Review of previous approaches

» Our approach



The Matrix Representation of Linear Classifiers

W e RK*d

K: #classes, d: feature dimension

T T

— W — Wy X
—w) — | | Wy x
WX = ) X = )
T | T
— Wy —— Wy X
w scores

For a feature vector x, the linear classifier W chooses the label

argmax(Wx);
i€[K]



A set of data is linearly separable

I

3 linear classifer W* that always chooses the correct label

i.e., for all (x,y) in the dataset, argmax;c[;)(W*x); = y



Halving Algorithm [Kakade et al'08]

In each round t:

> Majority vote:

ye = argmax | {W € H; : W chooses label i} |.
i€[K]

> If Y # ye: Heg1 < {W € H; : W does not choose y; }



Halving Algorithm [Kakade et al'08]

In each round t:

> Majority vote:

ye = argmax | {W € H; : W chooses label i} |.

ie[K]

> If Y # ye: Heg1 < {W € H; : W does not choose y; }

Every time Vi # yt, [Hep1| < (1— %) [Hel
I\ Kd
il =0 (%)

~



Bandit Perceptron Approaches [Kakade et al'08, etc.]
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online surrogate loss minimization
e.g. Le(W) = [y — (Wxt)y, + maxiz, (Wx)i],
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Bandit Perceptron Approaches [Kakade et al'08, etc.]
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online surrogate loss minimization
e.g. Le(W) = [y — (Wxt)y, + maxiz, (Wx)i],

In each round t:
> o W:'s choice of label with probability 1 — ¢
e Uniform([K]) with probability e

» If y; = y;, create surrogate loss ¢;(+), and update
Wt+]_ — Wt - nVﬁt(Wt)



Bandit Perceptron Approaches [Kakade et al'08, etc.]
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online surrogate loss minimization
e.g. Le(W) = [y — (Wxt)y, + maxiz, (Wx)i],

In each round t:
> o W;'s choice of label with probability 1 — ¢
y Uniform([K]) with probability €

» If y; = y;, create surrogate loss ¢;(+), and update
Wt+]_ — Wt - nVﬁt(Wt)

Fact: It is difficult to design a convex surrogate loss if you only
have a wrong label but do not know the true label. (Why?)
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A Difference between Halving and Bandit Perceptron

» Halving makes great progress when it makes a mistake:
[Her] < (1= 1/K)[Hel

» Bandit Perceptron makes no progress when it makes a mistake

We showed: if an algorithm does not update itself when it makes
a mistake, then the adversary can force

#mistake > min {ﬁ, 2Q(d)} .

Lesson learned: our algorithm should update when it makes a
mistake
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Our Algorithm

The simple idea of our algorithm:

» When can we efficiently update when y; # y;?
= binary classification (can know y; when only seeing
1[y: # yt])

» Reduce our problem to binary classification



Our Algorithm: Bandit-OvA

.| . %ep—vesmo Case 1: > 1 of them respond YES
s cell y: < any one of those YES labels
/ Nor-lnear Qnary Classier & If ¥+ # y:, update y;-th sub-learner
e SGmeemeee L[/ Case 2: all of them respond NO
‘I‘. Non—]inear BAinarVACIasAsifierZ j/\ti_ uniform from/\{l’ R K}
! : If v = y:, update y;-th sub-learner

® e =
—ee| oL e —YES/NO

E[#mistakes(alg)] < K ) ; #mistakes(/)

Non-linear Binary Classifier K




Our Algorithm: Bandit-OvA

» Each sub-learner learns the support of class i, which lies in an
intersection of K — 1 halfspaces with a margin.

(wy —wo, ) =0

Class 3
(wy — w3, x) =0 (wy — w3, ) =0
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Our Algorithm: Bandit-OvA

» Each sub-learner learns the support of class i, which lies in an
intersection of K — 1 halfspaces with a margin.

(wy —wo, ) =0

Class 1 @2

Class 3
(wy —w3,z) =0 (wy — w3, ) =0

» Sub-learner = 2-class Kernel Perceptron with rational
kernel [Klivans and Servedio’04, Shalev-Shwartz et al'11]:

> mistakes(sub-learner) < O (7—%2) = 26<min{Klog2(1/7)’mlogK}>



Difficulty of designing a surrogate loss when y; # y;

» When the learner makes a mistake (y; # y:), the set of W's
we want to penalize is

{W: (Wx)y, > (Wxe)i, Vi # 3e}

-
U

Difficult to design a convex surrogate loss £:(W).



A Side Result Indicating the Difficulty

» The offline problem is NP-hard:

Given a mixed-labeled dataset which consists of two types of

samples:
(x,y) : x belongs to class y
(x,¥) : x does not belong to class y
Given that this dataset is separable with v = % and K = 3.

Find a linear classifier W*.



Summary

> We studied the problem of bandit multiclass classification
with linearly separable data

» We developed the first polynomial time algorithm that has
finite number of mistakes

» It remains open how to make the number of mistakes
polynomial (or proving that this is computationally hard)



Thank you!



