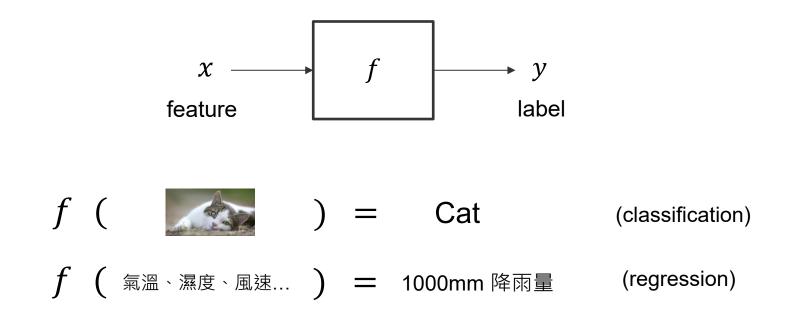
Some Recent Advances in Bandit Theory

Chen-Yu Wei 魏振宇 Postdoc @ UC Berkeley

Learning to Make Decisions

Machine Learning \approx Looking for a Function

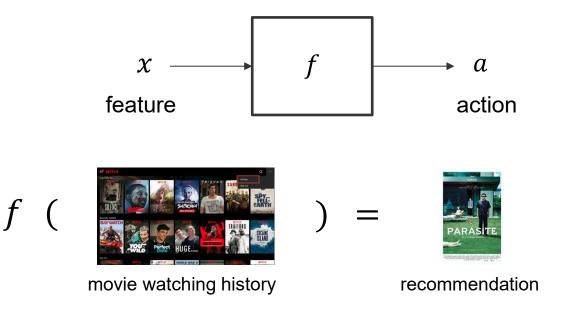


from 李宏毅老師 "機器學習"

Decision Making Problem

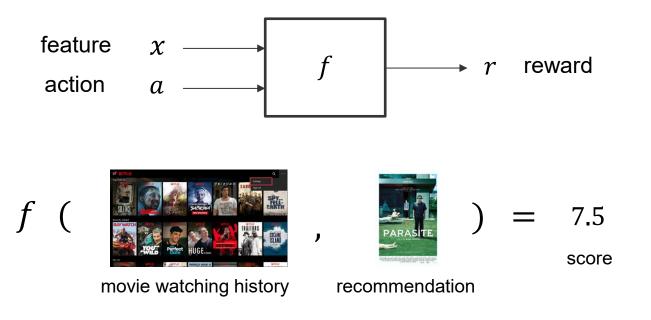
Problems where the learner's behavior affects the feedback.

Learning to Make Decisions



Reduction from **decision-making** to **classification**

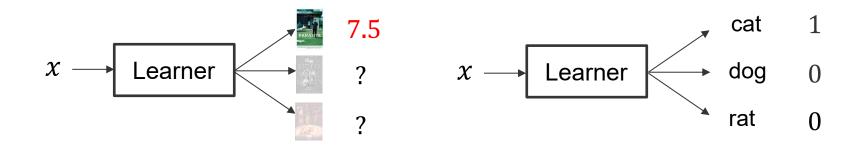
Learning to Make Decisions



Reduction from **decision-making** to **regression**

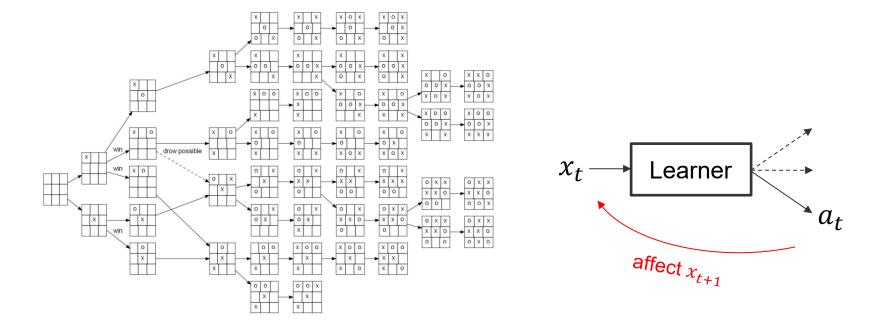
Challenges in Decision Problems (1/2)

1. Partial feedback \rightarrow Need to explore

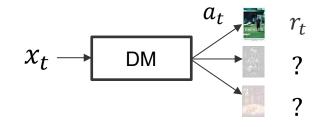


Challenges in Decision Problems (2/2)

2. Delayed feedback / long-term dependency -> Need to do credit assignment

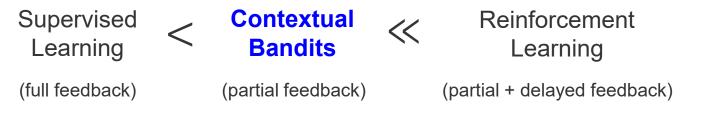


Today, we will consider problems with <u>partial</u> <u>feedback</u> but no long-term dependency.

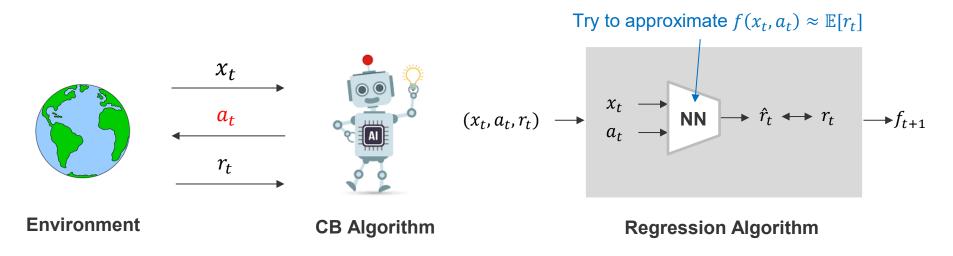


A simple protocol (Contextual Bandit)

For t = 1, 2, ...Environment generates a **context** x_t (user profile, watching list) Decision-maker takes an **action** a_t (a movie) Environment reveals a **reward** r_t (user scoring) (r_t depends on x_t and a_t) (a_t does NOT affect x_{t+1})



Reduction to Regression



Greedy:
$$a_t = \operatorname{argmax}_a f_t(x_t, a)$$

Failure of the Greedy Strategy

Adding Exploration

• *e*-greedy

$$a_t = \begin{cases} \operatorname{argmax}_a f_t(x_t, a) & \text{w. p. } 1 - \epsilon \\ \operatorname{uniformly random} & \text{w. p. } \epsilon \end{cases}$$

• Boltzmann exploration

$$a_t \sim p_t(a) = \frac{\exp\left(\gamma \cdot f_t(x_t, a)\right)}{\sum_{a'} \exp\left(\gamma \cdot f_t(x_t, a')\right)}$$
 $\text{ scale in "DRL: Q-learning"}$

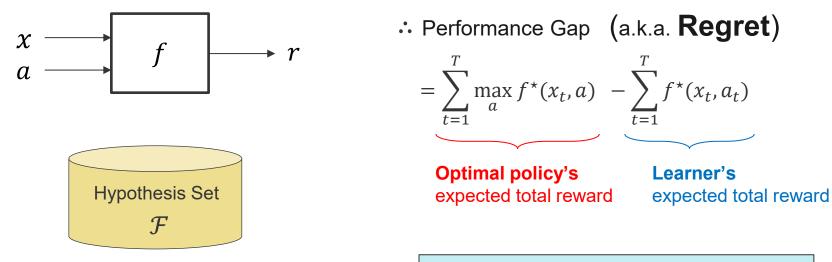
How good are they?

Today's mission: show an optimal exploration strategy for CB.

Some Theory

Formalization

Optimal policy: choose $\operatorname{argmax}_a f^*(x_t, a)$



Assumption: $\exists f^* \in \mathcal{F}$, s.t. $\mathbb{E}[r] = f^*(x, a)$

The goal of the learner: Minimize Regret

Strategy and Its Interpretation

output from the regression algorithm

$$p_{t} = \min_{p} \max_{f \in \mathcal{F}} \left\{ \max_{a'} f(x_{t}, a) - \mathbb{E}_{a \sim p}[f(x_{t}, a)] - \gamma \mathbb{E}_{a \sim p} \left[\left(f(x_{t}, a) - f_{t}(x_{t}, a) \right)^{2} \right] \right\}$$

$$(3) \quad (4) \quad (2)$$

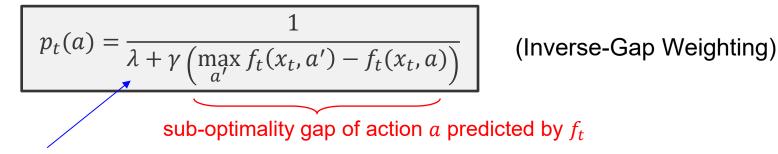
- 1) = **regret** in round t (supposed that $f^* = f$)
- 2) = information gain in round t (supposed that $f^* = f$)
- 3 Minimize regret and maximize information gain simultaneously
 - Consider the worst-case f^*

Foster and Rakhlin. Beyond UCB: Optimal and Efficient Contextual Bandits with Regression Oracles. ICML 2020.

Simplification

It suffices to use the following:

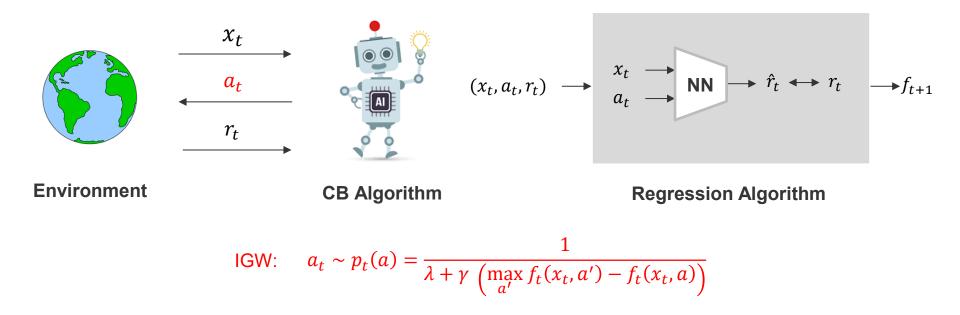
(the exact solution of the min-max program assuming $\mathcal{F}(x_t, \cdot) = \mathbb{R}^A$)



normalization factor making $\sum_{a} p_t(a) = 1$

Foster and Rakhlin. Beyond UCB: Optimal and Efficient Contextual Bandits with Regression Oracles. ICML 2020.

Reduction to Regression



Theorem by Foster and Rakhlin (2020)

With Inverse-Gap Weighting,

$$\operatorname{Regret}_{\operatorname{CB}} \leq \frac{AT}{\gamma} + \gamma \sum_{t=1}^{T} (f_t(x_t, a_t) - f^*(x_t, a_t))^2 \leq O\left(\sqrt{AT \log |\mathcal{F}|}\right)$$

Performance of the regression algorithm
Can be $O(\log |\mathcal{F}|)$ Choose a suitable γ

Foster and Rakhlin. Beyond UCB: Optimal and Efficient Contextual Bandits with Regression Oracles. ICML 2020.

Exploration Strategies

• *e*-greedy

$$a_t = \begin{cases} \operatorname{argmax}_a f_t(x_t, a) \\ \operatorname{uniformly random} \end{cases}$$

w.p. $1 - \epsilon$ w.p. ϵ

• Boltzmann exploration

Cesa-Bianchi, Gentile, Lugosi, Neu. Boltzmann exploration done right. NeurIPS 2017.

$$a_t \sim p_t(a) \propto \exp\left(\gamma \cdot f_t(x_t, a)\right) \propto \exp\left(-\gamma \cdot \operatorname{Gap}(a)\right)$$

• Inverse-gap weighting (optimal reduction from Contextual Bandit to Regression)

$$a_t \sim p_t(a) = \frac{1}{\lambda + \gamma \cdot \operatorname{Gap}(a)}$$

Foster and Rakhlin. Beyond UCB: Optimal and Efficient Contextual Bandits with Regression Oracles. ICML 2020.

Milestones in the Theory of Contextual Bandits

Abe and Long. Associative reinforcement learning using linear probabilistic concepts. 1999.

Langford and Zhang. The epoch-greedy algorithm for multi-armed bandits with side information. 2007. (coin down the name *contextual bandit*)

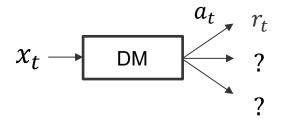
Reduction to classification:

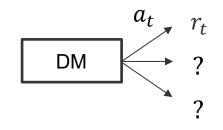
- Dudik, et al. Efficient optimal learning for contextual bandits. 2011. (optimal regret)
- Agarwal et al. Taming the monster: a fast and simple algorithm for contextual bandits. 2014. (computationally efficient + optimal regret)

Reduction to regression:

- Agarwal et al. Contextual bandit learning with predictable rewards. 2012. (optimal regret)
- Foster and Rakhlin. Beyond UCB: optimal and efficient contextual bandits with regression oracles. 2020. (computationally efficient + optimal regret)

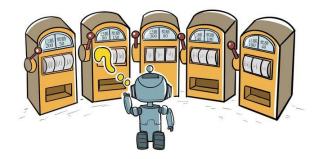
Robust and Adaptive Bandit Algorithms

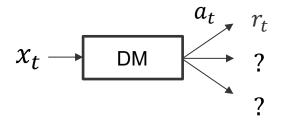


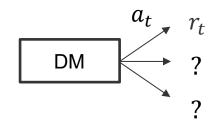


Contextual Bandits

Multi-Armed Bandits (多臂吃角子老虎機)







Contextual Bandits

Multi-Armed Bandits (多臂吃角子老虎機)

For t = 1, 2, ...

Decision-maker takes an **action** a_t

Environment reveals a **reward** r_t

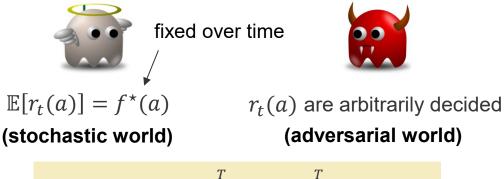
Two Reward Generation Processes (Figures from Wouter Koolen)

For t = 1, 2, ...

Environment decides **rewards** $r_t(a)$ for all actions a

Decision-maker takes an **action** a_t

Environment reveals a **reward** $r_t(a_t)$



Regret =
$$\max_{a} \sum_{t=1}^{l} r_t(a) - \sum_{t=1}^{l} r_t(a_t)$$

Why consider adversarial worlds? (Robustness) 李彥寰老師 "預測、學習與賽局"

Development of Stochastic and Adversarial MAB

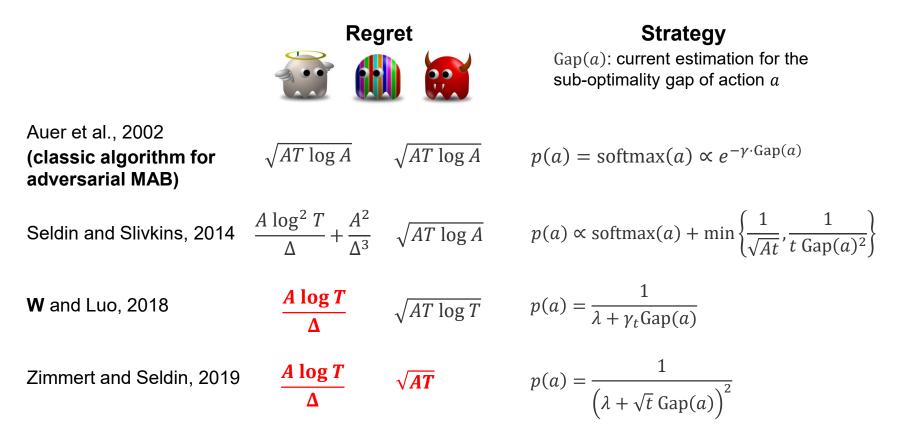
 Δ = difference between the expected reward of the best and the second-best action

Bubeck and Slivkins 2012:

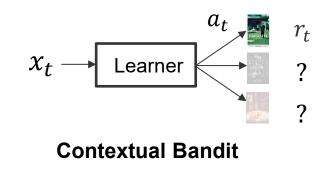
Is there a **single algorithm** with optimal regret in both worlds?

The best-of-both-world problem, "robust and adaptive" learning

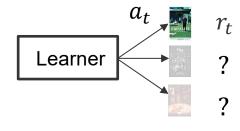
Development of Stochastic and Adversarial MAB



Summary



Assumption: $\mathbb{E}[r_t] = f^*(x_t, a_t)$ Can solve it by regression + exploration strategy (Inverse Gap Weighting) Regret $\leq \frac{AT}{\nu} + \gamma \cdot \text{regression_error}$



Multi-Armed Bandit

Either adversarial or stochastic ($\mathbb{E}[r_t] = f^*(a_t)$)

Can get robustness and adaptivity (best-of-both-world) by **Inverse Squared Gap Weighting**

Regret
$$\leq \sqrt{AT}$$
 (adversarial), or $\frac{A \log T}{\Delta}$ (stochastic)