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Bandits Problem
Multi-Armed Bandits (MAB)
@ d arms/actions available
@ environment decides the losses for each arm
@ learner sequentially pulls an arm and observes its loss
@ goal: be competitive with the best fixed arm
Linear Bandits (LB) (e.g. news recommendation)
e a finite set of actions X C R?
@ environment decides the loss vectors 6, € R¢
@ learner sequentially chooses an action x; from X and observes its loss, which is
(x4, 0¢) + €, € is zero-mean random noise
@ goal: be competitive with the best fixed action in X
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Pokémon GO announced its biggest update
yet, including 80 new Pokémon | »
m
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Linear Bandits with Different Environments

@ stochastic linear bandits

@ stochastic linear bandits with corruptions

@ adversarial linear bandits
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Stochastic Linear Bandits

Stochastic environment: the loss vectors over rounds 0; = 6 are the same

e LINUCB: expected regret bound O <1°g2 T+d1°iiid2 loglogT> [APS11]
> Apin: minimum sub-optimality gap
» NOT instance-optimal; can be arbitrarily worse than the optimal bound [LS16]
@ a line of recent works achieve instance-optimality [LS16,CMP17,HL20]

» instance-optimal expected regret bound ¢(X, 6)logT

» ¢(X,0) is an instance dependent constant
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Stochastic Linear Bandits with Corruptions

Stochastic environment with corruption: environment can corrupt the total loss by

@ C = 0 recovers the stochastic setting

e optimal O (Z#Z* % + C’) regret in MAB

C

[GKT19,ZS19]

. 6 2 2.5 .
@ sub-optimal O (dAl%inT + 4 Acmli:gT> regret in LB [LLS19]
Question 1: whether instance-optimal regret bound with optimal O(C)
overhead is achievable in stochastic LB with corruptions?
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Adversarial Linear Bandits

Adversarial environment: the loss vectors 6; over rounds are arbitrary.

Expected regret:

e SCRIBLE, GEOMETRICHEDGE: O (\/T)

High probability regret: O (\/T)
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Best-of-Three-Worlds

[ Question 2: can we achieve the best of three worlds simultaneously?

Recent works made progress for different problems:

o MAB: Tsallis-INF [2519)
e Combinatorial semi-bandits (for stochastic and adversarial environments) [ZLW19]
@ Markov Decision Processes [JL20, JHK21]
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robust loss estimators
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> O(dkg. Ty (') in the stochastic environment with corruptions;

» O(V/T) in the adversarial environment;
a two-phase algorithm

» Phase 1: a h.p. adversarial LB algorithm
» Phase 2: a modified A with a stationarity check
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