Bias no more: high-probability data-dependent regret bounds for
adversarial bandits and MDPs

Mengxiao Zhang

=% USC University of o
Southern Cali%;rnia USC Viterbi

School of Engincering

Adversarial Bandits

Introduction

Adversarial Bandits
Multi-Armed Bandits (MAB)

2/17

Adversarial Bandits
Multi-Armed Bandits (MAB)
@ d arms/actions available

2/17

Adversarial Bandits
Multi-Armed Bandits (MAB)
@ d arms/actions available
@ adversary decides the losses for each arm

2/17

Adversarial Bandits
Multi-Armed Bandits (MAB)
@ d arms/actions available
@ adversary decides the losses for each arm
@ learner sequentially pull an arm and observes its loss

2/17

Adversarial Bandits
Multi-Armed Bandits (MAB)
@ d arms/actions available
@ adversary decides the losses for each arm
@ learner sequentially pull an arm and observes its loss
@ goal: be competitive with the best fixed arm

2/17

Adversarial Bandits
Multi-Armed Bandits (MAB)
@ d arms/actions available
@ adversary decides the losses for each arm
@ learner sequentially pull an arm and observes its loss
@ goal: be competitive with the best fixed arm
Linear Bandits (LB)

2/17

Adversarial Bandits
Multi-Armed Bandits (MAB)
@ d arms/actions available
@ adversary decides the losses for each arm
@ learner sequentially pull an arm and observes its loss
@ goal: be competitive with the best fixed arm
Linear Bandits (LB)
@ a convex action set) available

2/17

Adversarial Bandits
Multi-Armed Bandits (MAB)
@ d arms/actions available
@ adversary decides the losses for each arm
@ learner sequentially pull an arm and observes its loss
@ goal: be competitive with the best fixed arm
Linear Bandits (LB)
@ a convex action set) available
@ adversary decides the loss vectors

2/17

Adversarial Bandits
Multi-Armed Bandits (MAB)
@ d arms/actions available
@ adversary decides the losses for each arm
@ learner sequentially pull an arm and observes its loss
@ goal: be competitive with the best fixed arm
Linear Bandits (LB)
@ a convex action set () available
@ adversary decides the loss vectors
@ learner sequentially chooses an action from 2 and observe its loss, which is its inner
product with the loss vector

2/17

Adversarial Bandits
Multi-Armed Bandits (MAB)
@ d arms/actions available
@ adversary decides the losses for each arm
@ learner sequentially pull an arm and observes its loss
@ goal: be competitive with the best fixed arm
Linear Bandits (LB)
@ a convex action set () available
@ adversary decides the loss vectors
@ learner sequentially chooses an action from 2 and observe its loss, which is its inner
product with the loss vector
goal: be competitive with the best fixed action in 2

2/17

Adversarial Bandits
Multi-Armed Bandits (MAB)
@ d arms/actions available
@ adversary decides the losses for each arm
@ learner sequentially pull an arm and observes its loss
@ goal: be competitive with the best fixed arm
Linear Bandits (LB) (e.g. news recommendation)
@ a convex action set () available
@ adversary decides the loss vectors
@ learner sequentially chooses an action from 2 and observe its loss, which is its inner
product with the loss vector
goal: be competitive with the best fixed action in 2

Pokémon GO announced its biggest update
yet, including 80 new Pokémon | »
m

2/17

Adversarial Markov Decision Process with Bandit Feedback

Learner

Loss and next state

6 Google DeepMind
e Challer Match

B \- - S

_%%

Environment

Action

Introduction

3/17

Adversarial Markov Decision Process with Bandit Feedback

@ episodic finite time horizon, unknown transition

Loss and

Introduction

B \- - S

Learner

next state

_%%

Environment

Action

3/17

Adversarial Markov Decision Process with Bandit Feedback

1
@ episodic finite time horizon, unknown transition i

@ loss is adversarially chosen by the environment Learner
Loss and next state Action

_%%

Environment

3/17

Adversarial Markov Decision Process with Bandit Feedback

@ episodic finite time horizon, unknown transition
@ loss is adversarially chosen by the environment

@ learner sequentially chooses an action according to
its current state, observe its loss, and transits to the
next state

Learner

Loss and next state

_%%

Environment

Introduction

G \- ¥ S

Action

3/17

Adversarial Markov Decision Process with Bandit Feedback

1
B N
@ episodic finite time horizon, unknown transition i

@ loss is adversarially chosen by the environment Learner
Loss and next state Action

@ learner sequentially chooses an action according to
its current state, observe its loss, and transits to the

next state
@ goal: be competitive with the best fixed policy €

Environment

3/17

From Expected Regret to High Probability Regret

Introduction

From Expected Regret to High Probability Regret

Expected regret bounds for bandit problems:

Introduction

From Expected Regret to High Probability Regret

Expected regret bounds for bandit problems:
o Expr3: O(VT) for MAB. [ACFS02]

Introduction

From Expected Regret to High Probability Regret

Expected regret bounds for bandit problems:
o Expr3: O(VT) for MAB. [ACFS02]
o SCRIBLE: O(V/T) for LB [AHR12]

T

From Expected Regret to High Probability Regret

Expected regret bounds for bandit problems:
o Expr3: O(VT) for MAB. [ACFS02]
o SCRIBLE: O(V/T) for LB [AHR12]
High probability regret bounds:

T

From Expected Regret to High Probability Regret

Expected regret bounds for bandit problems:

o Expr3: O(VT) for MAB. [ACFS02]

o SCRIBLE: O(V/T) for LB [AHR12]
High probability regret bounds:

o Exp3.P, Exp3-IX: O(VT) for MAB [ACFS02,N15]

4/17

From Expected Regret to High Probability Regret

Expected regret bounds for bandit problems:

o Expr3: O(VT) for MAB. [ACFS02]

o SCRIBLE: O(V/T) for LB [AHR12]
High probability regret bounds:

o Exp3.P, Exp3-IX: O(VT) for MAB [ACFS02,N15]

o GEOMETRICHEDGE.P: O(v/T) for LB, an inefficient algorithm [BDHKRTO8]

T

From Expected Regret to High Probability Regret

Expected regret bounds for bandit problems:

o Expr3: O(VT) for MAB. [ACFS02]

o SCRIBLE: O(V/T) for LB [AHR12]
High probability regret bounds:

o Exp3.P, Exp3-IX: O(VT) for MAB [ACFS02,N15]

o GEOMETRICHEDGE.P: O(v/T) for LB, an inefficient algorithm [BDHKRTO8]

o CoMPEXP: O(T"*) for LB, an efficient algorithm [BP16]

T

From Expected Regret to High Probability Regret

Expected regret bounds for bandit problems:

o Expr3: O(VT) for MAB. [ACFS02]

o SCRIBLE: O(V/T) for LB [AHR12]
High probability regret bounds:

o Exp3.P, Exp3-IX: O(VT) for MAB [ACFS02,N15]

o GEOMETRICHEDGE.P: O(v/T) for LB, an inefficient algorithm [BDHKRTO8]

o CoMPEXP: O(T"*) for LB, an efficient algorithm [BP16]

° @(\/T) high probability regret for LB under a set of conditions [ARO09]

T

From Expected Regret to High Probability Regret

Expected regret bounds for bandit problems:

o Expr3: O(VT) for MAB. [ACFS02]

o SCRIBLE: O(V/T) for LB [AHR12]
High probability regret bounds:

o Exp3.P, Exp3-IX: O(VT) for MAB [ACFS02,N15]

o GEOMETRICHEDGE.P: O(v/T) for LB, an inefficient algorithm [BDHKRTO8]

o CoMPEXP: O(T"*) for LB, an efficient algorithm [BP16]

° @(\/T) high probability regret for LB under a set of conditions [ARO09]

Open Problem (BDHKRTO08, BP16, AR09): Whether O(V/T) high probability
regret bound is achievable efficiently for general LB?

4/17

From Minimax Regret to Data-Dependent Regert Bounds

Introduction

From Minimax Regret to Data-Dependent Regert Bounds

Minimax regret bounds:

Introduction

From Minimax Regret to Data-Dependent Regert Bounds

Minimax regret bounds:
e both MAB and LB: ©(V/T) [ACFS02,DPO8]

Introduction

From Minimax Regret to Data-Dependent Regert Bounds

Minimax regret bounds:
e both MAB and LB: ©(v/T) [ACFS02,DP0g]

Data-dependent regret bounds: much better than minimax regret for “easy” instances

5/17

From Minimax Regret to Data-Dependent Regert Bounds

Minimax regret bounds:
e both MAB and LB: ©(V/T) [ACFS02,DP0g]
Data-dependent regret bounds: much better than minimax regret for “easy” instances

@ small-loss bound: replace T' by the loss of the best action in hindsight

Vi

From Minimax Regret to Data-Dependent Regert Bounds

Minimax regret bounds:

e both MAB and LB: ©(V/T) [ACFS02,DP0g]
Data-dependent regret bounds: much better than minimax regret for “easy” instances

@ small-loss bound: replace T' by the loss of the best action in hindsight

@ variation bound: replace T by the variance of the loss vector

Vi

From Minimax Regret to Data-Dependent Regert Bounds

Minimax regret bounds:

e both MAB and LB: ©(v/T) [ACFS02,DP0g]
Data-dependent regret bounds: much better than minimax regret for “easy” instances

@ small-loss bound: replace T' by the loss of the best action in hindsight

@ variation bound: replace T by the variance of the loss vector

Near-optimal small-loss high probability regret bounds:

YT

From Minimax Regret to Data-Dependent Regert Bounds

Minimax regret bounds:

e both MAB and LB: ©(v/T) [ACFS02,DP0g]
Data-dependent regret bounds: much better than minimax regret for “easy” instances

@ small-loss bound: replace T' by the loss of the best action in hindsight

@ variation bound: replace T by the variance of the loss vector

Near-optimal small-loss high probability regret bounds:

@ achievable for MAB [N15]

YT

From Minimax Regret to Data-Dependent Regert Bounds

Minimax regret bounds:

e both MAB and LB: ©(v/T) [ACFS02,DP0g]
Data-dependent regret bounds: much better than minimax regret for “easy” instances

@ small-loss bound: replace T' by the loss of the best action in hindsight

@ variation bound: replace T by the variance of the loss vector

Near-optimal small-loss high probability regret bounds:

@ achievable for MAB [N15]

@ achievable for more general bandit problems with graph feedback. [LTS19]

5/17

From Minimax Regret to Data-Dependent Regert Bounds

Minimax regret bounds:

e both MAB and LB: ©(v/T) [ACFS02,DP0g]
Data-dependent regret bounds: much better than minimax regret for “easy” instances

@ small-loss bound: replace T' by the loss of the best action in hindsight

@ variation bound: replace T by the variance of the loss vector

Near-optimal small-loss high probability regret bounds:

@ achievable for MAB [N15]

@ achievable for more general bandit problems with graph feedback. [LTS19]

Open Problem (N15): Whether data-dependent high probability regret bound
is achievable efficiently for general bandit problems?

5/17

Open Problem (BDHKRTO08, BP16, AR09):

Near-optimal efficient + high-probability bound for LB

Open Problem (N15):

Near-optimal data-dependent + high-probability bound for bandits

This work:

VBT

Open Problem (BDHKRTO08, BP16, AR09):

Near-optimal efficient + high-probability bound for LB

Open Problem (N15):

Near-optimal data-dependent + high-probability bound for bandits

This work:
@ Near-optimal efficient + data-dependent + high-probability bound for
LB

VBT

Open Problem (BDHKRTO08, BP16, AR09):

Near-optimal efficient + high-probability bound for LB

Open Problem (N15):

Near-optimal data-dependent + high-probability bound for bandits

This work:
@ Near-optimal efficient + data-dependent + high-probability bound for

LB

@ also achieves small-loss + high-probability regret bounds for adversarial
episodic Markov Decision Process with bandit feedback and unknown

transition function

VBT

Open Problem (BDHKRTO08, BP16, AR09):

Near-optimal efficient + high-probability bound for LB

Open Problem (N15):

Near-optimal data-dependent + high-probability bound for bandits

This work:

@ Near-optimal efficient + data-dependent + high-probability bound for
LB

@ also achieves small-loss + high-probability regret bounds for adversarial
episodic Markov Decision Process with bandit feedback and unknown
transition function

@ uses unbiased estimators and relies on an increasing learning rate
schedule, together with a strengthened Freedman's inequality and
normal barriers.

6 /17

High Probability Near-Optimal Data-Dependent Bound for LB

Setup

A convex set () is given to the learner
Fort=1,...,T:

Setup

A convex set () is given to the learner
Fort=1,...,T:

o the adversary decides a loss vector ¢; € R?

Setup

A convex set () is given to the learner
Fort=1,...,T:

o the adversary decides a loss vector ¢; € R?

@ the learner picks an arm w; € Q and incurs loss (w;, ¢;)

YT

Setup

A convex set () is given to the learner
Fort=1,...,T:

o the adversary decides a loss vector ¢; € R?
@ the learner picks an arm w; € Q and incurs loss (w;, ¢;)

@ the learner observes her loss (wy, ¢;)

YT

Setup

A convex set () is given to the learner
Fort=1,...,T:

o the adversary decides a loss vector ¢; € R?

@ the learner picks an arm w; € Q and incurs loss (w;, ¢;)
@ the learner observes her loss (wy, ¢;)

Goal: to be competitive w.r.t. a fixed action

Reg 2 S (@, 4,) — mingeq S, (u, £)

YT

Setup

A convex set () is given to the learner
Fort=1,...,T:

o the adversary decides a loss vector ¢; € R?
@ the learner picks an arm w; € Q and incurs loss (w;, ¢;)

@ the learner observes her loss (wy, ¢;)

Goal: to be competitive w.r.t. a fixed action

Reg 2 S (@, 4,) — mingeq S, (u, £)

Assumption: | (w,¢;) | <1 for all w € Q

YT

Recall: SCRIBLE

For each round t =1,2,...,T

Recall: SCRIBLE

For each round t =1,2,...,T
@ compute w; = argmin,,cq {<’IU,Z§_1> + Dy (w, wt_l)}

Recall: SCRIBLE

For each round t =1,2,...,T
@ compute w; = argmin,,cq {<w,E_1> + Dy (w, wt_l)}

» 1. v-self-concordant barrier over 2
» Dy: Bregman divergence with respect to

YT

Recall: SCRIBLE

For each round t =1,2,...,T
@ compute w; = argmin,,cq {<w, Zt—1> + Dy (w, wt_l)}

» 1. v-self-concordant barrier over 2
» Dy: Bregman divergence with respect to

@ choose w; from Dikin ellipsoid ||w; — w¢||z, = 1 and observe (wy, ¢;)

YT

Recall: SCRIBLE

For each round t =1,2,...,T
@ compute w; = argmin,,cq {<w, Zt—1> + Dy (w, wt_l)}

» 1. v-self-concordant barrier over 2
» Dy: Bregman divergence with respect to

@ choose w; from Dikin ellipsoid ||w; — w¢||z, = 1 and observe (wy, ¢;)
> Ht = V2¢(wt)

YT

Recall: SCRIBLE

For each round t =1,2,...,T
@ compute w; = argmin,,cq {<w, Zt_1> + Dy (w, wt_l)}

» 1. v-self-concordant barrier over 2
» Dy: Bregman divergence with respect to

@ choose w; from Dikin ellipsoid ||w; — w¢||z, = 1 and observe (wy, ¢;)
> Hy = V) (wy)

@ construct unbiased loss estimator ¢;

YT

Recall: SCRIBLE

For each round t =1,2,...,T
@ compute w; = argmin,,cq {<w, Zt_1> + Dy (w, wt_l)}

» 1. v-self-concordant barrier over 2
» Dy: Bregman divergence with respect to

@ choose w; from Dikin ellipsoid ||w; — w¢||z, = 1 and observe (wy, ¢;)
» H, = V2¢(wt)
@ construct unbiased loss estimator E

Key challenge in obtaining h.p. bound:

control the variance of <wt - ’U,,Zg>

YT

Recall: SCRIBLE

For each round t =1,2,...,T
@ compute w; = argmin,,cq {<w, Zt_1> + Dy (w, wt_l)}

» 1. v-self-concordant barrier over 2
» Dy: Bregman divergence with respect to

@ choose w; from Dikin ellipsoid ||w; — w¢||z, = 1 and observe (wy, ¢;)
» H, = V2¢(wt)
@ construct unbiased loss estimator Zt

Key challenge in obtaining h.p. bound:

control the variance of <wt — ’U,,Zg> = control ||u|| g, and ||we| m,

YT

Recall: SCRIBLE

For each round t =1,2,...,T
@ compute w; = argmin,,cq {<w, Zt_1> + Dy (w, wt_l)}

» 1. v-self-concordant barrier over 2
» Dy: Bregman divergence with respect to

@ choose w; from Dikin ellipsoid ||w; — w¢||z, = 1 and observe (wy, ¢;)
» H, = V2¢(wt)
@ construct unbiased loss estimator E

Key challenge in obtaining h.p. bound:

control the variance of <wt — ’U,,Zg> = control ||u|| g, and ||we| m,

A strengthened Freedman'’s inequality is needed as classic Freedman's inequality depends on
the fixed upper bound for <wt — u,@;>

57

First Challenge: Control max;c(ry ||wi ||,

First Challenge: Control max;c(ry ||wi ||,

@ f-normal barriers 1) on a proper cone K:

First Challenge: Control max;c(ry ||wi ||,

@ f-normal barriers 1) on a proper cone K:

» self-concordant with domain int K

First Challenge: Control max;c(ry ||wi ||,

@ f-normal barriers 1) on a proper cone K:

» self-concordant with domain int K
> Y(te) =Y(z) —01n(t),Vz € int K,;t >0

First Challenge: Control max;c(ry ||wi ||,

@ f-normal barriers 1) on a proper cone K:
» self-concordant with domain int K
> Y(te) =Y(z) —01n(t),Vz € int K,;t >0

@ if ¢ is also a #-normal barrier:

lwellm, < VO

T

First Challenge: Control max;c(ry ||wi ||,

@ f-normal barriers 1) on a proper cone K:

» self-concordant with domain int K
> Y(te) =Y(z) —01n(t),Vz € int K,;t >0

@ if ¢ is also a #-normal barrier:

lwellm, < VO

@ however, normal barriers are only defined on cones instead of general convex bodies

T

First Challenge: Control max;c(ry ||wi ||,

@ f-normal barriers 1) on a proper cone K:
» self-concordant with domain int K
> Y(te) =Y(z) —01n(t),Vz € int K,;t >0
@ if ¢ is also a #-normal barrier:
lwellsr, < VO
@ however, normal barriers are only defined on cones instead of general convex bodies

e solution: lifting the problem from R? to R4+

T

lllustration of lifting

o feasible set Q C R¢

lllustration of lifting

o feasible set Q C R?
= lifted to R4 Q = (0, 1)

lllustration of lifting

o feasible set Q C R?
= lifted to R4 Q = (0, 1)

@ construct the conic hull of

Q
& Conic hull

lllustration of lifting

o feasible set Q C R?
= lifted to R4 Q = (0, 1)

@ construct the conic hull of

o lift the point w € Q to w = (w,1) € Q

& Q

Q

. w

. w
& Conic hull

lllustration of lifting

o feasible set Q C R?
= lifted to R4 Q = (0, 1)

@ construct the conic hull of

o lift the point w € Q to w = (w,1) € Q & P
. L Q

@ construct the Dikin ellipsoid with respect & Dikin ellipsoid
L]

N

to w according to a normal barrier ¥

w
w

Exploration region

& Conic hull

W

lllustration of lifting

o feasible set Q C R?
= lifted to R4 Q = (0, 1)

@ construct the conic hull of

o lift the point w € Q to w = (w,1) € Q

% Q
. T Q
@ construct the Dikin ellipsoid with respect & Dikin ellipsoid
to w according to a normal barrier ¥ . w
L]
» any normal barrier ¥ is applicable here " Exploration region
& Conic hull

W

lllustration of lifting

o feasible set Q C R?
= lifted to R4 Q = (0, 1)

@ construct the conic hull of

o lift the point w € Q to w = (w,1) € Q P
. T Q
@ construct the Dikin ellipsoid with respect & Dikin ellipsoid
to w according to a normal barrier ¥ . w
» any normal barrier ¥ is applicable here " Exploration region
> a natural construction of ¥ from a 4 Conic hull

self-concordant barrier i of €2
U (w,b) = 400(x (%) — 2vInbd)

W

lllustration of lifting

o feasible set Q C R?
= lifted to R4 Q = (0, 1)

@ construct the conic hull of

o lift the point w € Q to w = (w,1) € Q

Q
. S Q
@ construct thfa Dikin ellipsoid Wlth respect & Dikinellipsoid
to w according to a normal barrier ¥ . w
» any normal barrier ¥ is applicable here " Exploration region
> a natural construction of ¥ from a 4 Conic hull

self-concordant barrier i of €2
U (w,b) = 400(x (%) — 2vInbd)

@ sample from the boundary of the
intersection of the Dikin ellipsoid and £

W

Comparison with SCRIBLE

Comparison with SCRIBLE

e SCRIBLE update: argmin,cq {<w,lz> + Dw(w,wt)}

Comparison with SCRIBLE

e SCRIBLE update: argmin,cq {<w,lz> + Dw(w,wt)}

o lifted problem: argmin, . {<w,1?t> + Dy(w, wt)}

Comparison with SCRIBLE

e SCRIBLE update: argmin,cq {<w,z\t> + qu(w,wt)}

o lifted problem: argmin, . {<w,2t> + Dy(w, wt)}
o Observe that ¥(w,b) = 400(¢(F) — 2v1Inbd)

U(w) = ¥(w, 1) = 4004 (w), w €

Y

Comparison with SCRIBLE

SCRIBLE update: argmin, cq {<w,z\t> + Dy (w, wt)}

lifted problem: argmin,,cq {<w,2t> + Dy(w, wt)}
Observe that W(w,b) = 400(¢(F) — 2v1nb)

U(w) = ¥(w, 1) = 4004 (w), w €

SCRIBLE with a new sampling scheme!

Y

Second Challenge: Control maxc(r) [|u|#,

Second Challenge: Control maxc(r) [|u|#,

o ldea: increasing learning rate (which creates negative regret!). e.g.,

Second Challenge: Control maxc(r) [|u|#,

o ldea: increasing learning rate (which creates negative regret!). e.g.,

» combining algorithms with different regret bounds under different settings [ALNE17]

Y

Second Challenge: Control maxc(r) [|u|#,

o ldea: increasing learning rate (which creates negative regret!). e.g.,

» combining algorithms with different regret bounds under different settings [ALNE17]
> deriving small-loss and other data-dependent bounds [WL18,LLZ20]

Y

Second Challenge: Control maxc(r) [|u|#,

o ldea: increasing learning rate (which creates negative regret!). e.g.,

» combining algorithms with different regret bounds under different settings [ALNE17]
> deriving small-loss and other data-dependent bounds [WL18,LLZ20]

@ The effect of increasing learning rate at time ¢:

Y

Second Challenge: Control maxc(r) [|u|#,

o ldea: increasing learning rate (which creates negative regret!). e.g.,

» combining algorithms with different regret bounds under different settings [ALNE17]
> deriving small-loss and other data-dependent bounds [WL18,LLZ20]

@ The effect of increasing learning rate at time ¢:

increase n — (1 +¢€)n

Y

Second Challenge: Control maxc(r) [|u|#,

o ldea: increasing learning rate (which creates negative regret!). e.g.,

» combining algorithms with different regret bounds under different settings [ALNE17]
> deriving small-loss and other data-dependent bounds [WL18,LLZ20]

@ The effect of increasing learning rate at time ¢:

increase n — (1 +¢€)n == create negative regret ﬁD\p(u, wy)

Y

Second Challenge: Control maxc(r) [|u|#,

o ldea: increasing learning rate (which creates negative regret!). e.g.,

» combining algorithms with different regret bounds under different settings [ALNE17]
> deriving small-loss and other data-dependent bounds [WL18,LLZ20]

@ The effect of increasing learning rate at time ¢:

increase n — (1 +¢€)n == create negative regret ran) Dy (u,wy)

1+€

with normal barriers:)D\p(u wy) 2 ||u|| o, (cancelling variance!)

(l—i—e

Y

Second Challenge: Control maxc(r) [|u|#,

o ldea: increasing learning rate (which creates negative regret!). e.g.,

» combining algorithms with different regret bounds under different settings [ALNE17]
> deriving small-loss and other data-dependent bounds [WL18,LLZ20]

@ The effect of increasing learning rate at time ¢:

increase n — (1 +¢€)n == create negative regret ran) Dy (u,wy)

1+€

with normal barriers:)D\p(u wy) 2 ||u|| o, (cancelling variance!)

(l—i—e
@ when to increase learning rate?

13717

Second Challenge: Control maxc(r) [|u|#,

o ldea: increasing learning rate (which creates negative regret!). e.g.,

» combining algorithms with different regret bounds under different settings [ALNE17]
> deriving small-loss and other data-dependent bounds [WL18,LLZ20]

@ The effect of increasing learning rate at time ¢:

increase n — (1 +¢€)n == create negative regret ran) Dy (u,wy)

1+€

with normal barriers:)D\p(u wy) 2 ||u|| o, (cancelling variance!)

(l—i—e
@ when to increase learning rate? when Hy is “large”

13717

Second Challenge: Control maxc(r) [|u|#,

e ldea: increasing learning rate (which creates negative regret!). e.g.,

» combining algorithms with different regret bounds under different settings [ALNE17]
> deriving small-loss and other data-dependent bounds [WL18,LLZ20]

@ The effect of increasing learning rate at time ¢:

increase n — (1 +¢€)n == create negative regret ran) Dy (u,wy)

1+6

with normal barriers:)D\I,(u wy) 2 ||ul|| (cancelling variance!)

(1+6
@ when to increase learning rate? when Hy is “large”

Amax (Ht — ZTE& HT) > 0, where S is the set of previous time steps at which we
increase learning rate

13717

Regret Bounds

With probability at least 1 — ¢
o (d2u, /Tn 3+ d?vin %) , against an oblivious adversary;

Reg = ¢ _
O (d21/\/dTln% + d3vIn %) , against an adaptive adversary

Linear Bandit 14 /17

Regret Bounds

With probability at least 1 — ¢
o (d2u, /Tn 3+ d?vin %) , against an oblivious adversary;

Reg = ¢ _
O <d21/\/dTln% + d3vIn %) , against an adaptive adversary

if (w,4;) >0 forall we Q,te[T], then T can be replaced by L* = min,cq Zthl (u,), or
other data-dependent values with optimistic estimators

Linear Bandit 14 /17

High Probability Small-Loss Bound for Markov Decision Process

Markov Decision Process

Achieving High Probability Small-Loss Bound

With the help of increasing learning rate, we obtain the first high probability small-loss regret
bound for adversarial MDP, improving the result of [JJLSY19]

Markov Decision Process 16 / 17

Achieving High Probability Small-Loss Bound

With the help of increasing learning rate, we obtain the first high probability small-loss regret
bound for adversarial MDP, improving the result of [JJLSY19]

With high probability, Reg = @ (x/L*), for both oblivious and adaptive adversaries

Markov Decision Process 16 / 17

Achieving High Probability Small-Loss Bound

With the help of increasing learning rate, we obtain the first high probability small-loss regret
bound for adversarial MDP, improving the result of [JJLSY19]

With high probability, Reg = @ (x/L*), for both oblivious and adaptive adversaries

@ clipping technique and implicit exploration may not be directly applicable here to obtain
small-loss bound

Markov Decision Process 16 / 17

Achieving High Probability Small-Loss Bound

With the help of increasing learning rate, we obtain the first high probability small-loss regret
bound for adversarial MDP, improving the result of [JJLSY19]

With high probability, Reg = @ (x/L*), for both oblivious and adaptive adversaries

@ clipping technique and implicit exploration may not be directly applicable here to obtain
small-loss bound

@ not clear how to obtain other data-dependent bounds as there are several terms in the
regret that are naturally only related to L*

Markov Decision Process 16 / 17

Summary

This work:

Summary

This work:
o Linear bandits: first efficient algorithm with high probability data-dependent
bound for general feasible sets.
techniques:
> lifting
> normal barrier
> increasing learning rate

T

Summary

This work:
o Linear bandits: first efficient algorithm with high probability data-dependent

bound for general feasible sets.
techniques:

> lifting
> normal barrier
> increasing learning rate
@ Adversarial MDP: high probability small-loss regret bounds with bandit
feedback and unknown transition

T

Summary

This work:
o Linear bandits: first efficient algorithm with high probability data-dependent

bound for general feasible sets.
techniques:

> lifting
> normal barrier
> increasing learning rate
@ Adversarial MDP: high probability small-loss regret bounds with bandit
feedback and unknown transition

Open problems:

T

Summary

This work:
o Linear bandits: first efficient algorithm with high probability data-dependent

bound for general feasible sets.
techniques:

> lifting
> normal barrier
> increasing learning rate
@ Adversarial MDP: high probability small-loss regret bounds with bandit
feedback and unknown transition

Open problems:
o Linear bandits: improving the dependence on d

17 /17

Summary

This work:
o Linear bandits: first efficient algorithm with high probability data-dependent

bound for general feasible sets.
techniques:

> lifting
> normal barrier
> increasing learning rate
@ Adversarial MDP: high probability small-loss regret bounds with bandit
feedback and unknown transition

Open problems:
o Linear bandits: improving the dependence on d

@ MDP: other types of data-dependent bounds

T

	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Linear Bandits
	Linear Bandits
	Linear Bandits
	Linear Bandits
	Linear Bandits
	Linear Bandits
	Linear Bandit
	Markov Decision Process
	Summary

