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Adversarial Bandits

Multi-Armed Bandits (MAB)

d arms/actions available

adversary decides the losses for each arm

learner sequentially pull an arm and observes its loss

goal: be competitive with the best fixed arm

Linear Bandits (LB) (e.g. news recommendation)

a convex action set Ω available

adversary decides the loss vectors

learner sequentially chooses an action from Ω and observe its loss, which is its inner
product with the loss vector

goal: be competitive with the best fixed action in Ω
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Adversarial Markov Decision Process with Bandit Feedback

episodic finite time horizon, unknown transition

loss is adversarially chosen by the environment

learner sequentially chooses an action according to
its current state, observe its loss, and transits to the
next state

goal: be competitive with the best fixed policy

Introduction 3 / 17
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From Expected Regret to High Probability Regret

Expected regret bounds for bandit problems:

Exp3: Õ(
√
T ) for MAB. [ACFS02]

SCRiBLe: Õ(
√
T ) for LB [AHR12]

High probability regret bounds:

Exp3.P, Exp3-IX: Õ(
√
T ) for MAB [ACFS02,N15]

GeometricHedge.P: Õ(
√
T ) for LB, an inefficient algorithm [BDHKRT08]

CompEXP: Õ(T 2/3) for LB, an efficient algorithm [BP16]

Õ(
√
T ) high probability regret for LB under a set of conditions [AR09]

Open Problem (BDHKRT08, BP16, AR09): Whether Õ(
√
T ) high probability

regret bound is achievable efficiently for general LB?
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√
T ) for LB [AHR12]

High probability regret bounds:

Exp3.P, Exp3-IX: Õ(
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√
T ) high probability

regret bound is achievable efficiently for general LB?

Introduction 4 / 17



From Expected Regret to High Probability Regret

Expected regret bounds for bandit problems:

Exp3: Õ(
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CompEXP: Õ(T 2/3) for LB, an efficient algorithm [BP16]

Õ(
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Õ(
√
T ) high probability regret for LB under a set of conditions [AR09]

Open Problem (BDHKRT08, BP16, AR09): Whether Õ(
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From Minimax Regret to Data-Dependent Regert Bounds

Minimax regret bounds:

both MAB and LB: Θ̃(
√
T ) [ACFS02,DP08]

Data-dependent regret bounds: much better than minimax regret for “easy” instances

small-loss bound: replace T by the loss of the best action in hindsight

variation bound: replace T by the variance of the loss vector

Near-optimal small-loss high probability regret bounds:

achievable for MAB [N15]

achievable for more general bandit problems with graph feedback. [LTS19]

Open Problem (N15): Whether data-dependent high probability regret bound
is achievable efficiently for general bandit problems?
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Open Problem (BDHKRT08, BP16, AR09):

Near-optimal efficient + high-probability bound for LB

Open Problem (N15):

Near-optimal data-dependent + high-probability bound for bandits

This work:

Near-optimal efficient + data-dependent + high-probability bound for
LB

also achieves small-loss + high-probability regret bounds for adversarial
episodic Markov Decision Process with bandit feedback and unknown
transition function

uses unbiased estimators and relies on an increasing learning rate

schedule, together with a strengthened Freedman’s inequality and

normal barriers.
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High Probability Near-Optimal Data-Dependent Bound for LB

Linear Bandits 7 / 17



Setup

A convex set Ω is given to the learner
For t = 1, . . . , T :

the adversary decides a loss vector `t ∈ Rd

the learner picks an arm w̃t ∈ Ω and incurs loss 〈w̃t, `t〉
the learner observes her loss 〈w̃t, `t〉

Goal: to be competitive w.r.t. a fixed action

Reg ,
∑T

t=1 〈w̃t, `t〉 −minu∈Ω
∑T

t=1 〈u, `t〉

Assumption: | 〈w, `t〉 | ≤ 1 for all w ∈ Ω
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Recall: SCRiBLe

For each round t = 1, 2, . . . , T

compute wt = argminw∈Ω

{〈
w, ̂̀t−1

〉
+Dψ(w,wt−1)

}

I ψ: ν-self-concordant barrier over Ω
I Dψ: Bregman divergence with respect to ψ

choose w̃t from Dikin ellipsoid ‖w̃t − wt‖Ht = 1 and observe 〈w̃t, `t〉

I Ht = ∇2ψ(wt)

construct unbiased loss estimator ̂̀t
Key challenge in obtaining h.p. bound:

control the variance of
〈
wt − u, ̂̀t〉

=⇒ control ‖u‖Ht and ‖wt‖Ht

A strengthened Freedman’s inequality is needed as classic Freedman’s inequality depends on

the fixed upper bound for
〈
wt − u, ̂̀t〉
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First Challenge: Control maxt∈[T ] ‖wt‖Ht

θ-normal barriers ψ on a proper cone K:

I self-concordant with domain int K

I ψ(tx) = ψ(x)− θ ln(t),∀x ∈ int K, t > 0

if ψ is also a θ-normal barrier:
‖wt‖Ht ≤

√
θ

however, normal barriers are only defined on cones instead of general convex bodies

solution: lifting the problem from Rd to Rd+1!
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Illustration of lifting

feasible set Ω ⊆ Rd

⇒ lifted to Rd+1: Ω = (Ω, 1)

construct the conic hull of Ω

lift the point w ∈ Ω to w = (w, 1) ∈ Ω

construct the Dikin ellipsoid with respect
to w according to a normal barrier Ψ

I any normal barrier Ψ is applicable here
I a natural construction of Ψ from a

self-concordant barrier ψ of Ω:
Ψ(w, b) = 400(ψ(wb )− 2ν ln b)

sample from the boundary of the
intersection of the Dikin ellipsoid and Ω
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Comparison with SCRiBLe

SCRiBLe update: argminw∈Ω

{〈
w, ̂̀t〉+Dψ(w,wt)

}
lifted problem: argminw∈Ω

{〈
w, ̂̀t〉+DΨ(w,wt)

}
Observe that Ψ(w, b) = 400(ψ(wb )− 2ν ln b)

Ψ(w) = Ψ(w, 1) = 400ψ(w),w ∈ Ω

SCRiBLe with a new sampling scheme!
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Second Challenge: Control maxt∈[T ] ‖u‖Ht

Idea: increasing learning rate (which creates negative regret!). e.g.,

I combining algorithms with different regret bounds under different settings [ALNE17]

I deriving small-loss and other data-dependent bounds [WL18,LLZ20]

The effect of increasing learning rate at time t:

increase η → (1 + ε)η =⇒ create negative regret −ε
(1+ε)ηDΨ(u,wt)

with normal barriers: ε
(1+ε)DΨ(u,wt) & ‖u‖Ht (cancelling variance!)

when to increase learning rate?

when Ht is “large”

λmax

(
Ht −

∑
τ∈SHτ

)
> 0, where S is the set of previous time steps at which we

increase learning rate
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> 0, where S is the set of previous time steps at which we

increase learning rate
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Regret Bounds

With probability at least 1− δ

Reg =

Õ
(
d2ν
√
T ln 1

δ + d2ν ln 1
δ

)
, against an oblivious adversary;

Õ
(
d2ν
√
dT ln 1

δ + d3ν ln 1
δ

)
, against an adaptive adversary

if 〈w, `t〉 ≥ 0 for all w ∈ Ω, t ∈ [T ], then T can be replaced by L? = minu∈Ω
∑T

t=1 〈u, `t〉 , or
other data-dependent values with optimistic estimators
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High Probability Small-Loss Bound for Markov Decision Process
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Achieving High Probability Small-Loss Bound

With the help of increasing learning rate, we obtain the first high probability small-loss regret
bound for adversarial MDP, improving the result of [JJLSY19]

With high probability, Reg = Õ
(√

L?
)

, for both oblivious and adaptive adversaries

clipping technique and implicit exploration may not be directly applicable here to obtain
small-loss bound

not clear how to obtain other data-dependent bounds as there are several terms in the
regret that are naturally only related to L?
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Summary

This work:

Linear bandits: first efficient algorithm with high probability data-dependent
bound for general feasible sets.
techniques:

I lifting
I normal barrier
I increasing learning rate

Adversarial MDP: high probability small-loss regret bounds with bandit
feedback and unknown transition

Open problems:
Linear bandits: improving the dependence on d

MDP: other types of data-dependent bounds
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