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Adversarial Bandits
Multi-Armed Bandits (MAB)
@ d arms/actions available
@ adversary decides the losses for each arm
@ learner sequentially pull an arm and observes its loss
@ goal: be competitive with the best fixed arm
Linear Bandits (LB) (e.g. news recommendation)
@ a convex action set () available
@ adversary decides the loss vectors
@ learner sequentially chooses an action from 2 and observe its loss, which is its inner
product with the loss vector
goal: be competitive with the best fixed action in 2

Pokémon GO announced its biggest update
yet, including 80 new Pokémon | »
m
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Adversarial Markov Decision Process with Bandit Feedback

1
B N
@ episodic finite time horizon, unknown transition i

@ loss is adversarially chosen by the environment Learner
Loss and next state Action

@ learner sequentially chooses an action according to
its current state, observe its loss, and transits to the

next state
@ goal: be competitive with the best fixed policy €

Environment
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o Exp3.P, Exp3-IX: O(VT) for MAB [ACFS02,N15]

o GEOMETRICHEDGE.P: O(v/T) for LB, an inefficient algorithm [BDHKRTO8]

o CoMPEXP: O(T"*) for LB, an efficient algorithm [BP16]

° @(\/T) high probability regret for LB under a set of conditions [ARO09]

Open Problem (BDHKRTO08, BP16, AR09): Whether O(V/T) high probability
regret bound is achievable efficiently for general LB?
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@ variation bound: replace T by the variance of the loss vector

Near-optimal small-loss high probability regret bounds:

@ achievable for MAB [N15]

@ achievable for more general bandit problems with graph feedback. [LTS19]

Open Problem (N15): Whether data-dependent high probability regret bound
is achievable efficiently for general bandit problems?
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Open Problem (BDHKRTO08, BP16, AR09):

Near-optimal efficient + high-probability bound for LB

Open Problem (N15):

Near-optimal data-dependent + high-probability bound for bandits

This work:

@ Near-optimal efficient + data-dependent + high-probability bound for
LB

@ also achieves small-loss + high-probability regret bounds for adversarial
episodic Markov Decision Process with bandit feedback and unknown
transition function

@ uses unbiased estimators and relies on an increasing learning rate
schedule, together with a strengthened Freedman's inequality and
normal barriers.
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Setup

A convex set () is given to the learner
Fort=1,...,T:

o the adversary decides a loss vector ¢; € R?
@ the learner picks an arm w; € Q and incurs loss (w;, ¢;)

@ the learner observes her loss (wy, ¢;)

Goal: to be competitive w.r.t. a fixed action

Reg 2 S (@, 4,) — mingeq S, (u, £)

Assumption: | (w,¢;) | <1 for all w € Q
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Recall: SCRIBLE

For each round t =1,2,...,T
@ compute w; = argmin,,cq {<w, Zt_1> + Dy (w, wt_l)}

» 1. v-self-concordant barrier over 2
» Dy: Bregman divergence with respect to

@ choose w; from Dikin ellipsoid ||w; — w¢||z, = 1 and observe (wy, ¢;)
» H, = V2¢(wt)
@ construct unbiased loss estimator E

Key challenge in obtaining h.p. bound:

control the variance of <wt — ’U,,Zg> = control ||u|| g, and ||we| m,

A strengthened Freedman'’s inequality is needed as classic Freedman's inequality depends on
the fixed upper bound for <wt — u,@;>

57
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@ f-normal barriers 1) on a proper cone K:
» self-concordant with domain int K
> Y(te) =Y(z) —01n(t),Vz € int K,;t >0
@ if ¢ is also a #-normal barrier:
lwellsr, < VO
@ however, normal barriers are only defined on cones instead of general convex bodies

e solution: lifting the problem from R? to R4+
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lllustration of lifting

o feasible set Q C R?
= lifted to R4 Q = (0, 1)

@ construct the conic hull of

o lift the point w € Q to w = (w,1) € Q

Q
. S Q
@ construct thfa Dikin ellipsoid Wlth respect & Dikinellipsoid
to w according to a normal barrier ¥ . w
» any normal barrier ¥ is applicable here " Exploration region
> a natural construction of ¥ from a 4 Conic hull

self-concordant barrier i of €2
U (w,b) = 400(x (%) — 2vInbd)

@ sample from the boundary of the
intersection of the Dikin ellipsoid and £

W
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Comparison with SCRIBLE

SCRIBLE update: argmin, cq {<w,z\t> + Dy (w, wt)}

lifted problem: argmin,,cq {<w,2t> + Dy(w, wt)}
Observe that W(w,b) = 400(¢(F) — 2v1nb)

U(w) = ¥(w, 1) = 4004 (w), w €

SCRIBLE with a new sampling scheme!

Y
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Second Challenge: Control maxc(r) [|u|#,

e ldea: increasing learning rate (which creates negative regret!). e.g.,

» combining algorithms with different regret bounds under different settings [ALNE17]
> deriving small-loss and other data-dependent bounds [WL18,LLZ20]

@ The effect of increasing learning rate at time ¢:

increase n — (1 +¢€)n == create negative regret ran ) Dy (u,wy)

1+6

with normal barriers: )D\I,(u wy) 2 ||ul|| (cancelling variance!)

(1+6
@ when to increase learning rate? when Hy is “large”

Amax (Ht — ZTE& HT) > 0, where S is the set of previous time steps at which we
increase learning rate

13717



Regret Bounds

With probability at least 1 — ¢
o (d2u, /Tn 3+ d?vin %) ,  against an oblivious adversary;

Reg = ¢ _
O (d21/\/dTln% + d3vIn %) , against an adaptive adversary

Linear Bandit 14 /17



Regret Bounds

With probability at least 1 — ¢
o (d2u, /Tn 3+ d?vin %) ,  against an oblivious adversary;

Reg = ¢ _
O <d21/\/dTln% + d3vIn %) , against an adaptive adversary

if (w,4;) >0 forall we Q,te[T], then T can be replaced by L* = min,cq Zthl (u, ), or
other data-dependent values with optimistic estimators

Linear Bandit 14 /17
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With the help of increasing learning rate, we obtain the first high probability small-loss regret
bound for adversarial MDP, improving the result of [JJLSY19]

With high probability, Reg = @ (x/L*), for both oblivious and adaptive adversaries

@ clipping technique and implicit exploration may not be directly applicable here to obtain
small-loss bound

@ not clear how to obtain other data-dependent bounds as there are several terms in the
regret that are naturally only related to L*
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techniques:
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> normal barrier
> increasing learning rate
@ Adversarial MDP: high probability small-loss regret bounds with bandit
feedback and unknown transition

Open problems:
o Linear bandits: improving the dependence on d

@ MDP: other types of data-dependent bounds
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