Bias no more: high-probability data-dependent regret bounds for adversarial bandits and MDPs

Mengxiao Zhang

joint with Chung-Wei Lee, Haipeng Luo and Chen-Yu Wei

Adversarial Bandits Multi-Armed Bandits (MAB)

- Multi-Armed Bandits (MAB)
 - \bullet d arms/actions available

Multi-Armed Bandits (MAB)

- \bullet d arms/actions available
- adversary decides the losses for each arm

Multi-Armed Bandits (MAB)

- $\bullet \ d$ arms/actions available
- adversary decides the losses for each arm
- learner sequentially pull an arm and observes its loss

Multi-Armed Bandits (MAB)

- d arms/actions available
- adversary decides the losses for each arm
- learner sequentially pull an arm and observes its loss
- goal: be competitive with the best fixed arm

Multi-Armed Bandits (MAB)

- d arms/actions available
- adversary decides the losses for each arm
- learner sequentially pull an arm and observes its loss
- goal: be competitive with the best fixed arm

Multi-Armed Bandits (MAB)

- d arms/actions available
- adversary decides the losses for each arm
- learner sequentially pull an arm and observes its loss
- goal: be competitive with the best fixed arm

Linear Bandits (LB)

 $\bullet\,$ a convex action set Ω available

Multi-Armed Bandits (MAB)

- d arms/actions available
- adversary decides the losses for each arm
- learner sequentially pull an arm and observes its loss
- goal: be competitive with the best fixed arm

- $\bullet\,$ a convex action set Ω available
- adversary decides the loss vectors

Multi-Armed Bandits (MAB)

- d arms/actions available
- adversary decides the losses for each arm
- learner sequentially pull an arm and observes its loss
- goal: be competitive with the best fixed arm

- $\bullet\,$ a convex action set Ω available
- adversary decides the loss vectors
- \bullet learner sequentially chooses an action from Ω and observe its loss, which is its inner product with the loss vector

Multi-Armed Bandits (MAB)

- d arms/actions available
- adversary decides the losses for each arm
- learner sequentially pull an arm and observes its loss
- goal: be competitive with the best fixed arm

- $\bullet\,$ a convex action set Ω available
- adversary decides the loss vectors
- \bullet learner sequentially chooses an action from Ω and observe its loss, which is its inner product with the loss vector
- \bullet goal: be competitive with the best fixed action in Ω

Multi-Armed Bandits (MAB)

- d arms/actions available
- adversary decides the losses for each arm
- learner sequentially pull an arm and observes its loss
- goal: be competitive with the best fixed arm

Linear Bandits (LB) (e.g. news recommendation)

- $\bullet\,$ a convex action set Ω available
- adversary decides the loss vectors
- \bullet learner sequentially chooses an action from Ω and observe its loss, which is its inner product with the loss vector
- \bullet goal: be competitive with the best fixed action in Ω

• episodic finite time horizon, unknown transition

- episodic finite time horizon, unknown transition
- loss is adversarially chosen by the environment

- episodic finite time horizon, unknown transition
- loss is adversarially chosen by the environment
- learner sequentially chooses an action according to its current state, observe its loss, and transits to the next state

- episodic finite time horizon, unknown transition
- loss is adversarially chosen by the environment
- learner sequentially chooses an action according to its current state, observe its loss, and transits to the next state
- goal: be competitive with the best fixed policy

Environment

Expected regret bounds for bandit problems:

Expected regret bounds for bandit problems:

• EXP3: $\tilde{\mathcal{O}}(\sqrt{T})$ for MAB.

[ACFS02]

Expected regret bounds for bandit problems:

- EXP3: $\tilde{\mathcal{O}}(\sqrt{T})$ for MAB.
- SCRIBLE: $\tilde{\mathcal{O}}(\sqrt{T})$ for LB

[ACFS02] [AHR12]

Expected regret bounds for bandit problems:

- EXP3: $\tilde{\mathcal{O}}(\sqrt{T})$ for MAB.
- SCRIBLE: $\tilde{\mathcal{O}}(\sqrt{T})$ for LB

High probability regret bounds:

[ACFS02] [AHR12]

Expected regret bounds for bandit problems:	
• EXP3: $\tilde{\mathcal{O}}(\sqrt{T})$ for MAB.	[ACFS02]
• SCRIBLE: $ ilde{\mathcal{O}}(\sqrt{T})$ for LB	[AHR12]
High probability regret bounds:	
• EXP3.P, EXP3-IX: $\tilde{\mathcal{O}}(\sqrt{T})$ for MAB	[ACFS02,N15]

Expected regret bounds for bandit problems:	
• Exp3: $ ilde{\mathcal{O}}(\sqrt{T})$ for MAB.	[ACFS02]
• SCRIBLE: $ ilde{\mathcal{O}}(\sqrt{T})$ for LB	[AHR12]
High probability regret bounds:	
• Exp3.P, Exp3-IX: $ ilde{\mathcal{O}}(\sqrt{T})$ for MAB	[ACFS02,N15]
• GEOMETRICHEDGE.P: $\tilde{\mathcal{O}}(\sqrt{T})$ for LB, an inefficient algorithm	[BDHKRT08]

Expected regret bounds for bandit problems:	
• EXP3: $\tilde{\mathcal{O}}(\sqrt{T})$ for MAB.	[ACFS02]
• SCRIBLE: $ ilde{\mathcal{O}}(\sqrt{T})$ for LB	[AHR12]
High probability regret bounds:	
• EXP3.P, EXP3-IX: $\tilde{\mathcal{O}}(\sqrt{T})$ for MAB	[ACFS02,N15]
• GEOMETRICHEDGE.P: $\tilde{\mathcal{O}}(\sqrt{T})$ for LB, an inefficient algorithm	[BDHKRT08]
• COMPEXP: $\frac{\tilde{\mathcal{O}}(T^{2/3})}{\tilde{\mathcal{O}}(T^{2/3})}$ for LB, an efficient algorithm	[BP16]

Expected regret bounds for bandit problems:	
• Exp3: $ ilde{\mathcal{O}}(\sqrt{T})$ for MAB.	[ACFS02]
• SCRIBLE: $ ilde{\mathcal{O}}(\sqrt{T})$ for LB	[AHR12]
High probability regret bounds:	
• EXP3.P, EXP3-IX: $ ilde{\mathcal{O}}(\sqrt{T})$ for MAB	[ACFS02,N15]
• GEOMETRICHEDGE.P: $\tilde{\mathcal{O}}(\sqrt{T})$ for LB, an inefficient algorithm	[BDHKRT08]
• COMPEXP: $\tilde{\mathcal{O}}(T^{2/3})$ for LB, an efficient algorithm	[BP16]
• $\tilde{\mathcal{O}}(\sqrt{T})$ high probability regret for LB under a set of conditions	[AR09]

Expected regret bounds for bandit problems:	
• EXP3: $\tilde{\mathcal{O}}(\sqrt{T})$ for MAB.	[ACFS02]
• SCRIBLE: $ ilde{\mathcal{O}}(\sqrt{T})$ for LB	[AHR12]
High probability regret bounds:	
• Exp3.P, Exp3-IX: $ ilde{\mathcal{O}}(\sqrt{T})$ for MAB	[ACFS02,N15]
• GEOMETRICHEDGE.P: $\tilde{\mathcal{O}}(\sqrt{T})$ for LB, an inefficient algorithm	[BDHKRT08]
• COMPEXP: $ ilde{\mathcal{O}}(T^{2/3})$ for LB, an efficient algorithm	[BP16]
• $\tilde{\mathcal{O}}(\sqrt{T})$ high probability regret for LB under a set of conditions	[AR09]
Open Problem (BDHKRT08, BP16, AR09): Whether $\tilde{\mathcal{O}}(\sqrt{T})$ hig regret bound is achievable efficiently for general LB?	h probability

Minimax regret bounds:

Minimax regret bounds:

• both MAB and LB: $\tilde{\Theta}(\sqrt{T})$

[ACFS02,DP08]

Minimax regret bounds:

• both MAB and LB: $\tilde{\Theta}(\sqrt{T})$

[ACFS02,DP08]

Data-dependent regret bounds: much better than minimax regret for "easy" instances

Minimax regret bounds:

• both MAB and LB: $\tilde{\Theta}(\sqrt{T})$

[ACFS02,DP08]

- Data-dependent regret bounds: much better than minimax regret for "easy" instances
 - ${\ensuremath{\bullet}}$ small-loss bound: replace T by the loss of the best action in hindsight

Minimax regret bounds:

• both MAB and LB: $\tilde{\Theta}(\sqrt{T})$

[ACFS02,DP08]

- Data-dependent regret bounds: much better than minimax regret for "easy" instances
 - $\bullet\,$ small-loss bound: replace T by the loss of the best action in hindsight
 - ullet variation bound: replace T by the variance of the loss vector

Minimax regret bounds:

• both MAB and LB: $\tilde{\Theta}(\sqrt{T})$

[ACFS02,DP08]

Data-dependent regret bounds: much better than minimax regret for "easy" instances

- ${\ensuremath{\bullet}}$ small-loss bound: replace T by the loss of the best action in hindsight
- variation bound: replace T by the variance of the loss vector

Near-optimal small-loss high probability regret bounds:

Minimax regret bounds:

• both MAB and LB: $\tilde{\Theta}(\sqrt{T})$

[ACFS02,DP08]

- Data-dependent regret bounds: much better than minimax regret for "easy" instances
 - ${\ensuremath{\bullet}}$ small-loss bound: replace T by the loss of the best action in hindsight
 - \bullet variation bound: replace T by the variance of the loss vector

Near-optimal small-loss high probability regret bounds:

• achievable for MAB

[N15]
From Minimax Regret to Data-Dependent Regert Bounds

Minimax regret bounds:

• both MAB and LB: $\tilde{\Theta}(\sqrt{T})$

[ACFS02,DP08]

- Data-dependent regret bounds: much better than minimax regret for "easy" instances
 - ${\ensuremath{\bullet}}$ small-loss bound: replace T by the loss of the best action in hindsight
 - \bullet variation bound: replace T by the variance of the loss vector

Near-optimal small-loss high probability regret bounds:

- achievable for MAB [N15]
- achievable for more general bandit problems with graph feedback. [LTS19]

From Minimax Regret to Data-Dependent Regert Bounds

Minimax regret bounds:

• both MAB and LB: $\tilde{\Theta}(\sqrt{T})$

[ACFS02,DP08]

Data-dependent regret bounds: much better than minimax regret for "easy" instances

- ${\ensuremath{\bullet}}$ small-loss bound: replace T by the loss of the best action in hindsight
- variation bound: replace T by the variance of the loss vector

Near-optimal small-loss high probability regret bounds:

 achievable for MAB 	[N15]
--	-------

• achievable for more general bandit problems with graph feedback.

[LTS19]

Open Problem (N15): Whether data-dependent high probability regret bound is achievable efficiently for general bandit problems?

Near-optimal efficient + high-probability bound for LB

Open Problem (N15):

Near-optimal data-dependent + high-probability bound for bandits

This work:

Near-optimal efficient + high-probability bound for LB

Open Problem (N15):

Near-optimal data-dependent + high-probability bound for bandits

This work:

 Near-optimal efficient + data-dependent + high-probability bound for LB

Near-optimal efficient + high-probability bound for LB

Open Problem (N15):

Near-optimal data-dependent + high-probability bound for bandits

This work:

- Near-optimal efficient + data-dependent + high-probability bound for LB
- also achieves small-loss + high-probability regret bounds for adversarial episodic Markov Decision Process with bandit feedback and unknown transition function

Near-optimal efficient + high-probability bound for LB

Open Problem (N15):

Near-optimal data-dependent + high-probability bound for bandits

This work:

- Near-optimal efficient + data-dependent + high-probability bound for LB
- also achieves small-loss + high-probability regret bounds for adversarial episodic Markov Decision Process with bandit feedback and unknown transition function
- uses unbiased estimators and relies on an increasing learning rate schedule, together with a strengthened Freedman's inequality and normal barriers.

High Probability Near-Optimal Data-Dependent Bound for LB

A convex set Ω is given to the learner For $t=1,\ldots,T$:

A convex set Ω is given to the learner For $t=1,\ldots,T;$

ullet the adversary decides a loss vector $\ell_t \in \mathbb{R}^d$

A convex set Ω is given to the learner For $t=1,\ldots,T;$

- the adversary decides a loss vector $\ell_t \in \mathbb{R}^d$
- the learner picks an arm $\widetilde{w}_t \in \Omega$ and incurs loss $\langle \widetilde{w}_t, \ell_t \rangle$

A convex set Ω is given to the learner For $t=1,\ldots,T;$

- the adversary decides a loss vector $\ell_t \in \mathbb{R}^d$
- the learner picks an arm $\widetilde{w}_t \in \Omega$ and incurs loss $\langle \widetilde{w}_t, \ell_t \rangle$
- the learner observes her loss $\langle \widetilde{w}_t, \ell_t \rangle$

A convex set Ω is given to the learner For $t=1,\ldots,T$:

- the adversary decides a loss vector $\ell_t \in \mathbb{R}^d$
- the learner picks an arm $\widetilde{w}_t \in \Omega$ and incurs loss $\langle \widetilde{w}_t, \ell_t \rangle$
- the learner observes her loss $\langle \widetilde{w}_t, \ell_t \rangle$

Goal: to be competitive w.r.t. a fixed action

$$\operatorname{Reg} \triangleq \sum_{t=1}^{T} \langle \widetilde{w}_t, \ell_t \rangle - \min_{u \in \Omega} \sum_{t=1}^{T} \langle u, \ell_t \rangle$$

A convex set Ω is given to the learner For $t=1,\ldots,T$:

- the adversary decides a loss vector $\ell_t \in \mathbb{R}^d$
- the learner picks an arm $\widetilde{w}_t \in \Omega$ and incurs loss $\langle \widetilde{w}_t, \ell_t \rangle$
- the learner observes her loss $\langle \widetilde{w}_t, \ell_t \rangle$

Goal: to be competitive w.r.t. a fixed action

$$\operatorname{Reg} \triangleq \sum_{t=1}^{T} \langle \widetilde{w}_t, \ell_t \rangle - \min_{u \in \Omega} \sum_{t=1}^{T} \langle u, \ell_t \rangle$$

Assumption: $|\langle w, \ell_t \rangle| \leq 1$ for all $w \in \Omega$

• compute
$$w_t = \operatorname{argmin}_{w \in \Omega} \left\{ \left\langle w, \hat{\ell}_{t-1} \right\rangle + D_{\psi}(w, w_{t-1}) \right\}$$

- compute $w_t = \operatorname{argmin}_{w \in \Omega} \left\{ \left\langle w, \hat{\ell}_{t-1} \right\rangle + D_{\psi}(w, w_{t-1}) \right\}$
 - ψ : ν -self-concordant barrier over Ω
 - D_{ψ} : Bregman divergence with respect to ψ

- compute $w_t = \operatorname{argmin}_{w \in \Omega} \left\{ \left\langle w, \hat{\ell}_{t-1} \right\rangle + D_{\psi}(w, w_{t-1}) \right\}$
 - ψ : ν -self-concordant barrier over Ω
 - D_{ψ} : Bregman divergence with respect to ψ
- choose \widetilde{w}_t from Dikin ellipsoid $\|\widetilde{w}_t w_t\|_{H_t} = 1$ and observe $\langle \widetilde{w}_t, \ell_t \rangle$

For each round $t = 1, 2, \ldots, T$

- compute $w_t = \operatorname{argmin}_{w \in \Omega} \left\{ \left\langle w, \widehat{\ell}_{t-1} \right\rangle + D_{\psi}(w, w_{t-1}) \right\}$
 - ψ : ν -self-concordant barrier over Ω
 - D_{ψ} : Bregman divergence with respect to ψ

• choose \widetilde{w}_t from Dikin ellipsoid $\|\widetilde{w}_t - w_t\|_{H_t} = 1$ and observe $\langle \widetilde{w}_t, \ell_t \rangle$

• $H_t = \nabla^2 \psi(w_t)$

For each round $t = 1, 2, \ldots, T$

- compute $w_t = \operatorname{argmin}_{w \in \Omega} \left\{ \left\langle w, \widehat{\ell}_{t-1} \right\rangle + D_{\psi}(w, w_{t-1}) \right\}$
 - ψ : ν -self-concordant barrier over Ω
 - D_{ψ} : Bregman divergence with respect to ψ
- choose \widetilde{w}_t from Dikin ellipsoid $\|\widetilde{w}_t w_t\|_{H_t} = 1$ and observe $\langle \widetilde{w}_t, \ell_t \rangle$

•
$$H_t = \nabla^2 \psi(w_t)$$

• construct unbiased loss estimator $\widehat{\ell_t}$

For each round $t = 1, 2, \ldots, T$

- compute $w_t = \operatorname{argmin}_{w \in \Omega} \left\{ \left\langle w, \widehat{\ell}_{t-1} \right\rangle + D_{\psi}(w, w_{t-1}) \right\}$
 - ψ : ν -self-concordant barrier over Ω
 - D_{ψ} : Bregman divergence with respect to ψ
- choose \widetilde{w}_t from Dikin ellipsoid $\|\widetilde{w}_t w_t\|_{H_t} = 1$ and observe $\langle \widetilde{w}_t, \ell_t \rangle$

•
$$H_t = \nabla^2 \psi(w_t)$$

• construct unbiased loss estimator $\widehat{\ell}_t$

Key challenge in obtaining h.p. bound:

control the variance of
$$\left\langle w_t - u, \widehat{\ell}_t \right\rangle$$

For each round $t = 1, 2, \ldots, T$

- compute $w_t = \operatorname{argmin}_{w \in \Omega} \left\{ \left\langle w, \widehat{\ell}_{t-1} \right\rangle + D_{\psi}(w, w_{t-1}) \right\}$
 - ψ : ν -self-concordant barrier over Ω
 - D_{ψ} : Bregman divergence with respect to ψ
- choose \widetilde{w}_t from Dikin ellipsoid $\|\widetilde{w}_t w_t\|_{H_t} = 1$ and observe $\langle \widetilde{w}_t, \ell_t \rangle$

•
$$H_t = \nabla^2 \psi(w_t)$$

• construct unbiased loss estimator $\widehat{\ell}_t$

Key challenge in obtaining h.p. bound:

control the variance of
$$\left\langle w_t - u, \widehat{\ell}_t
ight
angle \Longrightarrow$$
 control $\|u\|_{H_t}$ and $\|w_t\|_{H_t}$

For each round $t = 1, 2, \ldots, T$

- compute $w_t = \operatorname{argmin}_{w \in \Omega} \left\{ \left\langle w, \widehat{\ell}_{t-1} \right\rangle + D_{\psi}(w, w_{t-1}) \right\}$
 - ψ : ν -self-concordant barrier over Ω
 - D_{ψ} : Bregman divergence with respect to ψ
- choose \widetilde{w}_t from Dikin ellipsoid $\|\widetilde{w}_t w_t\|_{H_t} = 1$ and observe $\langle \widetilde{w}_t, \ell_t \rangle$

•
$$H_t = \nabla^2 \psi(w_t)$$

• construct unbiased loss estimator $\widehat{\ell}_t$

Key challenge in obtaining h.p. bound:

control the variance of
$$\left\langle w_t - u, \widehat{\ell}_t
ight
angle \Longrightarrow$$
 control $\|u\|_{H_t}$ and $\|w_t\|_{H_t}$

A strengthened Freedman's inequality is needed as classic Freedman's inequality depends on the *fixed* upper bound for $\langle w_t - u, \hat{\ell}_t \rangle$

• θ -normal barriers ψ on a proper cone K:

- θ -normal barriers ψ on a proper cone K:
 - \blacktriangleright self-concordant with domain int K

- θ -normal barriers ψ on a proper cone K:
 - \blacktriangleright self-concordant with domain int K
 - $\blacktriangleright \ \psi(tx) = \psi(x) \theta \ln(t), \forall x \in \mathsf{int} \ K, t > 0$

- θ -normal barriers ψ on a proper cone K:
 - self-concordant with domain int K
 - $\blacktriangleright \ \psi(tx) = \psi(x) \theta \ln(t), \forall x \in \mathsf{int} \ K, t > 0$
- if ψ is also a θ -normal barrier:

$$\|w_t\|_{H_t} \le \sqrt{\theta}$$

- θ -normal barriers ψ on a proper cone K:
 - self-concordant with domain int K
 - $\blacktriangleright \ \psi(tx) = \psi(x) \theta \ln(t), \forall x \in \mathsf{int} \ K, t > 0$
- if ψ is also a θ -normal barrier:

$$\|w_t\|_{H_t} \le \sqrt{\theta}$$

• however, normal barriers are only defined on cones instead of general convex bodies

- θ -normal barriers ψ on a proper cone K:
 - self-concordant with domain int K
 - $\blacktriangleright \ \psi(tx) = \psi(x) \theta \ln(t), \forall x \in \mathsf{int} \ K, t > 0$
- if ψ is also a θ -normal barrier:

$$\|w_t\|_{H_t} \le \sqrt{\theta}$$

- however, normal barriers are only defined on cones instead of general convex bodies
- solution: lifting the problem from \mathbb{R}^d to \mathbb{R}^{d+1} !

• feasible set $\Omega \subseteq \mathbb{R}^d$

• feasible set $\Omega \subseteq \mathbb{R}^d$ \Rightarrow lifted to \mathbb{R}^{d+1} : $\Omega = (\Omega, 1)$

- feasible set $\Omega \subseteq \mathbb{R}^d$ \Rightarrow lifted to \mathbb{R}^{d+1} : $\Omega = (\Omega, 1)$
- $\bullet\,$ construct the conic hull of $\Omega\,$

- feasible set $\Omega \subseteq \mathbb{R}^d$ \Rightarrow lifted to \mathbb{R}^{d+1} : $\mathbf{\Omega} = (\Omega, 1)$
- $\bullet\,$ construct the conic hull of $\Omega\,$
- lift the point $w \in \Omega$ to $\boldsymbol{w} = (w,1) \in \boldsymbol{\Omega}$

- feasible set $\Omega \subseteq \mathbb{R}^d$ \Rightarrow lifted to \mathbb{R}^{d+1} : $\Omega = (\Omega, 1)$
- $\bullet\,$ construct the conic hull of $\Omega\,$
- lift the point $w \in \Omega$ to ${oldsymbol w} = (w,1) \in {oldsymbol \Omega}$
- construct the Dikin ellipsoid with respect to w according to a normal barrier Ψ

- feasible set $\Omega \subseteq \mathbb{R}^d$ \Rightarrow lifted to \mathbb{R}^{d+1} : $\Omega = (\Omega, 1)$
- ullet construct the conic hull of Ω
- lift the point $w \in \Omega$ to ${oldsymbol w} = (w,1) \in {oldsymbol \Omega}$
- construct the Dikin ellipsoid with respect to w according to a normal barrier Ψ
 - any normal barrier Ψ is applicable here

- feasible set $\Omega \subseteq \mathbb{R}^d$ \Rightarrow lifted to \mathbb{R}^{d+1} : $\Omega = (\Omega, 1)$
- ullet construct the conic hull of Ω
- lift the point $w \in \Omega$ to ${oldsymbol w} = (w,1) \in {oldsymbol \Omega}$
- construct the Dikin ellipsoid with respect to w according to a normal barrier Ψ
 - any normal barrier Ψ is applicable here
 - a natural construction of Ψ from a self-concordant barrier ψ of Ω:
 Ψ(w, b) = 400(ψ(^w/_b) − 2ν ln b)

Illustration of lifting

- feasible set $\Omega \subseteq \mathbb{R}^d$ \Rightarrow lifted to \mathbb{R}^{d+1} : $\mathbf{\Omega} = (\Omega, 1)$
- construct the conic hull of Ω
- lift the point $w \in \Omega$ to ${oldsymbol w} = (w,1) \in {oldsymbol \Omega}$
- construct the Dikin ellipsoid with respect to w according to a normal barrier Ψ
 - any normal barrier Ψ is applicable here
 - a natural construction of Ψ from a self-concordant barrier ψ of Ω : $\Psi(w, b) = 400(\psi(\frac{w}{b}) - 2\nu \ln b)$
- \bullet sample from the boundary of the intersection of the Dikin ellipsoid and Ω

Comparison with $\operatorname{SCRIBLE}$

Comparison with $\operatorname{SCRIBLE}$

• SCRIBLE update:
$$\operatorname{argmin}_{w \in \Omega} \left\{ \left\langle w, \hat{\ell}_t \right\rangle + D_{\psi}(w, w_t) \right\}$$

Comparison with SCRIBLE

- SCRIBLE update: $\operatorname{argmin}_{w \in \Omega} \left\{ \left\langle w, \hat{\ell}_t \right\rangle + D_{\psi}(w, w_t) \right\}$
- lifted problem: $\operatorname{argmin}_{\boldsymbol{w}\in\boldsymbol{\Omega}}\left\{\left\langle \boldsymbol{w},\widehat{\boldsymbol{\ell}}_t\right\rangle + D_{\Psi}(\boldsymbol{w},\boldsymbol{w}_t)\right\}$

Comparison with SCRIBLE

- SCRIBLE update: $\operatorname{argmin}_{w \in \Omega} \left\{ \left\langle w, \hat{\ell}_t \right\rangle + D_{\psi}(w, w_t) \right\}$
- lifted problem: $\operatorname{argmin}_{\boldsymbol{w} \in \boldsymbol{\Omega}} \left\{ \left\langle \boldsymbol{w}, \widehat{\boldsymbol{\ell}}_t \right\rangle + D_{\Psi}(\boldsymbol{w}, \boldsymbol{w}_t) \right\}$
- Observe that $\Psi(w,b) = 400(\psi(\frac{w}{b}) 2\nu\ln b)$

$$\Psi(\boldsymbol{w}) = \Psi(w, 1) = 400\psi(w), \boldsymbol{w} \in \boldsymbol{\Omega}$$

Comparison with $\operatorname{SCRIBLE}$

- SCRIBLE update: $\operatorname{argmin}_{w \in \Omega} \left\{ \left\langle w, \hat{\ell}_t \right\rangle + D_{\psi}(w, w_t) \right\}$
- lifted problem: $\operatorname{argmin}_{\boldsymbol{w} \in \boldsymbol{\Omega}} \left\{ \left\langle \boldsymbol{w}, \widehat{\boldsymbol{\ell}}_t \right\rangle + D_{\Psi}(\boldsymbol{w}, \boldsymbol{w}_t) \right\}$
- Observe that $\Psi(w,b) = 400(\psi(\frac{w}{b}) 2\nu\ln b)$

$$\Psi(\boldsymbol{w}) = \Psi(w, 1) = 400\psi(w), \boldsymbol{w} \in \boldsymbol{\Omega}$$

• SCRIBLE with a new sampling scheme!

• Idea: increasing learning rate (which creates negative regret!). e.g.,

- Idea: increasing learning rate (which creates negative regret!). e.g.,
 - combining algorithms with different regret bounds under different settings [ALNE17]

• Idea: increasing learning rate (which creates negative regret!). e.g.,

- combining algorithms with different regret bounds under different settings [ALNE17]
- deriving small-loss and other data-dependent bounds

• Idea: increasing learning rate (which creates negative regret!). e.g.,

- combining algorithms with different regret bounds under different settings [ALNE17]
- deriving small-loss and other data-dependent bounds
- The effect of increasing learning rate at time t:

• Idea: increasing learning rate (which creates negative regret!). e.g.,

- combining algorithms with different regret bounds under different settings [ALNE17]
- deriving small-loss and other data-dependent bounds
- The effect of increasing learning rate at time t:

increase $\eta \to (1+\epsilon)\eta$

• Idea: increasing learning rate (which creates negative regret!). e.g.,

- combining algorithms with different regret bounds under different settings [ALNE17]
- deriving small-loss and other data-dependent bounds
- The effect of increasing learning rate at time t:

increase $\eta \to (1+\epsilon)\eta \implies$ create negative regret $\frac{-\epsilon}{(1+\epsilon)n}D_{\Psi}(\boldsymbol{u},\boldsymbol{w}_t)$

• Idea: increasing learning rate (which creates negative regret!). e.g.,

- combining algorithms with different regret bounds under different settings [ALNE17]
- deriving small-loss and other data-dependent bounds
- The effect of increasing learning rate at time t:

 $\begin{array}{ll} \text{increase } \eta \to (1+\epsilon)\eta \implies & \text{create negative regret } \frac{-\epsilon}{(1+\epsilon)\eta}D_{\Psi}(\boldsymbol{u},\boldsymbol{w}_t) \\ \text{with normal barriers:} & \frac{\epsilon}{(1+\epsilon)}D_{\Psi}(\boldsymbol{u},\boldsymbol{w}_t) \gtrsim \|\boldsymbol{u}\|_{\boldsymbol{H}_t} & \text{(cancelling variance!)} \end{array}$

• Idea: increasing learning rate (which creates negative regret!). e.g.,

- combining algorithms with different regret bounds under different settings [ALNE17]
- deriving small-loss and other data-dependent bounds
- The effect of increasing learning rate at time t:

 $\begin{array}{ll} \text{increase } \eta \to (1+\epsilon)\eta \implies \text{ create negative regret } \frac{-\epsilon}{(1+\epsilon)\eta}D_{\Psi}(\boldsymbol{u},\boldsymbol{w}_t) \\ \text{with normal barriers:} \quad \frac{\epsilon}{(1+\epsilon)}D_{\Psi}(\boldsymbol{u},\boldsymbol{w}_t) \gtrsim \|\boldsymbol{u}\|_{\boldsymbol{H}_t} \qquad \text{(cancelling variance!)} \end{array}$

when to increase learning rate?

• Idea: increasing learning rate (which creates negative regret!). e.g.,

- combining algorithms with different regret bounds under different settings [ALNE17]
- deriving small-loss and other data-dependent bounds
- The effect of increasing learning rate at time t:

 $\begin{array}{ll} \text{increase } \eta \to (1+\epsilon)\eta \implies \text{ create negative regret } \frac{-\epsilon}{(1+\epsilon)\eta}D_{\Psi}(\boldsymbol{u},\boldsymbol{w}_t) \\ \text{with normal barriers: } \quad \frac{\epsilon}{(1+\epsilon)}D_{\Psi}(\boldsymbol{u},\boldsymbol{w}_t) \gtrsim \|\boldsymbol{u}\|_{\boldsymbol{H}_t} \qquad \text{(cancelling variance!)} \end{array}$

• when to increase learning rate? when H_t is "large"

• Idea: increasing learning rate (which creates negative regret!). e.g.,

- combining algorithms with different regret bounds under different settings [ALNE17]
- deriving small-loss and other data-dependent bounds
- The effect of increasing learning rate at time t:

 $\begin{array}{ll} \text{increase } \eta \to (1+\epsilon)\eta \implies & \text{create negative regret } \frac{-\epsilon}{(1+\epsilon)\eta}D_{\Psi}(\boldsymbol{u},\boldsymbol{w}_t) \\ \text{with normal barriers:} & \frac{\epsilon}{(1+\epsilon)}D_{\Psi}(\boldsymbol{u},\boldsymbol{w}_t)\gtrsim \|\boldsymbol{u}\|_{\boldsymbol{H}_t} & \text{(cancelling variance!)} \end{array}$

when to increase learning rate? when H_t is "large"

 $\lambda_{\max} \left(\boldsymbol{H}_t - \sum_{\tau \in S} \boldsymbol{H}_{\tau} \right) > 0$, where S is the set of previous time steps at which we increase learning rate

Regret Bounds

With probability at least
$$1 - \delta$$

$$\operatorname{Reg} = \begin{cases} \tilde{\mathcal{O}} \left(d^2 \nu \sqrt{T \ln \frac{1}{\delta}} + d^2 \nu \ln \frac{1}{\delta} \right), & \text{against an oblivious adversary;} \\ \tilde{\mathcal{O}} \left(d^2 \nu \sqrt{dT \ln \frac{1}{\delta}} + d^3 \nu \ln \frac{1}{\delta} \right), & \text{against an adaptive adversary} \end{cases}$$

Regret Bounds

With probability at least
$$1 - \delta$$

$$\operatorname{Reg} = \begin{cases} \tilde{\mathcal{O}} \left(d^2 \nu \sqrt{T \ln \frac{1}{\delta}} + d^2 \nu \ln \frac{1}{\delta} \right), & \text{against an oblivious adversary;} \\ \tilde{\mathcal{O}} \left(d^2 \nu \sqrt{dT \ln \frac{1}{\delta}} + d^3 \nu \ln \frac{1}{\delta} \right), & \text{against an adaptive adversary} \end{cases}$$

if $\langle w, \ell_t \rangle \ge 0$ for all $w \in \Omega$, $t \in [T]$, then T can be replaced by $L^* = \min_{u \in \Omega} \sum_{t=1}^T \langle u, \ell_t \rangle$, or other data-dependent values with optimistic estimators

High Probability Small-Loss Bound for Markov Decision Process

With the help of increasing learning rate, we obtain the first high probability small-loss regret bound for adversarial MDP, improving the result of [JJLSY19]

With the help of increasing learning rate, we obtain the first high probability small-loss regret bound for adversarial MDP, improving the result of [JJLSY19]

With high probability, $\operatorname{Reg} = \tilde{\mathcal{O}}\left(\sqrt{L^{\star}}\right)$, for both oblivious and adaptive adversaries

With the help of increasing learning rate, we obtain the first high probability small-loss regret bound for adversarial MDP, improving the result of [JJLSY19]

With high probability, $\operatorname{Reg} = \tilde{\mathcal{O}}\left(\sqrt{L^{\star}}\right)$, for both oblivious and adaptive adversaries

• clipping technique and implicit exploration may not be directly applicable here to obtain small-loss bound

With the help of increasing learning rate, we obtain the first high probability small-loss regret bound for adversarial MDP, improving the result of [JJLSY19]

With high probability, $\operatorname{Reg} = \tilde{\mathcal{O}}\left(\sqrt{L^{\star}}\right)$, for both oblivious and adaptive adversaries

- clipping technique and implicit exploration may not be directly applicable here to obtain small-loss bound
- not clear how to obtain other data-dependent bounds as there are several terms in the regret that are naturally only related to L^\star

This work:

- Linear bandits: first efficient algorithm with high probability data-dependent bound for general feasible sets. techniques:
 - lifting
 - normal barrier
 - increasing learning rate

This work:

- Linear bandits: first efficient algorithm with high probability data-dependent bound for general feasible sets. techniques:
 - lifting
 - normal barrier
 - increasing learning rate
- Adversarial MDP: high probability small-loss regret bounds with bandit feedback and unknown transition

This work:

- Linear bandits: first efficient algorithm with high probability data-dependent bound for general feasible sets. techniques:
 - lifting
 - normal barrier
 - increasing learning rate
- Adversarial MDP: high probability small-loss regret bounds with bandit feedback and unknown transition

Open problems:

This work:

- Linear bandits: first efficient algorithm with high probability data-dependent bound for general feasible sets. techniques:
 - lifting
 - normal barrier
 - increasing learning rate
- Adversarial MDP: high probability small-loss regret bounds with bandit feedback and unknown transition

Open problems:

• Linear bandits: improving the dependence on d

This work:

- Linear bandits: first efficient algorithm with high probability data-dependent bound for general feasible sets. techniques:
 - lifting
 - normal barrier
 - increasing learning rate
- Adversarial MDP: high probability small-loss regret bounds with bandit feedback and unknown transition

Open problems:

- Linear bandits: improving the dependence on d
- MDP: other types of data-dependent bounds