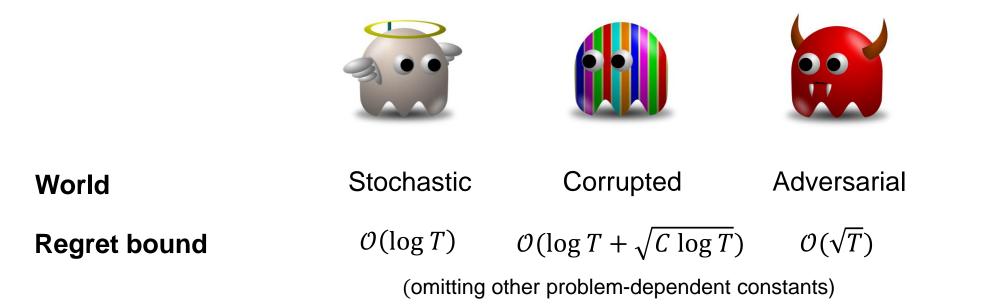
A Blackbox Approach to Best of Both Worlds in Bandits and Beyond

Presenter: Shinji Ito (NEC Corporation)

Authors: Christoph Dann (Google), Chen-Yu Wei (MIT), Julian Zimmert (Google)

The Best of Both (Three) Worlds Problem

(Figures taken from Wouter Koolen's slides)



Goal: A single algorithm that has all guarantees without knowing the type of the world?

Existing Techniques for Multi-Armed Bandits

log T	$\tilde{O}(\sqrt{C})$	Multiple optimal arms	Refined gap bound

Refined gap bound means obtaining
$$\sum_{i=1}^{K} \frac{\log T}{\Delta_i}$$
 instead of $\frac{K \log T}{\Delta_{\min}}$

Existing Techniques for Multi-Armed Bandits

	log T	$\tilde{O}(\sqrt{C})$	Multiple optimal arms	Refined gap bound
1. Stochastic ↔ Adversarial (Bubeck and Slivkins, 2012)			\checkmark	\checkmark
2. EW + extra exploration (Slivkins and Seldin, 2014)			\checkmark	\checkmark
3. EW + adaptive learning rate (Ito et al., 2022)		\checkmark		
4. FTRL + Tsallis entropy (Zimmert and Seldin, 2019; Ito, 2021)	\checkmark	\checkmark	\checkmark	\checkmark

Refined gap bound means obtaining $\sum_{i=1}^{K} \frac{\log T}{\Delta_i}$ instead of $\frac{K \log T}{\Delta_{\min}}$

Existing Techniques for Graph / Linear Bandits

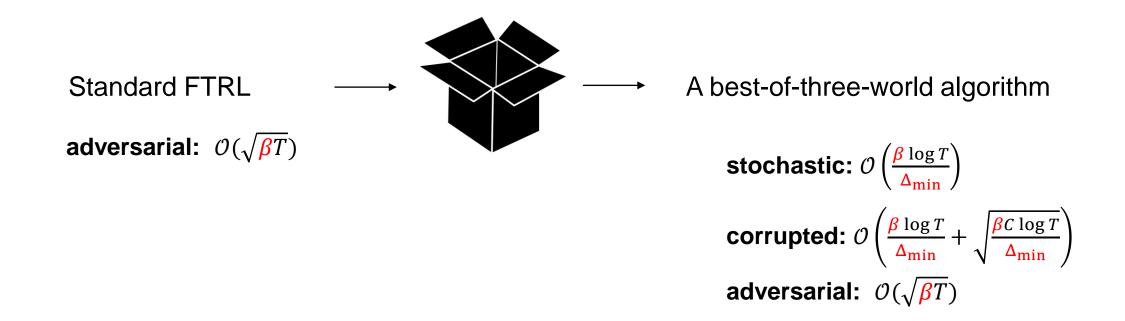
Linear Bandits

	log T	$\tilde{O}(\sqrt{C})$	Multiple optimal arms	Refined gap bound
1. Stochastic ↔ Adversarial (Lee et al., 2021)				\checkmark

Graph Bandits

	log T	$\tilde{O}(\sqrt{C})$	Multiple optimal arms	Refined gap bound
2. EW + extra exploration (Rouyer et al., 2022)			\checkmark	\checkmark
3. EW + adaptive learning rate (Ito et al., 2022)		\checkmark		

Our Blackbox Approach



Assumption: The best action/policy is *unique* Δ_{min} = gap between the best and the second-best action/policy

Improvement via Our Approach

Linear Bandits

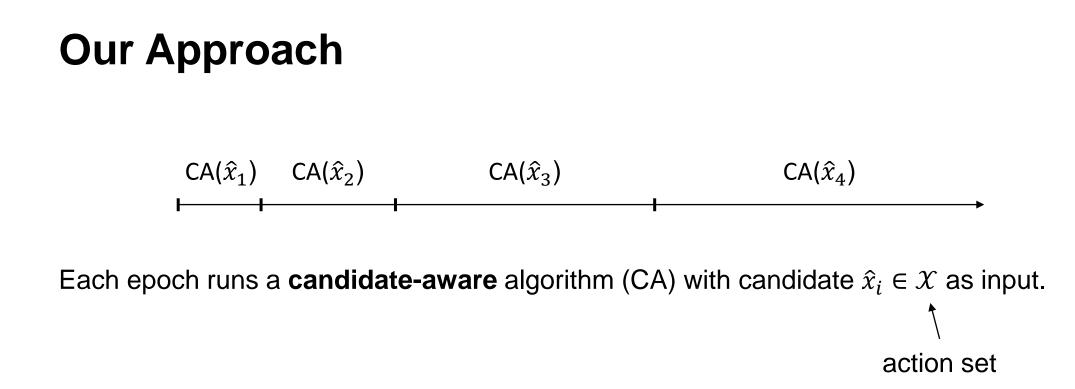
	log T	$\tilde{O}(\sqrt{C})$	Multiple optimal arms	Refined gap bound
(Lee et al., 2021)				\checkmark
Our Approach	\checkmark	\checkmark		

Graph Bandits

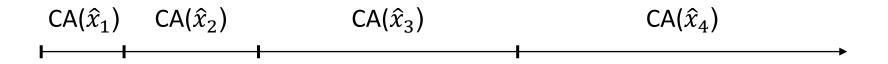
	log T	$\tilde{O}(\sqrt{C})$	Multiple optimal arms	Refined gap bound
(Rouyer et al., 2022)			\checkmark	\checkmark
(Ito et al., 2022)		\checkmark		
Our Approach	✓	\checkmark		

Contextual Bandits

	log T	$\tilde{O}(\sqrt{C})$	Multiple optimal policies	Refined gap bound
Our Approach	\checkmark	\checkmark		



Our Approach



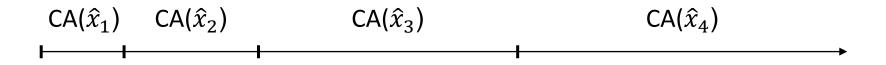
Each epoch runs a **candidate-aware** algorithm (CA) with candidate $\hat{x}_i \in \mathcal{X}$ as input.

 $CA(\hat{x})$ need to

action set

- Guarantee the standard \sqrt{T} regret against all actions in \mathcal{X}
- Guarantee an improved regret bound against \hat{x}

Our Approach



Each epoch runs a **candidate-aware** algorithm (CA) with candidate $\hat{x}_i \in \mathcal{X}$ as input.

 $CA(\hat{x})$ need to

action set

- Guarantee the standard \sqrt{T} regret against all actions in \mathcal{X}
- Guarantee an improved regret bound against \hat{x}

Below, we will explain

- 1. The precise meaning of the *improved regret bound*, and the implementation of $CA(\hat{x})$
- 2. When to start a new epoch, and how to decide \hat{x}_i

1. The Requirement for $CA(\hat{x})$

Given an action \hat{x} as input, CA(\hat{x}) needs to ensure

$$\sum_{t=1}^{T} (\ell_t(x_t) - \ell_t(x)) \le \begin{cases} \sqrt{\beta T} & \text{For all } x \\ \sqrt{\beta} \sum_{t=1}^{T} (1 - p_t(\hat{x})) \log T & \text{if } x = \hat{x} \end{cases}$$

Probability of choosing \hat{x} at round t

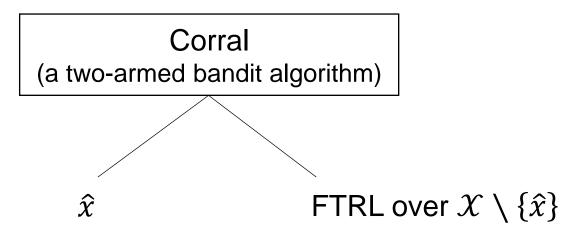
1. The Requirement for $CA(\hat{x})$

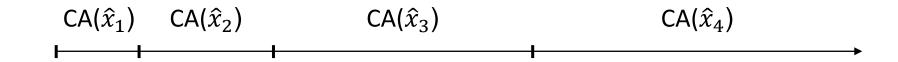
Given an action \hat{x} as input, CA(\hat{x}) needs to ensure

$$\sum_{t=1}^{T} (\ell_t(x_t) - \ell_t(x)) \le \begin{cases} \sqrt{\beta T} & \text{For all } x \\ \sqrt{\beta} \sum_{t=1}^{T} (1 - p_t(\hat{x})) \log T & \text{if } x = \hat{x} \end{cases}$$

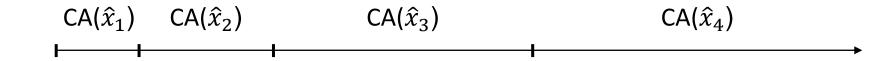
Implementation:

Probability of choosing \hat{x} at round t



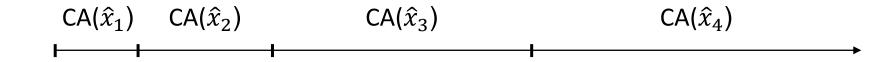


Epoch *i* terminates if both of the following hold:



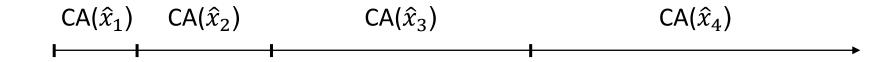
Epoch *i* terminates if both of the following hold:

• There exists $x \neq \hat{x}_i$ chosen more than half of the times in epoch *i* (This *x* is then set as \hat{x}_{i+1})



Epoch *i* terminates if both of the following hold:

- There exists $x \neq \hat{x}_i$ chosen more than half of the times in epoch *i* (This *x* is then set as \hat{x}_{i+1})
- Length(epoch i) > 2 × Length(epoch i 1) (for i > 1)



Epoch *i* terminates if both of the following hold:

- There exists $x \neq \hat{x}_i$ chosen more than half of the times in epoch *i* (This *x* is then set as \hat{x}_{i+1})
- Length(epoch i) > 2 × Length(epoch i 1) (for i > 1)

Theorem:

The overall procedure guarantees

$$\sum_{t=1}^{T} (\ell_t(x_t) - \ell_t(x)) \le \begin{cases} \frac{\beta \log T}{\Delta_{\min}} + \sqrt{\frac{\beta \log T}{\Delta_{\min}} \cdot C} & \text{in the stochastic/corrupted world} \\ \sqrt{\beta T} & \text{in the adversarial world} \end{cases}$$

Summary

- We provide a general way to convert an **FTRL** to a **best-of-three-world** algorithm.
- The conversion achieves two of the four desired properties in a wide range of settings, producing state-of-the-art results in graph / linear / contextual bandits.

 $\sqrt{C \log T}$ $\sqrt{\log T}$ $\sqrt{\log T}$ Multiple optimal actions \mathbb{X} Refined gap bound

• Future work: handling multiple optimal actions and achieving refined gap bound