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The Best of Both (Three) Worlds Problem

Stochastic AdversarialWorld

Regret bound 𝒪 log 𝑇 𝒪( 𝑇)

Goal:   A single algorithm that has all guarantees without knowing the type of the world? 

Corrupted

𝒪(log 𝑇 + 𝐶 log 𝑇)

(Figures taken from Wouter Koolen’s slides)

(omitting other problem-dependent constants)



Existing Techniques for Multi-Armed Bandits

log 𝑇 ෨𝑂( 𝐶 ) Multiple optimal arms Refined gap bound 

Refined gap bound means obtaining  σ𝑖=1
𝐾 log 𝑇

Δ𝑖
instead of  

𝐾 log 𝑇

Δmin



Existing Techniques for Multi-Armed Bandits

log 𝑇 ෨𝑂( 𝐶 ) Multiple optimal arms Refined gap bound 

1. Stochastic  ↔ Adversarial
(Bubeck and Slivkins, 2012) 

✓ ✓

2. EW + extra exploration
(Slivkins and Seldin, 2014)

✓ ✓

3. EW + adaptive learning rate
(Ito et al., 2022)

✓

4. FTRL + Tsallis entropy
(Zimmert and Seldin, 2019; Ito, 2021)

✓ ✓ ✓ ✓

Refined gap bound means obtaining  σ𝑖=1
𝐾 log 𝑇

Δ𝑖
instead of  

𝐾 log 𝑇

Δmin



Existing Techniques for Graph / Linear Bandits

log 𝑇 ෨𝑂( 𝐶 ) Multiple optimal arms Refined gap bound 

2. EW + extra exploration
(Rouyer et al., 2022)

✓ ✓

3. EW + adaptive learning rate
(Ito et al., 2022)

✓

log 𝑇 ෨𝑂( 𝐶 ) Multiple optimal arms Refined gap bound 

1. Stochastic  ↔ Adversarial
(Lee et al., 2021)

✓

Graph Bandits

Linear Bandits



Our Blackbox Approach

Standard FTRL A best-of-three-world algorithm

adversarial:  𝒪( 𝛽𝑇)
stochastic: 𝒪

𝛽 log 𝑇

Δmin

corrupted: 𝒪
𝛽 log 𝑇

Δmin
+

𝛽𝐶 log 𝑇

Δmin

adversarial:  𝒪( 𝛽𝑇)

Assumption: 

The best action/policy is unique

Δmin = gap between the best and the second-best action/policy



Improvement via Our Approach

log 𝑇 ෨𝑂( 𝐶 ) Multiple optimal arms Refined gap bound 

(Rouyer et al., 2022) ✓ ✓

(Ito et al., 2022) ✓

Our Approach ✓ ✓

log 𝑇 ෨𝑂( 𝐶 ) Multiple optimal arms Refined gap bound 

(Lee et al., 2021) ✓

Our Approach ✓ ✓

Graph Bandits

Linear Bandits

log 𝑇 ෨𝑂( 𝐶 ) Multiple optimal policies Refined gap bound 

Our Approach ✓ ✓

Contextual Bandits



Our Approach

CA( ො𝑥1) CA( ො𝑥2) CA( ො𝑥3) CA( ො𝑥4)

Each epoch runs a candidate-aware algorithm (CA) with candidate ො𝑥𝑖 ∈ 𝒳 as input.  

action set



Our Approach

CA( ො𝑥1) CA( ො𝑥2) CA( ො𝑥3) CA( ො𝑥4)

Each epoch runs a candidate-aware algorithm (CA) with candidate ො𝑥𝑖 ∈ 𝒳 as input.  

CA( ො𝑥) need to 

● Guarantee the standard 𝑇 regret against all actions in 𝒳
● Guarantee an improved regret bound against ො𝑥

action set



Our Approach

CA( ො𝑥1) CA( ො𝑥2) CA( ො𝑥3) CA( ො𝑥4)

Each epoch runs a candidate-aware algorithm (CA) with candidate ො𝑥𝑖 ∈ 𝒳 as input.  

CA( ො𝑥) need to 

● Guarantee the standard 𝑇 regret against all actions in 𝒳
● Guarantee an improved regret bound against ො𝑥

Below, we will explain

1.  The precise meaning of the improved regret bound, and the implementation of CA( ො𝑥)

2.  When to start a new epoch, and how to decide ො𝑥𝑖

action set



1. The Requirement for CA(ෝ𝒙)

Given an action ො𝑥 as input, CA( ො𝑥) needs to ensure



𝑡=1

𝑇

(ℓ𝑡 𝑥𝑡 − ℓ𝑡 𝑥 ) ≤ ቊ
𝛽

𝑡=1

𝑇

(1 − 𝑝𝑡 ො𝑥 ) log 𝑇

𝛽𝑇

if 𝑥 = ො𝑥

For all 𝑥

Probability of choosing ො𝑥 at round 𝑡



1. The Requirement for CA(ෝ𝒙)

Given an action ො𝑥 as input, CA( ො𝑥) needs to ensure



𝑡=1

𝑇

(ℓ𝑡 𝑥𝑡 − ℓ𝑡 𝑥 ) ≤ ቊ
𝛽

𝑡=1

𝑇

(1 − 𝑝𝑡 ො𝑥 ) log 𝑇

𝛽𝑇

if 𝑥 = ො𝑥

For all 𝑥

Corral 
(a two-armed bandit algorithm)

ො𝑥 FTRL over 𝒳 ∖ ො𝑥

Implementation: Probability of choosing ො𝑥 at round 𝑡



2. Epoch Scheduling and Candidate Assignment

Epoch 𝑖 terminates if both of the following hold: 

CA( ො𝑥1) CA( ො𝑥2) CA( ො𝑥3) CA( ො𝑥4)
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● There exists 𝑥 ≠ ො𝑥𝑖 chosen more than half of the times in epoch 𝑖 (This 𝑥 is then set as ො𝑥𝑖+1)



2. Epoch Scheduling and Candidate Assignment

Epoch 𝑖 terminates if both of the following hold: 

CA( ො𝑥1) CA( ො𝑥2) CA( ො𝑥3) CA( ො𝑥4)

● There exists 𝑥 ≠ ො𝑥𝑖 chosen more than half of the times in epoch 𝑖 (This 𝑥 is then set as ො𝑥𝑖+1)
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2. Epoch Scheduling and Candidate Assignment

Epoch 𝑖 terminates if both of the following hold: 

Theorem: 

The overall procedure guarantees



𝑡=1

𝑇

(ℓ𝑡 𝑥𝑡 − ℓ𝑡 𝑥 ) ≤ ቊ

𝛽 log 𝑇

Δmin
+

𝛽 log 𝑇

Δmin
⋅ 𝐶

𝛽𝑇

in the stochastic/corrupted world

in the adversarial world

CA( ො𝑥1) CA( ො𝑥2) CA( ො𝑥3) CA( ො𝑥4)

● There exists 𝑥 ≠ ො𝑥𝑖 chosen more than half of the times in epoch 𝑖 (This 𝑥 is then set as ො𝑥𝑖+1)

● Length(epoch 𝑖) > 2 × Length(epoch 𝑖 − 1) (for 𝑖 > 1)



Summary

● We provide a general way to convert an FTRL to a best-of-three-world algorithm.

● The conversion achieves two of the four desired properties in a wide range of settings, 

producing state-of-the-art results in graph / linear / contextual bandits.

● Future work:  handling multiple optimal actions and achieving refined gap bound

 𝐶 log 𝑇  log 𝑇  Multiple optimal actions  Refined gap bound 
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