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Contextual Bandits

Goal: earn as much reward as possible in the long run.

Only see whether the recommended news is clicked or not (but not other
news)
Different from multi-armed bandit.

Luo, Wei, Agarwal, Langford Efficient Contextual Bandits 2 / 7



Contextual Bandits

Goal: earn as much reward as possible in the long run.
Only see whether the recommended news is clicked or not (but not other
news)

Different from multi-armed bandit.

Luo, Wei, Agarwal, Langford Efficient Contextual Bandits 2 / 7



Contextual Bandits

Goal: earn as much reward as possible in the long run.
Only see whether the recommended news is clicked or not (but not other
news)
Different from multi-armed bandit.

Luo, Wei, Agarwal, Langford Efficient Contextual Bandits 2 / 7



Contextual Bandits

For t = 1, 2, . . . ,T :

see a context xt ∈ X
pick an action at ∈ {1, 2, . . . ,K}
observe reward rt(at) ∈ [0, 1] (but not rt(a) for a 6= at)

Goal: Given a policy class Π = {π : X → [K ]} (e.g., neural nets, trees),
the goal is to minimize

regret =
T∑
t=1

rt(π
∗(xt))−

T∑
t=1

rt(at), π∗ = best policy in Π

EXP4: sublinear regret, but the complexity is linear in |Π|
ε-greedy, ILOVETOCONBANDITS, BISTRO+ are oracle-efficient
(poly(ln |Π|,K ,T ) calls), but make i.i.d. assumptions.

Oracle: input: {(xt , rt)}τt=1, output: arg maxπ∈Π

∑τ
t=1 rt(π(xt)) (ERM)
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Motivation

Observation: previous (oracle) efficient contextual bandit algorithms
all make i.i.d. assumptions.
But non-i.i.d. is ubiquitous: preference change on a daily/seasonal basis.

Can we have (oracle) efficient algorithms that handle non-i.i.d. data?

Dynamic regret:

regret =
T∑
t=1

rt(π
∗
t (xt))−

T∑
t=1

rt(at) assuming (xt , rt) ∼ Dt

π∗t , arg maxπ∈Π E(x ,r)∼Dt
[rt(π(xt))].

Sublinear regret is impossible in general

Previous methods for MAB dynamic regret (e.g., [Besbes et al.’14])
become inefficient for CB
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Results

Assumption 1:
∑T

t=2 1{Dt 6= Dt−1} ≤ S

Assumption 2:
∑T

t=2 TV(Dt ,Dt−1) ≤ ∆

Regret bounds under Assumption 2:

Algorithm regret

(if ∆ unknown)

Ada-Greedy ∆1/4T 3/4 →
√

∆T 3/4

Ada-ILTCB ∆1/3T 2/3
(optimal) → ∆T 2/3

Ada-BinGreedy
(parameter-free)

∆1/5T 4/5

Providing a solution to the open problem in [Besbes et al.’14]

Improving and generalizing the result of [Karnin&Anava’16]

∆0.18T 0.82 in 2-armed bandit → min{S1/4T 3/4,∆1/5T 4/5} in CB
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Algorithm: Ada-Greedy

ε-greedy[Langford&Zhang’08]:

Ada-greedy:

For t = 1, 2, . . . ,T :

with probability ε, uniformly explore

with probability 1− ε, follow arg maxπ∈Π

∑t−1
τ=1 r̂τ (π(xτ ))

construct importance-weighted estimator r̂t

restart the algorithm if non-stationarity is detected

Stationarity check: For I = [t, t − 2], [t, t − 4], [t, t − 8], . . ., check if
1
t

∑t
τ=1 r̂τ (π(xτ )) and 1

|I|
∑

τ∈I r̂τ (π(xτ )) are consistent for all π (can

achieve this with oracle calls)

Our Ada-ILTCB algorithm is a from a similar adaptation from
ILOVETOCONBANDITS[Agarwal et al.’14], which leads to optimal
regret bounds.
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Algorithm: Ada-BinGreedy (Parameter-free)

For b = 1, 2, . . .

B ← 2b (block length)

partition the next B rounds into
√
B bins, each with length

√
B

For each bin

with probability B−1/4 do pure exploration (over actions)
otherwise do ε-greedy with ε ≈ t−1/3

restart the algorithm if non-stationarity is detected

Gives min{S1/4T 3/4,∆1/5T 4/5} regret bound without knowing S or ∆.
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