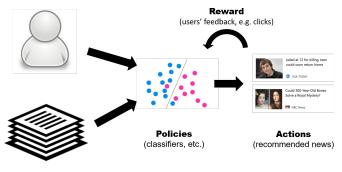
Efficient Contextual Bandits in Non-stationary Worlds

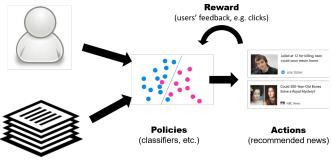
Haipeng Luo¹, Chen-Yu Wei¹, Alekh Agarwal², John Langford²

¹University of Southern California, ²Microsoft Research (New York City)



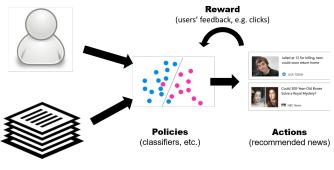
Contexts (user/article features)

Goal: earn as much reward as possible in the long run.



Contexts (user/article features)

Goal: earn as much reward as possible in the long run. Only see whether the recommended news is clicked or not (but not other news)



Contexts (user/article features)

Goal: earn as much reward as possible in the long run.

Only see whether the recommended news is clicked or not (but not other news)

Different from multi-armed bandit.

For t = 1, 2, ..., T:

- see a context $x_t \in \mathcal{X}$
- pick an action $a_t \in \{1, 2, \dots, K\}$
- observe reward $r_t(a_t) \in [0,1]$ (but not $r_t(a)$ for $a \neq a_t$)

For t = 1, 2, ..., T:

- see a **context** $x_t \in \mathcal{X}$
- pick an action $a_t \in \{1, 2, \dots, K\}$
- observe reward $r_t(a_t) \in [0,1]$ (but not $r_t(a)$ for $a \neq a_t$)

Goal: Given a policy class $\Pi = {\pi : \mathcal{X} \to [K]}$ (e.g., neural nets, trees), the goal is to minimize

regret
$$=\sum_{t=1}^{T}r_t(\pi^*(x_t)) - \sum_{t=1}^{T}r_t(a_t), \quad \pi^* = ext{best policy in } \Pi$$

For t = 1, 2, ..., T:

- see a **context** $x_t \in \mathcal{X}$
- pick an action $a_t \in \{1, 2, \dots, K\}$
- observe reward $r_t(a_t) \in [0,1]$ (but not $r_t(a)$ for $a \neq a_t$)

Goal: Given a policy class $\Pi = {\pi : \mathcal{X} \to [K]}$ (e.g., neural nets, trees), the goal is to minimize

regret =
$$\sum_{t=1}^{T} r_t(\pi^*(x_t)) - \sum_{t=1}^{T} r_t(a_t), \quad \pi^* = \text{best policy in } \Pi$$

• EXP4: sublinear regret, but the complexity is linear in $|\Pi|$

For t = 1, 2, ..., T:

- see a context $x_t \in \mathcal{X}$
- pick an action $a_t \in \{1, 2, \dots, K\}$
- observe reward $r_t(a_t) \in [0,1]$ (but not $r_t(a)$ for $a \neq a_t)$

Goal: Given a policy class $\Pi = {\pi : \mathcal{X} \to [K]}$ (e.g., neural nets, trees), the goal is to minimize

regret
$$=\sum_{t=1}^{T}r_t(\pi^*(x_t)) - \sum_{t=1}^{T}r_t(a_t), \quad \pi^* = ext{best policy in } \Pi$$

• EXP4: sublinear regret, but the complexity is linear in $|\Pi|$

 ε-greedy, ILOVETOCONBANDITS, BISTRO+ are oracle-efficient (poly(ln |Π|, K, T) calls), but make i.i.d. assumptions.

Oracle: input: $\{(x_t, r_t)\}_{t=1}^{\tau}$, output: $\arg \max_{\pi \in \Pi} \sum_{t=1}^{\tau} r_t(\pi(x_t))$ (**ERM**)

• Observation: previous (oracle) efficient contextual bandit algorithms all make i.i.d. assumptions.

• Observation: previous (oracle) efficient contextual bandit algorithms all make i.i.d. assumptions.

But non-i.i.d. is ubiquitous: preference change on a daily/seasonal basis.

• Observation: previous (oracle) efficient contextual bandit algorithms all make i.i.d. assumptions.

But non-i.i.d. is ubiquitous: preference change on a daily/seasonal basis.

• Can we have (oracle) efficient algorithms that handle non-i.i.d. data?

- Observation: previous (oracle) efficient contextual bandit algorithms all make i.i.d. assumptions.
 But non-i.i.d. is ubiquitous: preference change on a daily/seasonal basis.
- Can we have (oracle) efficient algorithms that handle non-i.i.d. data?
- Dynamic regret:

$$\operatorname{regret} = \sum_{t=1}^{T} r_t(\pi_t^*(x_t)) - \sum_{t=1}^{T} r_t(a_t) \quad \operatorname{assuming} (x_t, r_t) \sim \mathcal{D}_t$$

$$\pi_t^* \triangleq \arg \max_{\pi \in \Pi} \mathbb{E}_{(x,r) \sim \mathcal{D}_t}[r_t(\pi(x_t))].$$

- Observation: previous (oracle) efficient contextual bandit algorithms all make i.i.d. assumptions.
 But non-i.i.d. is ubiquitous: preference change on a daily/seasonal basis.
- Can we have (oracle) efficient algorithms that handle non-i.i.d. data?
- Dynamic regret:

$$\operatorname{regret} = \sum_{t=1}^{T} r_t(\pi_t^*(x_t)) - \sum_{t=1}^{T} r_t(a_t) \quad \operatorname{assuming} (x_t, r_t) \sim \mathcal{D}_t$$

$$\pi_t^* \triangleq \arg \max_{\pi \in \Pi} \mathbb{E}_{(x,r) \sim \mathcal{D}_t}[r_t(\pi(x_t))].$$

• Sublinear regret is impossible in general

- Observation: previous (oracle) efficient contextual bandit algorithms all make i.i.d. assumptions.
 But non-i.i.d. is ubiquitous: preference change on a daily/seasonal basis.
- Can we have (oracle) efficient algorithms that handle non-i.i.d. data?
- Dynamic regret:

$$\operatorname{regret} = \sum_{t=1}^{T} r_t(\pi_t^*(x_t)) - \sum_{t=1}^{T} r_t(a_t) \quad \operatorname{assuming} (x_t, r_t) \sim \mathcal{D}_t$$

$$\pi_t^* \triangleq \arg \max_{\pi \in \Pi} \mathbb{E}_{(x,r) \sim \mathcal{D}_t}[r_t(\pi(x_t))].$$

- Sublinear regret is impossible in general
- Previous methods for MAB dynamic regret (e.g., [Besbes et al.'14]) become inefficient for CB

Luo, Wei, Agarwal, Langford

Assumption 1: $\sum_{t=2}^{T} \mathbf{1} \{ \mathcal{D}_t \neq \mathcal{D}_{t-1} \} \leq S$ Assumption 2: $\sum_{t=2}^{T} \mathsf{TV}(\mathcal{D}_t, \mathcal{D}_{t-1}) \leq \Delta$

Assumption 1: $\sum_{t=2}^{T} \mathbf{1}\{\mathcal{D}_t \neq \mathcal{D}_{t-1}\} \leq S$ Assumption 2: $\sum_{t=2}^{T} \mathsf{TV}(\mathcal{D}_t, \mathcal{D}_{t-1}) \leq \Delta$

Assumption 1: $\sum_{t=2}^{T} \mathbf{1} \{ \mathcal{D}_t \neq \mathcal{D}_{t-1} \} \leq S$ Assumption 2: $\sum_{t=2}^{T} \mathsf{TV}(\mathcal{D}_t, \mathcal{D}_{t-1}) \leq \Delta$

Algorithm	regret

Assumption 1: $\sum_{t=2}^{T} \mathbf{1} \{ \mathcal{D}_t \neq \mathcal{D}_{t-1} \} \leq S$ Assumption 2: $\sum_{t=2}^{T} \mathsf{TV}(\mathcal{D}_t, \mathcal{D}_{t-1}) \leq \Delta$

Algorithm	regret
Ada-Greedy	$\Delta^{1/4} T^{3/4}$

Assumption 1: $\sum_{t=2}^{T} \mathbf{1}\{\mathcal{D}_t \neq \mathcal{D}_{t-1}\} \leq S$ Assumption 2: $\sum_{t=2}^{T} \mathsf{TV}(\mathcal{D}_t, \mathcal{D}_{t-1}) \leq \Delta$

Algorithm	regret
Ada-Greedy	$\Delta^{1/4} \mathcal{T}^{3/4}$
Ada-ILTCB	$\Delta^{1/3} \mathcal{T}^{2/3}$ (optimal)

Assumption 1: $\sum_{t=2}^{T} \mathbf{1}\{\mathcal{D}_t \neq \mathcal{D}_{t-1}\} \leq S$ Assumption 2: $\sum_{t=2}^{T} \mathsf{TV}(\mathcal{D}_t, \mathcal{D}_{t-1}) \leq \Delta$

Algorithm	regret	(if Δ unknown)
Ada-Greedy	$\Delta^{1/4} T^{3/4}$	$ ightarrow \sqrt{\Delta} T^{3/4}$
Ada-ILTCB	$\Delta^{1/3} \mathcal{T}^{2/3}$ (optimal)	$ ightarrow \Delta T^{2/3}$

Assumption 1: $\sum_{t=2}^{T} \mathbf{1}\{\mathcal{D}_t \neq \mathcal{D}_{t-1}\} \leq S$ Assumption 2: $\sum_{t=2}^{T} \mathsf{TV}(\mathcal{D}_t, \mathcal{D}_{t-1}) \leq \Delta$

Algorithm	regret	(if Δ unknown)
Ada-Greedy	$\Delta^{1/4} T^{3/4}$	$ ightarrow \sqrt{\Delta} T^{3/4}$
Ada-ILTCB	$\Delta^{1/3} \mathcal{T}^{2/3}$ (optimal)	$ ightarrow \Delta T^{2/3}$
Ada-BinGreedy	$\Lambda^{1/5}T^{4/5}$	
(parameter-free)		1 '

Assumption 1: $\sum_{t=2}^{T} \mathbf{1}\{\mathcal{D}_t \neq \mathcal{D}_{t-1}\} \leq S$ Assumption 2: $\sum_{t=2}^{T} \mathsf{TV}(\mathcal{D}_t, \mathcal{D}_{t-1}) \leq \Delta$

Regret bounds under Assumption 2:

Algorithm	regret	(if Δ unknown)
Ada-Greedy	$\Delta^{1/4} T^{3/4}$	$ ightarrow \sqrt{\Delta} T^{3/4}$
Ada-ILTCB	$\Delta^{1/3} \mathcal{T}^{2/3}$ (optimal)	$ ightarrow \Delta T^{2/3}$
Ada-BinGreedy	∧ ^{1/5}	
(parameter-free)		1 '

• Providing a solution to the open problem in [Besbes et al.'14]

Assumption 1: $\sum_{t=2}^{T} \mathbf{1}\{\mathcal{D}_t \neq \mathcal{D}_{t-1}\} \leq S$ Assumption 2: $\sum_{t=2}^{T} \mathsf{TV}(\mathcal{D}_t, \mathcal{D}_{t-1}) \leq \Delta$

Algorithm	regret	(if Δ unknown)
Ada-Greedy	$\Delta^{1/4} T^{3/4}$	$ ightarrow \sqrt{\Delta} T^{3/4}$
Ada-ILTCB	$\Delta^{1/3} \mathcal{T}^{2/3}$ (optimal)	$ ightarrow \Delta T^{2/3}$
Ada-BinGreedy	$\wedge^{1/5}$	 4/5
(parameter-free)		1 '

- Providing a solution to the open problem in [Besbes et al.'14]
- Improving and generalizing the result of [Karnin&Anava'16] $\Delta^{0.18} T^{0.82} \text{ in 2-armed bandit} \rightarrow \min\{S^{1/4} T^{3/4}, \Delta^{1/5} T^{4/5}\} \text{ in CB}$

```
\epsilon-greedy[Langford&Zhang'08]:
For t = 1, 2, ..., T:
```

- with probability ϵ , uniformly explore
- with probability 1ϵ , follow $\arg \max_{\pi \in \Pi} \sum_{\tau=1}^{t-1} \hat{r}_{\tau}(\pi(x_{\tau}))$
- construct importance-weighted estimator \hat{r}_t

Ada-greedy:

For t = 1, 2, ..., T:

- with probability ϵ , uniformly explore
- with probability 1ϵ , follow $\arg \max_{\pi \in \Pi} \sum_{\tau=1}^{t-1} \hat{r}_{\tau}(\pi(x_{\tau}))$
- construct importance-weighted estimator \hat{r}_t
- restart the algorithm if non-stationarity is detected

Ada-greedy:

For t = 1, 2, ..., T:

- with probability ϵ , uniformly explore
- with probability 1ϵ , follow $\arg \max_{\pi \in \Pi} \sum_{\tau=1}^{t-1} \hat{r}_{\tau}(\pi(x_{\tau}))$
- construct importance-weighted estimator \hat{r}_t
- restart the algorithm if non-stationarity is detected

Stationarity check: For $\mathcal{I} = [t, t-2], [t, t-4], [t, t-8], \ldots$, check if $\frac{1}{t} \sum_{\tau=1}^{t} \hat{r}_{\tau}(\pi(x_{\tau}))$ and $\frac{1}{|\mathcal{I}|} \sum_{\tau \in \mathcal{I}} \hat{r}_{\tau}(\pi(x_{\tau}))$ are **consistent** for all π (can achieve this with oracle calls)

Ada-greedy:

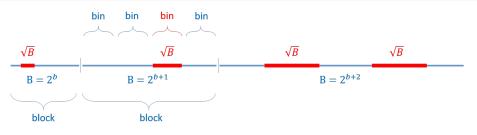
For t = 1, 2, ..., T:

- with probability ϵ , uniformly explore
- with probability 1ϵ , follow $\arg \max_{\pi \in \Pi} \sum_{\tau=1}^{t-1} \hat{r}_{\tau}(\pi(x_{\tau}))$
- construct importance-weighted estimator \hat{r}_t
- restart the algorithm if non-stationarity is detected

Stationarity check: For $\mathcal{I} = [t, t-2], [t, t-4], [t, t-8], \ldots$, check if $\frac{1}{t} \sum_{\tau=1}^{t} \hat{r}_{\tau}(\pi(x_{\tau}))$ and $\frac{1}{|\mathcal{I}|} \sum_{\tau \in \mathcal{I}} \hat{r}_{\tau}(\pi(x_{\tau}))$ are **consistent** for all π (can achieve this with oracle calls)

• Our Ada-ILTCB algorithm is a from a similar adaptation from ILOVETOCONBANDITS[Agarwal et al.'14], which leads to optimal regret bounds.

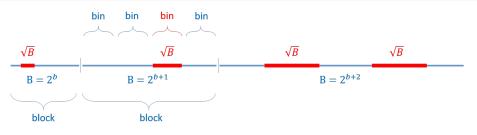
Algorithm: Ada-BinGreedy (Parameter-free)



For b = 1, 2, ...

- $B \leftarrow 2^b$ (block length)
- partition the next B rounds into \sqrt{B} bins, each with length \sqrt{B}
- For each bin
 - with probability $B^{-1/4}$ do pure exploration (over actions)
 - otherwise do ϵ -greedy with $\epsilon \approx t^{-1/3}$
- restart the algorithm if non-stationarity is detected

Algorithm: Ada-BinGreedy (Parameter-free)



For b = 1, 2, ...

- $B \leftarrow 2^b$ (block length)
- partition the next B rounds into \sqrt{B} bins, each with length \sqrt{B}
- For each bin
 - with probability $B^{-1/4}$ do pure exploration (over actions)
 - otherwise do ϵ -greedy with $\epsilon \approx t^{-1/3}$
- restart the algorithm if non-stationarity is detected

Gives min $\{S^{1/4}T^{3/4}, \Delta^{1/5}T^{4/5}\}$ regret bound without knowing S or Δ .