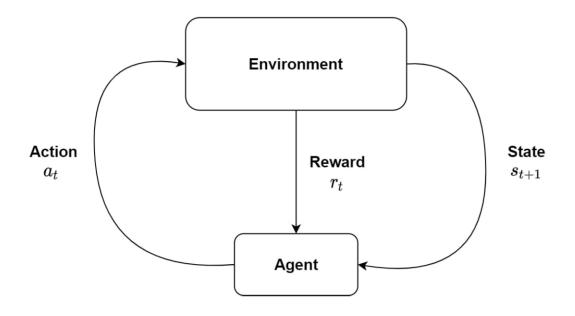
Exploration Bonus for Policy Optimization

with Haipeng Luo and Chung-Wei Lee in NeurIPS 2021

Chen-Yu Wei (MIT→UVA)

Jan. 19, 2023

(Online) Reinforcement Learning



(Fares & Younes, 2020)

Standard Methods

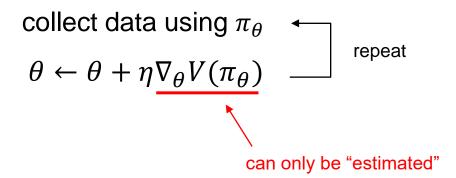
Method	Parameterizing?	How to derive output policy?
Model-based	r(s,a), p(s' s,a)	Planning
Q-learning	$Q^{\star}(s,a)$	$\pi^{\star}(s) = \operatorname{argmax}_{a} Q^{\star}(s, a)$
Policy gradient	$\pi^{\star}(a s)$	

Each has their strength and weakness. The choice is application dependent.

Policy Gradient

 π_{θ} : policy parameterized by θ $V(\pi)$: expected (long-term) reward under policy π

Policy gradient:



Strength of Policy Gradient

• Folklore: more robust against modeling error

• Theoretical justification

- More robust against model mis-specification or data corruption
 [Agarwal et al., 2020] PC-PG: Policy cover directed exploration for provable policy gradient learning.
 [Zhang et al., 2021] Robust policy gradient against strong data corruption.
- PG handles the case where the **reward is adversarial**: consider the episodic setting, where the reward function is different in every episode.

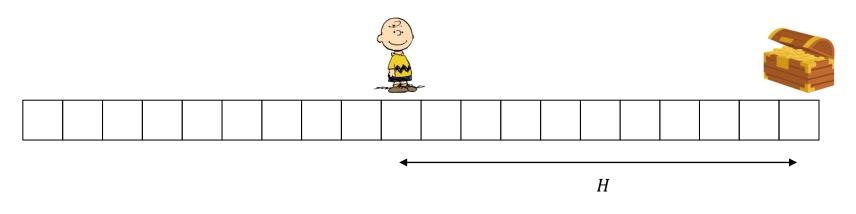
 $PG \approx mirror \ descent$ in the online learning literature

[Even-Dar et al. 2009] Online Markov decision processes.

Weakness of Policy Gradient

- Folklore: less sample efficient, only perform local policy search
- Theoretical understanding:
 - The sample complexity for PG involves **distribution mismatch factor** $C = \max_{s} \frac{\mu^{\pi^{*}}(s)}{\mu^{\pi_{\text{learner}}}(s)}$ [Agarwal et al., 2020] On the theory of policy gradient methods: optimality, approximation, and distribution shift
 - The issue is not specific for PG. But for model-based method or Q-learning, there were solutions: [Jaksch et al. 2010] Near-optimal regret bounds for reinforcement learning. (UCRL)
 [Jin et al., 2018] Is Q-learning provably efficient? NeurIPS 2018. (UCB-Q)
- Theoretically less unclear: can we / how to perform global policy search with PG?

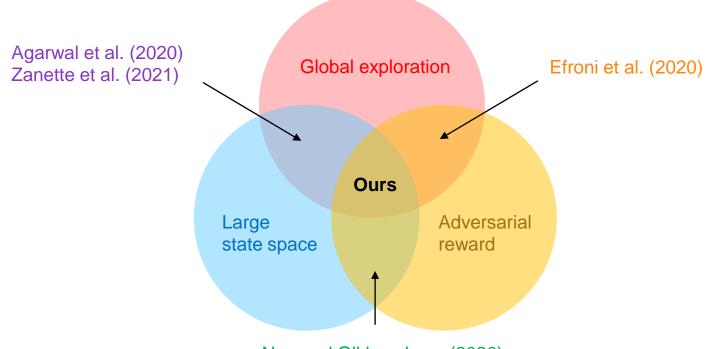
Motivating Example



Initial policy: $\frac{1}{2}$ go left, $\frac{1}{2}$ go right

⇒ Sample complexity under standard policy gradient $\geq 2^{H}$

We are going to address this issue in this talk.



Neu and Olkhovskaya (2020)

[Agarwal et al., 2020] PC-PG: Policy cover directed exploration for provable policy gradient learning. [Zanette et al., 2021] Cautiously optimistic policy optimization and exploration with linear function approximation. [Efroni et al., 2020] Optimistic policy optimization with bandit feedback. [Neu and Olkhovskaya, 2021] Online learning in MDPs with linear function approximation and bandit feedback.

Our solution is comparatively more elegant and the theory is easier to understand.

Outline

- Preliminaries on Multi-Armed Bandits
- RL Setting
- Algorithm
- Results for finite MDP
- Results for MDP with linear structure

The Multi-Armed Bandit (MAB) Problem

For t = 1, ..., T: (Environment decides $R_t(a) \in [-C, C]$ arbitrarily for all a) Choose an arm/action $a_t \in \{1, 2, ..., A\}$. Receive $R_t(a_t)$.

Regret =
$$\max_{a^{\star}} \sum_{t=1}^{T} R_t(a^{\star}) - \sum_{t=1}^{T} R_t(a_t)$$

Exponential Weight Algorithm for MAB

Exponential Weight Algorithm [Auer et al. 2002] The non-stochastic multi-armed bandit problem

 $p_1(a)=1/A$

Repeat:

Sample $a_t \sim p_t(\cdot)$ Update $p_{t+1}(a) \propto p_t(a) \ e^{\eta \ \hat{R}_t(a)}$

$$η$$
: learning rate
 $\hat{R}_t(a) = \frac{\mathbb{I}\{a_t=a\}}{p_t(a)} R_t(a)$ (unbiased reward estimator)

Regret
$$\lesssim \frac{1}{\eta} + \eta \sum_{t=1}^{T} \sum_{a} p_t(a) \hat{R}_t(a)^2 \leq \frac{1}{\eta} + \eta C^2 AT \lesssim C \sqrt{AT}$$

bias variance choose optimal $\eta \approx \frac{1}{C\sqrt{AT}}$

Outline

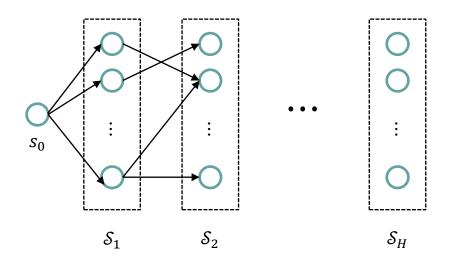
- Preliminaries on Multi-Armed Bandits
- RL Setting
- Algorithm
- Results for finite MDP
- Results for MDP with linear structure

MDP Setting

Horizon length: *H* Set of states: $S = \{s_0\} \cup S_1 \cup \cdots \cup S_H$ Set of actions: A

Policy $\pi(\cdot|s)$: distribution over actions

Episode: walk from s_0 to S_H once



Interaction Protocol and Regret

For episode t = 1, ..., T:

Choose a policy π_t

Interact with the MDP for one episode using π_t , and generate

 $(s_0, a_{t0}, r_t(s_{t0}, a_{t0}), s_1, a_{t1}, r_t(s_{t1}, a_{t1}), \dots, s_{tH}, a_{tH}, r_t(s_{tH}, a_{tH}))$

where $r_t(s, a)$ is the reward function in episode t (can vary across episodes)

$$\operatorname{Regret} = \max_{\pi^{\star}} \sum_{t=1}^{T} V^{\pi^{\star}}(s_{0}; r_{t}) - \sum_{t=1}^{T} V^{\pi_{t}}(s_{0}; r_{t})$$
$$V^{\pi}(s; r) \triangleq \mathbb{E}\left[\sum_{k=h}^{H} r(s_{k,} a_{k}) \middle| \operatorname{executing} \pi \operatorname{from} s \in S_{h}\right]$$

Regret Decomposition

Performance difference lemma: For any policies π^* and π , and any reward function r,

$$V^{\pi^{\star}}(s_{0};r) - V^{\pi}(s_{0};r) = \sum_{s \in \mathcal{S}} \mu^{\pi^{\star}}(s) \sum_{a \in \mathcal{A}} (\pi^{\star}(a|s) - \pi(a|s)) Q^{\pi}(s,a;r)$$

 $\mu^{\pi}(s)$: expected number of times of visiting *s* (in an episode) under π $Q^{\pi}(s, a; r) = \mathbb{E}\left[\sum_{k=h}^{H} r(s_k, a_k) \mid \text{executing } \pi \text{ from } s \in S_h \text{ and take } a_h = a\right]$

Regret =
$$\sum_{t=1}^{T} \left(V^{\pi^{\star}}(s_0; r_t) - V^{\pi_t}(s_0; r_t) \right) = \sum_{s \in S} \mu^{\pi^{\star}}(s) \sum_{t=1}^{T} \sum_{a \in \mathcal{A}} \left(\pi^{\star}(a|s) - \pi_t(a|s) \right) Q^{\pi_t}(s, a; r_t)$$

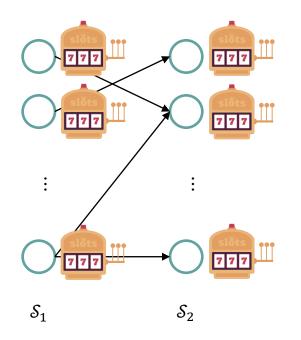
If we can do well on the bandit problem on every state, we can also do well on the MDP.

The regret of a MAB problem on state *s* with reward of arm *a* being $Q^{\pi_t}(s, a; r_t)$

Outline

- Preliminaries on Multi-Armed Bandits
- RL Setting
- Algorithm
- Results for finite MDP
- Results for MDP with linear structure

A "Natural" Algorithm Inspired by PDL



Run a MAB algorithm on every state!

For the MAB algorithm on state *s* Reward of arm *a* in round $t = Q^{\pi_t}(s, a; r_t)$

Running exponential weight on every state is equivalent to *Natural Policy Gradient* and closely related to *TRPO & PPO*.

[Neu et al., 2017] A unified view of entropy-regularized Markov decision processes. [Agarwal et al., 2020] On the theory of policy gradient methods: optimality, approximation, and distribution shift

 \mathcal{S}_H

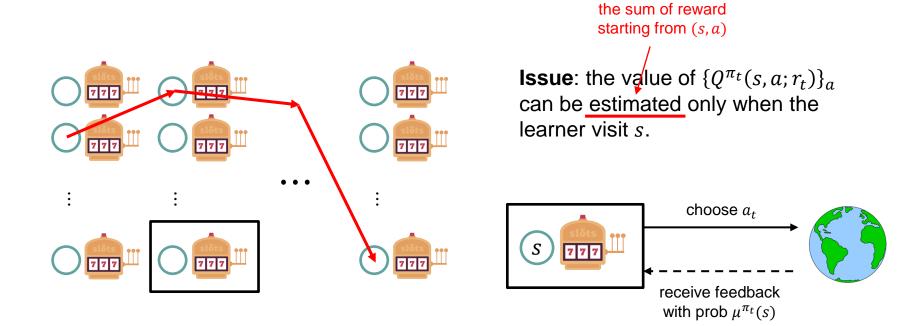
Regret Analysis

Regret^{MDP} =
$$\sum_{s \in S} \mu^{\pi^*}(s)$$
 Regret^(s) (By PDL)
 $\leq \sum_{s \in S} \mu^{\pi^*}(s) H\sqrt{AT}$ (Regret be

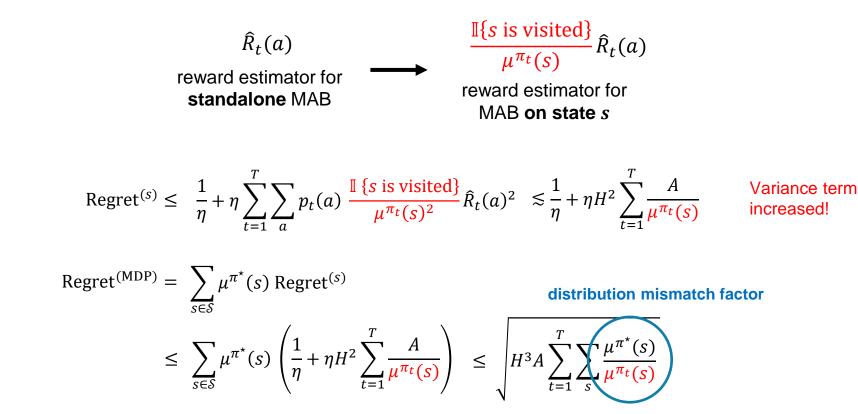
(Regret bound of exponential weight)

 $\leq H^2 \sqrt{AT}$ (?!)

The Issue



Corrected Regret Analysis



Outline

- Preliminaries on Multi-Armed Bandits
- RL Setting
- Algorithm
- Solution for finite MDP
- Solution for MDP with linear structure

Removing the Distribution Mismatch (our contribution)

Define
$$b_t(s) = \frac{\eta H^2 A}{\mu^{\pi_t}(s)}$$
 (in the paper, $b_t(s) = \frac{\eta H^2 A}{\mu^{\pi_t}(s) + \gamma} \le 1$)

Instead of running the NPG on the original reward $r_t(s, a)$, run it on $r_t(s, a) + b_t(s)$.

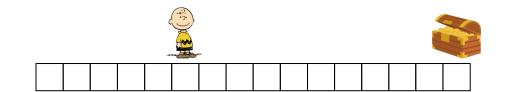
$$\begin{split} \widehat{MDP} \text{ is the MDP with reward } r_{t} + b_{t} & \text{Regret}^{(\widehat{MDP})} \leq \sum_{s \in \mathcal{S}} \mu^{\pi^{*}}(s) \left(\frac{1}{\eta} + \eta H^{2} \sum_{t=1}^{T} \frac{A}{\mu^{\pi_{t}}(s)}\right) \\ & \sum_{t=1}^{T} [V^{\pi^{*}}(s_{0}; r_{t} + b_{t}) - V^{\pi_{t}}(s_{0}; r_{t} + b_{t})] \leq \frac{H}{\eta} + \sum_{t=1}^{T} \sum_{s \in \mathcal{S}} \mu^{\pi^{*}}(s) \left(\frac{\eta H^{2}A}{\mu^{\pi_{t}}(s)}\right) \\ & \sum_{t=1}^{T} [V^{\pi^{*}}(s_{0}; r_{t}) - V^{\pi_{t}}(s_{0}; b_{t}) - V^{\pi_{t}}(s_{0}; b_{t})] \leq \frac{H}{\eta} + \sum_{t=1}^{T} \sum_{s \in \mathcal{S}} \mu^{\pi^{*}}(s) \ b_{t}(s) = \frac{H}{\eta} + \sum_{t=1}^{T} V^{\pi^{*}}(s_{0}; b_{t}) \\ & \text{Regret}^{(MDP)} & \leq \frac{H}{\eta} + \sum_{t=1}^{T} \sum_{s \in \mathcal{S}} \mu^{\pi_{t}}(s) \ b_{t}(s) = \frac{\eta H}{\eta} + \sum_{t=1}^{T} \sum_{s \in \mathcal{S}} \mu^{\pi_{t}}(s) \\ & \leq \frac{H}{\eta} + \sum_{t=1}^{T} \sum_{s \in \mathcal{S}} \mu^{\pi_{t}}(s) \left(\frac{\eta H^{2}A}{\mu^{\pi_{t}}(s)}\right) \\ & \leq \frac{H}{\eta} + \eta H^{2}SAT = \sqrt{H^{3}SAT} \end{split}$$

Algorithm Overview

• Eliminating distribution mismatch: Run over reward function

$$r_t(s,a) + b_t(s) = r_t(s,a) + \frac{\eta H^2 A}{\mu^{\pi_t}(s) + \gamma}$$

- **Extra effort:** need to estimate $\frac{1}{\mu^{\pi_t(s)}}$ for all states
 - Sampling
 - Learn transitions directly
 - Use another model to fit $\frac{1}{\mu^{\pi_t(s)}}$



Outline

- Preliminaries on Multi-Armed Bandits
- RL Setting
- Algorithm
- Solution for finite MDP
- Solution for MDP with linear structure

Generalization to Linear Function Approximation

- **Assumption:** there exists some known $\phi(s, a) \in \mathbb{R}^d$ such that for any π , $Q^{\pi}(s, a; r_t) = \phi(s, a)^{\top} \theta_t^{\pi}$ for some $\theta_t^{\pi} \in \mathbb{R}^d$.
- Similarly, run policy gradient over $r_t(s, a) + b_t(s, a)$, with

$$b_t(s,a) = \eta \ \phi(s,a)^{\mathsf{T}} \Sigma_t^{-1} \phi(s,a)$$

where
$$\Sigma_t = \mathbb{E}_{(s,a) \sim \pi_t} [\phi(s,a)\phi(s,a)^{\mathsf{T}}]$$

- Do we need to run a bandit algorithm on every state? (#state could be ∞)
 - No. It's still equivalent to NPG, which is implementable.
 - In the mathematical analysis, it's equivalent to run a *linear bandit* algorithm on *every* state.

Summary

The steps to derive the form of the bonus:

- 1. Use the performance difference lemma: PG \approx running individual bandit on every state, with feedback observed with prob $\mu^{\pi_t}(s)$
- 2. Write out the regret of individual MAB under importance weight
- 3. Set $b_t(s, a)$ based on the regret bound in Step 2

Remarks

- **Potential Issue 1:** The bonus will introduce very **dense, time-varying** reward to guide policy search. This is reasonable if the goal is to find **globally optimal** policy. In some applications, this might not be necessary / too costly.
- **Potential Issue 2:** Calculating the bonus requires extra sampling.
- Empirical study: How to adapt this idea in practice remains open.

Thanks!

More questions? Contact me via **chenyu.wei@usc.edu**