
Exploration Bonus for Policy Optimization

Chen-Yu Wei (MIT→UVA)

with Haipeng Luo and Chung-Wei Lee in NeurIPS 2021

Jan. 19, 2023

(Online) Reinforcement Learning

(Fares & Younes, 2020)

Standard Methods

Method Parameterizing …? How to derive output policy?

Model-based 𝑟(𝑠, 𝑎), 𝑝(𝑠′|𝑠, 𝑎) Planning

Q-learning 𝑄⋆(𝑠, 𝑎) 𝜋⋆(𝑠) = argmax𝑎 𝑄
⋆(𝑠, 𝑎)

Policy gradient 𝜋⋆(𝑎|𝑠) --

Each has their strength and weakness. The choice is application dependent.

Policy Gradient

𝜋𝜃: policy parameterized by 𝜃

𝑉(𝜋): expected (long-term) reward under policy 𝜋

𝜃 ← 𝜃 + 𝜂∇𝜃𝑉(𝜋𝜃)

collect data using 𝜋𝜃
repeat

Policy gradient:

can only be “estimated”

● Folklore: more robust against modeling error

● Theoretical justification

○ More robust against model mis-specification or data corruption
[Agarwal et al., 2020] PC-PG: Policy cover directed exploration for provable policy gradient learning.

[Zhang et al., 2021] Robust policy gradient against strong data corruption.

○ PG handles the case where the reward is adversarial: consider the episodic setting,

where the reward function is different in every episode.

PG ≈ mirror descent in the online learning literature

[Even-Dar et al. 2009] Online Markov decision processes.

Strength of Policy Gradient

● Folklore: less sample efficient, only perform local policy search

● Theoretical understanding:

○ The sample complexity for PG involves distribution mismatch factor

[Agarwal et al., 2020] On the theory of policy gradient methods: optimality, approximation, and distribution shift

○ The issue is not specific for PG. But for model-based method or Q-learning, there were solutions:
[Jaksch et al. 2010] Near-optimal regret bounds for reinforcement learning. (UCRL)

[Jin et al., 2018] Is Q-learning provably efficient? NeurIPS 2018. (UCB-Q)

● Theoretically less unclear: can we / how to perform global policy search with PG?

Weakness of Policy Gradient

𝐶 = max
𝑠

𝜇𝜋
⋆
(𝑠)

𝜇𝜋learner(𝑠)

Motivating Example

𝐻

Initial policy:
1

2
go left,

1

2
go right

⇒ Sample complexity under standard policy gradient ≥ 2𝐻

We are going to address this issue in this talk.

Global exploration

Large

state space

Adversarial

reward

Agarwal et al. (2020)

Zanette et al. (2021)

Neu and Olkhovskaya (2020)

Efroni et al. (2020)

Ours

[Agarwal et al., 2020] PC-PG: Policy cover directed exploration for provable policy gradient learning.

[Zanette et al., 2021] Cautiously optimistic policy optimization and exploration with linear function approximation.

[Efroni et al., 2020] Optimistic policy optimization with bandit feedback.

[Neu and Olkhovskaya, 2021] Online learning in MDPs with linear function approximation and bandit feedback.

Our solution is comparatively more elegant and the theory is easier to understand.

● Preliminaries on Multi-Armed Bandits

● RL Setting

● Algorithm

● Results for finite MDP

● Results for MDP with linear structure

Outline

The Multi-Armed Bandit (MAB) Problem

For 𝑡 = 1,… , 𝑇:

(Environment decides 𝑅𝑡 𝑎 ∈ [−𝐶, 𝐶] arbitrarily for all 𝑎)

Choose an arm/action 𝑎𝑡 ∈ {1, 2, … , 𝐴}.

Receive 𝑅𝑡(𝑎𝑡).

Regret = max
𝑎⋆

𝑡=1

𝑇

𝑅𝑡(𝑎
⋆) −

𝑡=1

𝑇

𝑅𝑡(𝑎𝑡)

Exponential Weight Algorithm for MAB

Update 𝑝𝑡+1 𝑎 ∝ 𝑝𝑡 𝑎

Exponential Weight Algorithm

𝑝1 𝑎 = 1/𝐴

Sample 𝑎𝑡 ∼ 𝑝𝑡(⋅)

Repeat:

𝑒𝜂 𝑅𝑡(𝑎)
𝜂: learning rate

𝑅𝑡 𝑎 =
𝕀 𝑎𝑡=𝑎

𝑝𝑡 𝑎
𝑅𝑡(𝑎) (unbiased reward estimator)

Regret ≲
1

𝜂
+ 𝜂

𝑡=1

𝑇

𝑎

𝑝𝑡 𝑎 𝑅𝑡 𝑎
2 ≤

1

𝜂
+ 𝜂𝐶2𝐴𝑇 ≲ 𝐶 𝐴𝑇

bias variance
choose optimal 𝜂 ≈

1

𝐶 𝐴𝑇

[Auer et al. 2002] The non-stochastic multi-armed bandit problem

● Preliminaries on Multi-Armed Bandits

● RL Setting

● Algorithm

● Results for finite MDP

● Results for MDP with linear structure

Outline

Horizon length: 𝐻
Set of states: 𝒮 = 𝑠0 ∪ 𝒮1 ∪⋯∪ 𝒮𝐻
Set of actions: 𝒜

MDP Setting

⋯ ⋯ ⋯

⋯

𝒮1 𝒮2 𝒮𝐻

Policy 𝜋 ⋅ 𝑠): distribution over actions

𝑠0

Episode: walk from 𝑠0 to 𝒮𝐻 once

For episode 𝑡 = 1,… , 𝑇:

Choose a policy 𝜋𝑡

Interact with the MDP for one episode using 𝜋𝑡, and generate

𝑠0, 𝑎𝑡0, 𝑟𝑡 𝑠𝑡0, 𝑎𝑡0 , 𝑠1, 𝑎𝑡1, 𝑟𝑡 𝑠𝑡1, 𝑎𝑡1 , …… , 𝑠𝑡𝐻 , 𝑎𝑡𝐻 , 𝑟𝑡 𝑠𝑡𝐻 , 𝑎𝑡𝐻

Interaction Protocol and Regret

Regret = max
𝜋⋆

𝑡=1

𝑇

𝑉𝜋
⋆
𝑠0; 𝑟𝑡 −

𝑡=1

𝑇

𝑉𝜋𝑡 𝑠0; 𝑟𝑡

where 𝑟𝑡(𝑠, 𝑎) is the reward function in episode 𝑡 (can vary across episodes)

𝑉𝜋 𝑠; 𝑟 ≜ 𝔼 ቮ

𝑘=ℎ

𝐻

𝑟(𝑠𝑘, 𝑎𝑘) executing 𝜋 from 𝑠 ∈ 𝒮ℎ

Performance difference lemma:

Regret Decomposition

𝑉𝜋
⋆
𝑠0; 𝑟 − 𝑉𝜋 𝑠0; 𝑟 =

𝑠∈𝒮

𝜇𝜋
⋆
𝑠

𝑎∈𝒜

𝜋⋆ 𝑎 𝑠 − 𝜋 𝑎 𝑠 𝑄𝜋(𝑠, 𝑎; 𝑟)

Regret =

𝑡=1

𝑇

𝑉𝜋
⋆
𝑠0; 𝑟𝑡 − 𝑉𝜋𝑡 𝑠0; 𝑟𝑡

The regret of a MAB problem on state 𝑠
with reward of arm 𝑎 being 𝑄𝜋𝑡(𝑠, 𝑎; 𝑟𝑡)

𝜇𝜋 𝑠 : expected number of times of visiting 𝑠 (in an episode) under 𝜋

𝑄𝜋 𝑠, 𝑎; 𝑟 = 𝔼 หσ𝑘=ℎ
𝐻 𝑟(𝑠𝑘, 𝑎𝑘) executing 𝜋 from 𝑠 ∈ 𝒮ℎ and take 𝑎ℎ = 𝑎

For any policies 𝜋⋆ and 𝜋, and any reward function 𝑟,

=

𝑠∈𝒮

𝜇𝜋
⋆
𝑠

𝑡=1

𝑇

𝑎∈𝒜

𝜋⋆ 𝑎 𝑠 − 𝜋𝑡 𝑎 𝑠 𝑄𝜋𝑡(𝑠, 𝑎; 𝑟𝑡)

If we can do well on the bandit problem on

every state, we can also do well on the MDP.

● Preliminaries on Multi-Armed Bandits

● RL Setting

● Algorithm

● Results for finite MDP

● Results for MDP with linear structure

Outline

A “Natural” Algorithm Inspired by PDL

⋯ ⋯ ⋯

⋯

𝒮1 𝒮2 𝒮𝐻

For the MAB algorithm on state 𝑠

Reward of arm 𝑎 in round 𝑡 = 𝑄𝜋𝑡(𝑠, 𝑎; 𝑟𝑡)

Run a MAB algorithm on every state!

Running exponential weight on every state

is equivalent to Natural Policy Gradient

and closely related to TRPO & PPO.

[Neu et al., 2017] A unified view of entropy-regularized

Markov decision processes.

[Agarwal et al., 2020] On the theory of policy gradient

methods: optimality, approximation, and distribution shift

Regret Analysis

RegretMDP =

𝑠∈𝒮

𝜇𝜋
⋆
𝑠 Regret(𝑠)

≤

𝑠∈𝒮

𝜇𝜋
⋆
𝑠 𝐻 𝐴𝑇

≤ 𝐻2 𝐴𝑇 (?!)

(By PDL)

(Regret bound of exponential weight)

The Issue

Issue: the value of 𝑄𝜋𝑡 𝑠, 𝑎; 𝑟𝑡 𝑎

can be estimated only when the

learner visit 𝑠.

⋯ ⋯ ⋯

⋯

𝑠

choose 𝑎𝑡

receive feedback

with prob 𝜇𝜋𝑡(𝑠)

the sum of reward

starting from (𝑠, 𝑎)

Corrected Regret Analysis

≤

𝑠∈𝒮

𝜇𝜋
⋆
𝑠

1

𝜂
+ 𝜂𝐻2

𝑡=1

𝑇
𝐴

𝜇𝜋𝑡(𝑠)

Regret(𝑠) ≤
1

𝜂
+ 𝜂

𝑡=1

𝑇

𝑎

𝑝𝑡 𝑎
𝕀 𝑠 is visited

𝜇𝜋𝑡 𝑠 2
𝑅𝑡 𝑎

2 ≲
1

𝜂
+ 𝜂𝐻2

𝑡=1

𝑇
𝐴

𝜇𝜋𝑡(𝑠)

Regret(MDP) =

𝑠∈𝒮

𝜇𝜋
⋆
𝑠 Regret(𝑠)

≤ 𝐻3𝐴

𝑡=1

𝑇

𝑠

𝜇𝜋
⋆
(𝑠)

𝜇𝜋𝑡(𝑠)

distribution mismatch factor

𝑅𝑡(𝑎)

reward estimator for

standalone MAB

𝕀 𝑠 is visited

𝜇𝜋𝑡(𝑠)
𝑅𝑡(𝑎)

reward estimator for

MAB on state 𝒔

Variance term

increased!

● Preliminaries on Multi-Armed Bandits

● RL Setting

● Algorithm

● Solution for finite MDP

● Solution for MDP with linear structure

Outline

Removing the Distribution Mismatch (our contribution)

𝑏𝑡 𝑠 =
𝜂𝐻2𝐴

𝜇𝜋𝑡(𝑠)

Instead of running the NPG on the original reward 𝑟𝑡(𝑠, 𝑎),
run it on 𝑟𝑡 𝑠, 𝑎 + 𝑏𝑡(𝑠).

in the paper, 𝑏𝑡 𝑠 =
𝜂𝐻2𝐴

𝜇𝜋𝑡 𝑠 + 𝛾
≤ 1Define

≤

𝑠∈𝒮

𝜇𝜋
⋆
𝑠

1

𝜂
+ 𝜂𝐻2

𝑡=1

𝑇
𝐴

𝜇𝜋𝑡 𝑠
Regret(෫𝑀𝐷𝑃)

𝑡=1

𝑇

𝑉𝜋
⋆
𝑠0; 𝑟𝑡 + 𝑏𝑡 − 𝑉𝜋𝑡 𝑠0; 𝑟𝑡 + 𝑏𝑡 ≤

𝐻

𝜂
+

𝑡=1

𝑇

𝑠∈𝒮

𝜇𝜋
⋆
𝑠

𝜂𝐻2𝐴

𝜇𝜋𝑡(𝑠)

𝑡=1

𝑇

𝑉𝜋
⋆
𝑠0; 𝑟𝑡 − 𝑉𝜋𝑡 𝑠0; 𝑟𝑡 + 𝑉𝜋

⋆
𝑠0; 𝑏𝑡 − 𝑉𝜋𝑡 𝑠0; 𝑏𝑡

Regret(𝑀𝐷𝑃)

Regret(𝑀𝐷𝑃) ≤
𝐻

𝜂
+

𝑡=1

𝑇

𝑉𝝅𝒕(𝑠0; 𝑏𝑡)

≤
𝐻

𝜂
+

𝑡=1

𝑇

𝑠∈𝒮

𝜇𝜋
⋆
𝑠 𝑏𝑡 𝑠 =

𝐻

𝜂
+

𝑡=1

𝑇

𝑉𝜋
⋆
(𝑠0; 𝑏𝑡)

≤
𝐻

𝜂
+

𝑡=1

𝑇

𝑠∈𝒮

𝜇𝜋𝑡 𝑠
𝜂𝐻2𝐴

𝜇𝜋𝑡(𝑠)

≤
𝐻

𝜂
+ 𝜂𝐻2𝑆𝐴𝑇 = 𝐻3𝑆𝐴𝑇𝐻3𝐴

𝑡=1

𝑇

𝑠

𝜇𝜋
⋆
(𝑠)

𝜇𝜋𝑡(𝑠)
c.f. without bonus:

෫𝑀𝐷𝑃 is the MDP with reward 𝑟𝑡 + 𝑏𝑡

● Eliminating distribution mismatch: Run over reward function

𝑟𝑡 𝑠, 𝑎 + 𝑏𝑡 𝑠 = 𝑟𝑡 𝑠, 𝑎 +
𝜂𝐻2𝐴

𝜇𝜋𝑡 𝑠 + 𝛾

● Extra effort: need to estimate
1

𝜇𝜋𝑡(𝑠)
for all states

○ Sampling

○ Learn transitions directly

○ Use another model to fit
1

𝜇𝜋𝑡(𝑠)

Algorithm Overview

● Preliminaries on Multi-Armed Bandits

● RL Setting

● Algorithm

● Solution for finite MDP

● Solution for MDP with linear structure

Outline

● Assumption: there exists some known 𝜙 𝑠, 𝑎 ∈ ℝ𝑑 such that

for any 𝜋, 𝑄𝜋 𝑠, 𝑎; 𝑟𝑡 = 𝜙 𝑠, 𝑎 ⊤ 𝜃𝑡
𝜋 for some 𝜃𝑡

𝜋 ∈ ℝ𝑑.

● Similarly, run policy gradient over 𝑟𝑡(𝑠, 𝑎) + 𝑏𝑡(𝑠, 𝑎), with

𝑏𝑡 𝑠, 𝑎 = 𝜂 𝜙 𝑠, 𝑎 ⊤Σ𝑡
−1𝜙 𝑠, 𝑎

where Σ𝑡 = 𝔼(𝑠,𝑎)∼𝜋𝑡 𝜙 𝑠, 𝑎 𝜙 𝑠, 𝑎 ⊤

● Do we need to run a bandit algorithm on every state? (#state could be ∞)

○ No. It’s still equivalent to NPG, which is implementable.

○ In the mathematical analysis, it’s equivalent to run a linear bandit algorithm on every state.

Generalization to Linear Function Approximation

The steps to derive the form of the bonus:

1. Use the performance difference lemma:

PG ≈ running individual bandit on every state, with feedback observed with prob 𝜇𝜋𝑡(𝑠)

2. Write out the regret of individual MAB under importance weight

3. Set 𝑏𝑡(𝑠, 𝑎) based on the regret bound in Step 2

Summary

● Potential Issue 1: The bonus will introduce very dense, time-varying reward to

guide policy search. This is reasonable if the goal is to find globally optimal policy.

In some applications, this might not be necessary / too costly.

● Potential Issue 2: Calculating the bonus requires extra sampling.

● Empirical study: How to adapt this idea in practice remains open.

Remarks

Thanks!
More questions?

Contact me via chenyu.wei@usc.edu

	Slide 1: Exploration Bonus for Policy Optimization
	Slide 2: (Online) Reinforcement Learning
	Slide 3: Standard Methods
	Slide 4: Policy Gradient
	Slide 5: Strength of Policy Gradient
	Slide 6: Weakness of Policy Gradient
	Slide 7: Motivating Example
	Slide 8
	Slide 9: Outline
	Slide 10: The Multi-Armed Bandit (MAB) Problem
	Slide 11: Exponential Weight Algorithm for MAB
	Slide 12: Outline
	Slide 13: MDP Setting
	Slide 14: Interaction Protocol and Regret
	Slide 15: Regret Decomposition
	Slide 16: Outline
	Slide 17: A “Natural” Algorithm Inspired by PDL
	Slide 18: Regret Analysis
	Slide 19: The Issue
	Slide 20: Corrected Regret Analysis
	Slide 21: Outline
	Slide 22: Removing the Distribution Mismatch (our contribution)
	Slide 23
	Slide 24: Algorithm Overview
	Slide 25: Outline
	Slide 26: Generalization to Linear Function Approximation
	Slide 27: Summary
	Slide 28: Remarks
	Slide 29

