Taking a hint: how to leverage loss predictors in contextual bandits

Chen-Yu Wei (USC) Haipeng Luo (USC) Alekh Agarwal (MSR)

For t = 1, ..., T:

ullet environment chooses a context $x_t \in \mathcal{X}$, a loss vector $\ell_t \in [0,1]^K$,

Wei, Luo, Agarwal Setup 2 / 14

For t = 1, ..., T:

- environment chooses a context $x_t \in \mathcal{X}$, a loss vector $\ell_t \in [0,1]^K$,
- learner receives x_t

For t = 1, ..., T:

- environment chooses a context $x_t \in \mathcal{X}$, a loss vector $\ell_t \in [0,1]^K$,
- learner receives x_t
- learner chooses action $a_t \in [K]$ and observes its loss $\ell_t(a_t)$

For t = 1, ..., T:

- environment chooses a context $x_t \in \mathcal{X}$, a loss vector $\ell_t \in [0,1]^K$,
- learner receives x_t
- ullet learner chooses action $a_t \in [K]$ and observes its loss $\ell_t(a_t)$

Multi-armed bandit is a special case of contextual bandit (MAB = CB without contexts)

A policy π is a mapping: \mathcal{X} (contexts) \longrightarrow [K] (action)

A policy π is a mapping: \mathcal{X} (contexts) $\longrightarrow [K]$ (action)

Suppose that the learner is given a fixed policy set Π . The goal of the learner is to be competitive w.r.t. the best policy in Π .

Reg =
$$\max_{\pi \in \Pi} \mathbb{E} \left[\sum_{t=1}^{T} \ell_t(a_t) - \sum_{t=1}^{T} \ell_t(\pi(x_t)) \right]$$

A policy π is a mapping: \mathcal{X} (contexts) $\longrightarrow [K]$ (action)

Suppose that the learner is given a fixed policy set Π . The goal of the learner is to be competitive w.r.t. the best policy in Π .

Reg =
$$\max_{\pi \in \Pi} \mathbb{E} \left[\sum_{t=1}^{T} \ell_t(a_t) - \sum_{t=1}^{T} \ell_t(\pi(x_t)) \right]$$

Minimax regret is $\mathcal{O}(\sqrt{KT \ln |\Pi|})$ (we simplify it as $O(\sqrt{T})$)

Exp4, ILOVETOCONBANDITS

(ACFS'02, AHKLLS'14)

Wei, Luo, Agarwal Setup 3 / 14

A policy π is a mapping: \mathcal{X} (contexts) $\longrightarrow [K]$ (action)

Suppose that the learner is given a fixed policy set Π . The goal of the learner is to be competitive w.r.t. the best policy in Π .

Reg =
$$\max_{\pi \in \Pi} \mathbb{E} \left[\sum_{t=1}^{T} \ell_t(a_t) - \sum_{t=1}^{T} \ell_t(\pi(x_t)) \right]$$

Minimax regret is $\mathcal{O}(\sqrt{KT \ln |\Pi|})$ (we simplify it as $O(\sqrt{T})$)

• Exp4, ILOVETOCONBANDITS (ACFS'02, AHKLLS'14)

Question: Can we do better when the losses are predictable?

Wei, Luo, Agarwal Setup 3 / 14

For t = 1, ..., T:

- environment chooses a context $x_t \in \mathcal{X}$, a loss vector $\ell_t \in [0,1]^K$,
- learner receives x_t
- learner chooses action $a_t \in [K]$ and observes its loss $\ell_t(a_t)$

4 / 14

For t = 1, ..., T:

- environment chooses a context $x_t \in \mathcal{X}$, a loss vector $\ell_t \in [0,1]^K$, and a loss predictor $m_t \in [0,1]^K$
- learner receives x_t and m_t
- ullet learner chooses action $a_t \in [K]$ and observes its loss $\ell_t(a_t)$

For t = 1, ..., T:

- environment chooses a context $x_t \in \mathcal{X}$, a loss vector $\ell_t \in [0,1]^K$, and a loss predictor $m_t \in [0,1]^K$
- learner receives x_t and m_t
- ullet learner chooses action $a_t \in [K]$ and observes its loss $\ell_t(a_t)$

Examples of m_t :

- ullet $m_t(a) = f_{ heta}(x_t, a)$ (some learned or fixed loss regressor $f_{ heta}$)
- $\bullet \ m_t(a) = \operatorname{avg}(\widehat{\ell}_{t-\tau}(a), \dots, \widehat{\ell}_{t-1}(a)) \qquad \text{(for slowly changing MAB)}$

Key Q: if $\mathcal{E} = \sum_{t=1}^{T} \|\ell_t - m_t\|_{\infty}^2$ is small, can we improve over $\mathcal{O}(\sqrt{T})$? (note: $\mathcal{E} \leq T$ always holds)

Key Q: if
$$\mathcal{E} = \sum_{t=1}^{T} \|\ell_t - m_t\|_{\infty}^2$$
 is small, can we improve over $\mathcal{O}(\sqrt{T})$? (note: $\mathcal{E} \leq T$ always holds)

Previous work studied the full-information setting and the MAB setting (RS'13, WL'18), and get $\text{Reg} = \mathcal{O}(\sqrt{\mathcal{E}})$.

Key Q: if
$$\mathcal{E} = \sum_{t=1}^{T} \|\ell_t - m_t\|_{\infty}^2$$
 is small, can we improve over $\mathcal{O}(\sqrt{T})$? (note: $\mathcal{E} \leq T$ always holds)

Previous work studied the full-information setting and the MAB setting (RS'13, WL'18), and get $\text{Reg} = \mathcal{O}(\sqrt{\mathcal{E}})$.

Prior Works on Contextual Bandits:

Closely related to **doubly-robust** methods that use **loss estimators** m_t to reduce the variance of off-policy evaluation.

Theoretical benefits in the online exploration scenario? (no prior work)

A More General Setting

For t = 1, ..., T:

- environment chooses a context $x_t \in \mathcal{X}$, a loss vector $\ell_t \in [0,1]^K$, and M loss predictors $m_t^1, \ldots, m_t^M \in [0, 1]^K$
- learner receives x_t and m_t^1, \ldots, m_t^M
- learner chooses action $a_t \in [K]$ and observes its loss $\ell_t(a_t)$

A More General Setting

For t = 1, ..., T:

- environment chooses a context $x_t \in \mathcal{X}$, a loss vector $\ell_t \in [0,1]^K$, and M loss predictors $m_t^1, \ldots, m_t^M \in [0,1]^K$
- ullet learner receives x_t and m_t^1,\ldots,m_t^M
- ullet learner chooses action $a_t \in [K]$ and observes its loss $\ell_t(a_t)$

Key Q: if $\mathcal{E}^* = \min_i \sum_{t=1}^T \|\ell_t - m_t^i\|_{\infty}^2$ is small, can we improve over $\mathcal{O}(\sqrt{T})$?

A More General Setting

For t = 1, ..., T:

- environment chooses a context $x_t \in \mathcal{X}$, a loss vector $\ell_t \in [0,1]^K$, and M loss predictors $m_t^1, \ldots, m_t^M \in [0,1]^K$
- ullet learner receives x_t and m_t^1,\ldots,m_t^M
- ullet learner chooses action $a_t \in [K]$ and observes its loss $\ell_t(a_t)$

Key Q: if
$$\mathcal{E}^* = \min_i \sum_{t=1}^T \|\ell_t - m_t^i\|_{\infty}^2$$
 is small, can we improve over $\mathcal{O}(\sqrt{T})$?

MAB or full-information setting:
$$\operatorname{Reg} = \mathcal{O}(\sqrt{\mathcal{E}^* + \ln M})$$
 (RS'13)

Wei, Luo, Agarwal Setup 6 / 14

• Regret tight bound (in $\Theta(\cdot)$) when M=1:

$$\begin{cases} \sqrt{\mathcal{E}} T^{\frac{1}{4}} & \text{when } \mathcal{E} \leq \sqrt{T} \\ \sqrt{T} & \text{when } \mathcal{E} \geq \sqrt{T} \end{cases} = \min \left\{ \sqrt{\mathcal{E}} T^{\frac{1}{4}}, \sqrt{T} \right\}.$$

• Regret tight bound (in $\Theta(\cdot)$) when M=1:

$$\begin{cases} \sqrt{\mathcal{E}} T^{\frac{1}{4}} & \text{when } \mathcal{E} \leq \sqrt{T} \\ \sqrt{T} & \text{when } \mathcal{E} \geq \sqrt{T} \end{cases} = \min \left\{ \sqrt{\mathcal{E}} T^{\frac{1}{4}}, \sqrt{T} \right\}.$$

cf. MAB or full-info: $\sqrt{\mathcal{E}}$

• Regret tight bound (in $\Theta(\cdot)$) when M=1:

$$\begin{cases} \sqrt{\mathcal{E}} T^{\frac{1}{4}} & \text{when } \mathcal{E} \leq \sqrt{T} \\ \sqrt{T} & \text{when } \mathcal{E} \geq \sqrt{T} \end{cases} = \min \left\{ \sqrt{\mathcal{E}} T^{\frac{1}{4}}, \sqrt{T} \right\}.$$

cf. MAB or full-info: $\sqrt{\mathcal{E}}$

• The tight bound is unachievable if the learner does not know \mathcal{E} : we show $\omega(\sqrt{\mathcal{E}}T^{\frac{1}{4}})$ and $O(\sqrt{\mathcal{E}}T^{\frac{1}{3}})$ for unknown \mathcal{E} .

Wei, Luo, Agarwal Result Overview 7 / 14

• Regret tight bound (in $\Theta(\cdot)$) when M=1:

$$\begin{cases} \sqrt{\mathcal{E}} T^{\frac{1}{4}} & \text{when } \mathcal{E} \leq \sqrt{T} \\ \sqrt{T} & \text{when } \mathcal{E} \geq \sqrt{T} \end{cases} = \min \left\{ \sqrt{\mathcal{E}} T^{\frac{1}{4}}, \sqrt{T} \right\}.$$

cf. MAB or full-info: $\sqrt{\mathcal{E}}$

- The tight bound is unachievable if the learner does not know \mathcal{E} : we show $\omega(\sqrt{\mathcal{E}}T^{\frac{1}{4}})$ and $O(\sqrt{\mathcal{E}}T^{\frac{1}{3}})$ for unknown \mathcal{E} .
 - cf. MAB or full-info: tight bound is achievable without knowing ${\cal E}$

Wei, Luo, Agarwal Result Overview 7 / 14

• Regret tight bound (in $\Theta(\cdot)$) when M=1:

$$\begin{cases} \sqrt{\mathcal{E}} T^{\frac{1}{4}} & \text{when } \mathcal{E} \leq \sqrt{T} \\ \sqrt{T} & \text{when } \mathcal{E} \geq \sqrt{T} \end{cases} = \min \left\{ \sqrt{\mathcal{E}} T^{\frac{1}{4}}, \sqrt{T} \right\}.$$

cf. MAB or full-info: $\sqrt{\mathcal{E}}$

- The tight bound is unachievable if the learner does not know \mathcal{E} : we show $\omega(\sqrt{\mathcal{E}}T^{\frac{1}{4}})$ and $O(\sqrt{\mathcal{E}}T^{\frac{1}{3}})$ for unknown \mathcal{E} .
 - cf. MAB or full-info: tight bound is achievable without knowing ${\cal E}$
- For M>1 (multiple predictor case): we show $\Omega(\sqrt{\mathcal{E}^*}T^{\frac{1}{4}}+M)$ and $O(\sqrt{M\mathcal{E}^*}T^{\frac{1}{4}})$

• Regret tight bound (in $\Theta(\cdot)$) when M=1:

$$\begin{cases} \sqrt{\mathcal{E}} T^{\frac{1}{4}} & \text{when } \mathcal{E} \leq \sqrt{T} \\ \sqrt{T} & \text{when } \mathcal{E} \geq \sqrt{T} \end{cases} = \min \left\{ \sqrt{\mathcal{E}} T^{\frac{1}{4}}, \sqrt{T} \right\}.$$

cf. MAB or full-info: $\sqrt{\mathcal{E}}$

- The tight bound is unachievable if the learner does not know \mathcal{E} : we show $\omega(\sqrt{\mathcal{E}}T^{\frac{1}{4}})$ and $O(\sqrt{\mathcal{E}}T^{\frac{1}{3}})$ for unknown \mathcal{E} .
 - cf. MAB or full-info: tight bound is achievable without knowing ${\cal E}$
- For M>1 (multiple predictor case): we show $\Omega(\sqrt{\mathcal{E}^*}T^{\frac{1}{4}}+M)$ and $O(\sqrt{M\mathcal{E}^*}T^{\frac{1}{4}})$

cf. MAB or full-info: $O(\ln M)$ overhead

• Regret tight bound (in $\Theta(\cdot)$) when M=1:

$$\begin{cases} \sqrt{\mathcal{E}} T^{\frac{1}{4}} & \text{when } \mathcal{E} \leq \sqrt{T} \\ \sqrt{T} & \text{when } \mathcal{E} \geq \sqrt{T} \end{cases} = \min \left\{ \sqrt{\mathcal{E}} T^{\frac{1}{4}}, \sqrt{T} \right\}.$$

cf. MAB or full-info: $\sqrt{\mathcal{E}}$

- The tight bound is unachievable if the learner does not know \mathcal{E} : we show $\omega(\sqrt{\mathcal{E}}T^{\frac{1}{4}})$ and $O(\sqrt{\mathcal{E}}T^{\frac{1}{3}})$ for unknown \mathcal{E} .
 - cf. MAB or full-info: tight bound is achievable without knowing ${\mathcal E}$
- For M>1 (multiple predictor case): we show $\Omega(\sqrt{\mathcal{E}^*}T^{\frac{1}{4}}+M)$ and $O(\sqrt{M\mathcal{E}^*}T^{\frac{1}{4}})$
 - cf. MAB or full-info: $O(\ln M)$ overhead

For all upper bound results, we give 1) algorithms for general adversarial sequences, and 2) ERM oracle-efficient algorithms for i.i.d. sequences.

Adversarial Setting + Single Predictor + Known $\mathcal E$

EXP4

For
$$t = 1, ..., T$$
:

- \bullet compute $p_t(a) = \sum_{\pi:\pi(x_t) = a} Q_t'(\pi)$ and sample $a_t \sim p_t$
- compute $Q'_{t+1}(\pi) \propto Q'_t(\pi) \exp(-\eta \widehat{\ell}_t(\pi(x_t)))$

Optimistic EXP4

For
$$t = 1, ..., T$$
:

- compute $Q_t(\pi) \propto Q_t'(\pi) \exp(-\eta m_t(\pi(x_t)))$
- compute $p_t(a) = \sum_{\pi:\pi(x_t)=a} Q_t(\pi)$ and sample $a_t \sim p_t$
- compute $Q_{t+1}'(\pi) \propto Q_t'(\pi) \exp(-\eta \widehat{\ell}_t(\pi(x_t)))$

Optimistic EXP4

For
$$t = 1, ..., T$$
:

- compute $Q_t(\pi) \propto Q_t'(\pi) \exp(-\eta m_t(\pi(x_t)))$
- compute $p_t(a) = \sum_{\pi:\pi(x_t)=a} Q_t(\pi)$ and sample $a_t \sim p_t$
- compute $Q'_{t+1}(\pi) \propto Q'_t(\pi) \exp(-\eta \widehat{\ell}_t(\pi(x_t)))$

loss estimator:
$$\widehat{\ell}_t(a) = \frac{(\ell_t(a) - m_t(a))\mathbf{1}[a_t = a]}{p_t(a)} + m_t(a)$$

Optimistic EXP4

For
$$t = 1, ..., T$$
:

- compute $Q_t(\pi) \propto Q_t'(\pi) \exp(-\eta m_t(\pi(x_t)))$
- compute $p_t(a) = \sum_{\pi:\pi(x_t)=a} Q_t(\pi)$ and sample $a_t \sim p_t$
- compute $Q'_{t+1}(\pi) \propto Q'_t(\pi) \exp(-\eta \widehat{\ell}_t(\pi(x_t)))$

loss estimator:
$$\widehat{\ell}_t(a) = \frac{(\ell_t(a) - m_t(a))\mathbf{1}[a_t = a]}{p_t(a)} + m_t(a)$$

Optimistic EXP4

For t = 1, ..., T:

- compute $Q_t(\pi) \propto Q_t'(\pi) \exp(-\eta m_t(\pi(x_t)))$
- compute $p_t(a) = \sum_{\pi:\pi(x_t)=a} Q_t(\pi)$ and sample $a_t \sim p_t$
- compute $Q'_{t+1}(\pi) \propto Q'_t(\pi) \exp(-\eta \widehat{\ell}_t(\pi(x_t)))$

loss estimator: $\widehat{\ell}_t(a) = \frac{(\ell_t(a) - m_t(a))\mathbf{1}[a_t = a]}{p_t(a)} + m_t(a)$

$$\operatorname{Reg} \leq \frac{\ln |\Pi|}{\eta} + 2\eta \mathbb{E} \left[\sum_{t=1}^{T} p_t(a_t) (\widehat{\ell}_t(a_t) - m_t(a_t))^2 \right]$$

Optimistic EXP4

For t = 1, ..., T:

- compute $Q_t(\pi) \propto Q_t'(\pi) \exp(-\eta m_t(\pi(x_t)))$
- compute $p_t(a) = \sum_{\pi:\pi(x_t)=a} Q_t(\pi)$ and sample $a_t \sim p_t$
- compute $Q_{t+1}'(\pi) \propto Q_t'(\pi) \exp(-\eta \widehat{\ell}_t(\pi(x_t)))$

loss estimator: $\widehat{\ell}_t(a) = \frac{(\ell_t(a) - m_t(a))\mathbf{1}[a_t = a]}{p_t(a)} + m_t(a)$

$$\operatorname{Reg} \leq \frac{\ln |\Pi|}{\eta} + 2\eta \mathbb{E} \left[\sum_{t=1}^{T} p_t(a_t) (\widehat{\ell}_t(a_t) - m_t(a_t))^2 \right] = \mathcal{O}(\sqrt{\mathcal{E}}) \quad ??$$

Optimistic EXP4

For t = 1, ..., T:

- compute $Q_t(\pi) \propto Q_t'(\pi) \exp(-\eta m_t(\pi(x_t)))$
- compute $p_t(a) = \sum_{\pi:\pi(x_t)=a} Q_t(\pi)$ and sample $a_t \sim p_t$
- compute $Q_{t+1}'(\pi) \propto Q_t'(\pi) \exp(-\eta \widehat{\ell}_t(\pi(x_t)))$

loss estimator: $\widehat{\ell}_t(a) = \frac{(\ell_t(a) - m_t(a))\mathbf{1}[a_t = a]}{p_t(a)} + m_t(a)$

$$\operatorname{Reg} \leq \frac{\ln |\Pi|}{\eta} + 2\eta \mathbb{E} \left[\sum_{t=1}^{T} p_t(a_t) (\widehat{\ell}_t(a_t) - m_t(a_t))^2 \right] = \mathcal{O}(\sqrt{\mathcal{E}}) \quad ??$$

issue: requires $\widehat{\ell}_t(a_t) - m_t(a_t) \geq -\frac{1}{\eta}$

Optimistic EXP4

For t = 1, ..., T:

- compute $Q_t(\pi) \propto Q_t'(\pi) \exp(-\eta m_t(\pi(x_t)))$
- compute $p_t(a) = \sum_{\pi:\pi(x_t)=a} Q_t(\pi)$ and sample $a_t \sim p_t$
- compute $Q_{t+1}'(\pi) \propto Q_t'(\pi) \exp(-\eta \widehat{\ell}_t(\pi(x_t)))$

loss estimator: $\widehat{\ell}_t(a) = \frac{(\ell_t(a) - m_t(a))\mathbf{1}[a_t = a]}{p_t(a)} + m_t(a)$

$$\operatorname{Reg} \leq \frac{\ln |\Pi|}{\eta} + 2\eta \mathbb{E} \left[\sum_{t=1}^{T} p_t(a_t) (\widehat{\ell}_t(a_t) - m_t(a_t))^2 \right] = \mathcal{O}(\sqrt{\mathcal{E}}) \quad ??$$

issue: requires $\widehat{\ell}_t(a_t) - m_t(a_t) \geq -\frac{1}{\eta}$

naive fix: ensure $p_t(a) \ge \eta$ via uniform exploration $\Rightarrow \Omega(\sqrt{T})$ regret :(

Key Technique: Action Remapping

For
$$t = 1, ..., T$$
:

- compute $Q_t(\pi) \propto Q_t'(\pi) \exp(-\eta m_t(\pi(x_t)))$
- compute $p_t(a) = (1-\mu) \sum_{\pi:\pi(x_t)=a} Q_t(\pi) + \frac{\mu}{K}$
- sample $a_t \sim p_t$
- compute $Q'_{t+1}(\pi) \propto Q'_t(\pi) \exp(-\eta \widehat{\ell}_t(\pi(x_t)))$

Key Technique: Action Remapping

For
$$t = 1, ..., T$$
:

• define "baseline" $a_t^* = \operatorname{argmin}_a m_t(a)$,

- compute $Q_t(\pi) \propto Q_t'(\pi) \exp(-\eta m_t(\pi(x_t)))$
- compute $p_t(a) = (1-\mu) \sum_{\pi:\pi(x_t)=a} Q_t(\pi) + \frac{\mu}{K}$
- sample $a_t \sim p_t$
- compute $Q_{t+1}'(\pi) \propto Q_t'(\pi) \exp(-\eta \widehat{\ell}_t(\pi(x_t)))$

Key Technique: Action Remapping

For t = 1, ..., T:

• define "baseline" $a_t^* = \operatorname{argmin}_a m_t(a)$,

$$\mathcal{A}_t = \{a : m_t(a) \le m_t(a_t^*) + \sigma\},\$$

- compute $Q_t(\pi) \propto Q_t'(\pi) \exp(-\eta m_t(\pi(x_t)))$
- compute $p_t(a) = (1-\mu) \sum_{\pi:\pi(x_t)=a} Q_t(\pi) + \frac{\mu}{K}$
- sample $a_t \sim p_t$
- compute $Q_{t+1}'(\pi) \propto Q_t'(\pi) \exp(-\eta \widehat{\ell}_t(\pi(x_t)))$

Key Technique: Action Remapping

For t = 1, ..., T:

• define "baseline" $a_t^* = \operatorname{argmin}_a m_t(a)$,

$$\mathcal{A}_t = \{a : m_t(a) \le m_t(a_t^*) + \sigma\}, \quad \phi_t(a) = \begin{cases} a, & \text{if } a \in \mathcal{A}_t \\ a_t^*, & \text{else} \end{cases}$$

- compute $Q_t(\pi) \propto Q_t'(\pi) \exp(-\eta m_t(\pi(x_t)))$
- compute $p_t(a) = (1-\mu) \sum_{\pi:\pi(x_t)=a} Q_t(\pi) + \frac{\mu}{K}$
- sample $a_t \sim p_t$
- compute $Q_{t+1}'(\pi) \propto Q_t'(\pi) \exp(-\eta \widehat{\ell}_t(\pi(x_t)))$

Key Technique: Action Remapping

For t = 1, ..., T:

• define "baseline" $a_t^* = \operatorname{argmin}_a m_t(a)$,

$$\mathcal{A}_t = \{a : m_t(a) \le m_t(a_t^*) + \sigma\}, \quad \phi_t(a) = \begin{cases} a, & \text{if } a \in \mathcal{A}_t \\ a_t^*, & \text{else} \end{cases}$$

- compute $Q_t(\pi) \propto Q_t'(\pi) \exp(-\eta m_t(\phi_t(\pi(x_t))))$
- compute $p_t(a)=(1-\mu)\sum_{\pi:\phi_t(\pi(x_t))=a}Q_t(\pi)+\frac{\mu}{|\mathcal{A}_t|}\mathbf{1}[a\in\mathcal{A}_t]$
- sample $a_t \sim p_t$
- compute $Q_{t+1}'(\pi) \propto Q_t'(\pi) \exp(-\eta \widehat{\ell}_t(\phi_t(\pi(x_t))))$

Intuition

1. A_t excludes actions whose $m_t(a)$ are bad (i.e., large).

Intuition

- 1. A_t excludes actions whose $m_t(a)$ are bad (i.e., large).
- 2. Because $\mathcal{E} = \sum_t \|\ell_t m_t\|_{\infty}^2$ is small, $\ell_t(a)$ for $a \notin \mathcal{A}_t$ are also generally bad.

11 / 14

Intuition

- 1. A_t excludes actions whose $m_t(a)$ are bad (i.e., large).
- 2. Because $\mathcal{E} = \sum_t \|\ell_t m_t\|_{\infty}^2$ is small, $\ell_t(a)$ for $a \notin \mathcal{A}_t$ are also generally bad.
- 3. Because of 2., it suffices to explore the actions in A_t (this reduces the regret overhead due to exploration compared to standard uniform exploration).

11 / 14

i.i.d. Setting + Single Predictor + Known \mathcal{E} $(x_t,\ell_t,m_t)\sim\mathcal{D}$ + Oracle efficient

ϵ -Greedy and Oracle-efficiency

ERM-oracle: $\underset{\pi \in \Pi}{\operatorname{argmin}} \sum_{s=1}^t \widehat{\ell}_s(x_s, \pi(x_s))$

ϵ -Greedy and Oracle-efficiency

ERM-oracle: $\underset{\pi \in \Pi}{\operatorname{argmin}} \sum_{s=1}^{t} \widehat{\ell}_{s}(x_{s}, \pi(x_{s}))$

The simplest oracle-efficient CB algorithm: ϵ -Greedy

ϵ-Greedy and Oracle-efficiency

ERM-oracle: $\underset{\pi \in \Pi}{\operatorname{argmin}} \sum_{s=1}^{t} \widehat{\ell}_{s}(x_{s}, \pi(x_{s}))$

The simplest oracle-efficient CB algorithm: ϵ -Greedy

For t = 1, ..., T:

- find $\pi_t = \mathrm{ERM}(\{x_s, \widehat{\ell}_s\}_{s < t})$ (1 ERM-Oracle call)
- \bullet compute $p_t(a) = (1-\mu)\mathbf{1}[a=\pi_t(x_t)] + \frac{\mu}{K}$
- ullet sample $a_t \sim p_t$ and construct loss estimator $\widehat{\ell}_t$

Wei, Luo, Agarwal Stochastic Setting 13 / 14

ϵ-Greedy and Oracle-efficiency

ERM-oracle: $\underset{\pi \in \Pi}{\operatorname{argmin}} \sum_{s=1}^{t} \widehat{\ell}_{s}(x_{s}, \pi(x_{s}))$

The simplest oracle-efficient CB algorithm: ε-Greedy

For t = 1, ..., T:

• find
$$\pi_t = \text{ERM}(\{x_s, \widehat{\ell}_s\}_{s < t})$$
 (1 ERM-Oracle call)

- compute $p_t(a) = (1-\mu)\mathbf{1}[a=\pi_t(x_t)] + \frac{\mu}{K}$
- ullet sample $a_t \sim p_t$ and construct loss estimator $\widehat{\ell}_t$

ϵ-Greedy with Action Remapping and Catoni's Estimator

For t = 1, ..., T:

- find $\pi_t = \operatorname{argmin}_{\pi} \operatorname{Catoni}(\{x_s, \widehat{\ell}_s\}_{s < t})$
- compute $p_t(a) = (1-\mu)\mathbf{1}[a = \phi_t(\pi_t(x_t))] + \frac{\mu}{|\mathcal{A}_t|}\mathbf{1}[a \in \mathcal{A}_t]$
- ullet sample $a_t \sim p_t$ and construct loss estimator $\widehat{\ell}_t$

Wei, Luo, Agarwal Stochastic Setting 13 / 14

ϵ-Greedy and Oracle-efficiency

ERM-oracle: $\underset{\pi \in \Pi}{\operatorname{argmin}} \sum_{s=1}^{t} \widehat{\ell}_{s}(x_{s}, \pi(x_{s}))$

The simplest oracle-efficient CB algorithm: ϵ -Greedy

For t = 1, ..., T:

• find
$$\pi_t = \text{ERM}(\{x_s, \widehat{\ell}_s\}_{s < t})$$
 (1 ERM-Oracle call)

- compute $p_t(a) = (1-\mu)\mathbf{1}[a=\pi_t(x_t)] + \frac{\mu}{K}$
- ullet sample $a_t \sim p_t$ and construct loss estimator $\widehat{\ell}_t$

ϵ-Greedy with Action Remapping and Catoni's Estimator

For t = 1, ..., T:

- find $\pi_t = \underset{\pi}{\operatorname{argmin}}_{\pi} \operatorname{Catoni}(\{x_s, \widehat{\ell}_s\}_{s < t})$ (ln T ERM-Oracle call)
- compute $p_t(a)=(1-\mu)\mathbf{1}[a=\phi_t(\pi_t(x_t))]+\frac{\mu}{|\mathcal{A}_t|}\mathbf{1}[a\in\mathcal{A}_t]$
- ullet sample $a_t \sim p_t$ and construct loss estimator $\widehat{\ell}_t$

• We initiate the study of online contextual bandits with loss predictors.

• We initiate the study of online contextual bandits with loss predictors.

 \bullet For the single predictor (M=1) case, we give complete answers (matching regret lower and upper bound).

- We initiate the study of online contextual bandits with loss predictors.
- For the single predictor (M=1) case, we give complete answers (matching regret lower and upper bound).
- There are sharp contrasts between CB and MAB
 - regret dependence on \mathcal{E}
 - ightharpoonup regret dependence on M
 - lacktriangle whether the prior knowledge of ${\cal E}$ matters

- We initiate the study of online contextual bandits with loss predictors.
- For the single predictor (M=1) case, we give complete answers (matching regret lower and upper bound).
- There are sharp contrasts between CB and MAB
 - regret dependence on \mathcal{E}
 - regret dependence on M
 - lacktriangle whether the prior knowledge of ${\cal E}$ matters
- Future work: empirical evaluation of our algorithms