
Taking a hint: how to leverage loss predictors
in contextual bandits

Chen-Yu Wei (USC) Haipeng Luo (USC) Alekh Agarwal (MSR)

Contextual Bandit Setup

For t = 1, . . . , T :

environment chooses a context xt ∈ X , a loss vector `t ∈ [0, 1]K ,

learner receives xt

learner chooses action at ∈ [K] and observes its loss `t(at)

Multi-armed bandit is a special case of contextual bandit (MAB = CB
without contexts)

Wei, Luo, Agarwal Setup 2 / 14

Contextual Bandit Setup

For t = 1, . . . , T :

environment chooses a context xt ∈ X , a loss vector `t ∈ [0, 1]K ,

learner receives xt

learner chooses action at ∈ [K] and observes its loss `t(at)

Multi-armed bandit is a special case of contextual bandit (MAB = CB
without contexts)

Wei, Luo, Agarwal Setup 2 / 14

Contextual Bandit Setup

For t = 1, . . . , T :

environment chooses a context xt ∈ X , a loss vector `t ∈ [0, 1]K ,

learner receives xt

learner chooses action at ∈ [K] and observes its loss `t(at)

Multi-armed bandit is a special case of contextual bandit (MAB = CB
without contexts)

Wei, Luo, Agarwal Setup 2 / 14

Contextual Bandit Setup

For t = 1, . . . , T :

environment chooses a context xt ∈ X , a loss vector `t ∈ [0, 1]K ,

learner receives xt

learner chooses action at ∈ [K] and observes its loss `t(at)

Multi-armed bandit is a special case of contextual bandit (MAB = CB
without contexts)

Wei, Luo, Agarwal Setup 2 / 14

Regret Bounds

A policy π is a mapping: X (contexts) −→ [K] (action)

Suppose that the learner is given a fixed policy set Π . The goal of the

learner is to be competitive w.r.t. the best policy in Π.

Reg = max
π∈Π

E
[∑T

t=1 `t(at)−
∑T

t=1 `t(π(xt))
]

Minimax regret is O(
√
KT ln |Π|) (we simplify it as O(

√
T))

Exp4, ILOVETOCONBANDITS (ACFS’02, AHKLLS’14)

Question: Can we do better when the losses are predictable?

Wei, Luo, Agarwal Setup 3 / 14

Regret Bounds

A policy π is a mapping: X (contexts) −→ [K] (action)

Suppose that the learner is given a fixed policy set Π . The goal of the

learner is to be competitive w.r.t. the best policy in Π.

Reg = max
π∈Π

E
[∑T

t=1 `t(at)−
∑T

t=1 `t(π(xt))
]

Minimax regret is O(
√
KT ln |Π|) (we simplify it as O(

√
T))

Exp4, ILOVETOCONBANDITS (ACFS’02, AHKLLS’14)

Question: Can we do better when the losses are predictable?

Wei, Luo, Agarwal Setup 3 / 14

Regret Bounds

A policy π is a mapping: X (contexts) −→ [K] (action)

Suppose that the learner is given a fixed policy set Π . The goal of the

learner is to be competitive w.r.t. the best policy in Π.

Reg = max
π∈Π

E
[∑T

t=1 `t(at)−
∑T

t=1 `t(π(xt))
]

Minimax regret is O(
√
KT ln |Π|) (we simplify it as O(

√
T))

Exp4, ILOVETOCONBANDITS (ACFS’02, AHKLLS’14)

Question: Can we do better when the losses are predictable?

Wei, Luo, Agarwal Setup 3 / 14

Regret Bounds

A policy π is a mapping: X (contexts) −→ [K] (action)

Suppose that the learner is given a fixed policy set Π . The goal of the

learner is to be competitive w.r.t. the best policy in Π.

Reg = max
π∈Π

E
[∑T

t=1 `t(at)−
∑T

t=1 `t(π(xt))
]

Minimax regret is O(
√
KT ln |Π|) (we simplify it as O(

√
T))

Exp4, ILOVETOCONBANDITS (ACFS’02, AHKLLS’14)

Question: Can we do better when the losses are predictable?

Wei, Luo, Agarwal Setup 3 / 14

Contextual Bandit with Loss Predictors

For t = 1, . . . , T :

environment chooses a context xt ∈ X , a loss vector `t ∈ [0, 1]K ,

and a loss predictor mt ∈ [0, 1]K

learner receives xt

and mt

learner chooses action at ∈ [K] and observes its loss `t(at)

Examples of mt:

mt(a) = fθ(xt, a) (some learned or fixed loss regressor fθ)

mt(a) = avg(̂̀t−τ (a), . . . , ̂̀t−1(a)) (for slowly changing MAB)

Wei, Luo, Agarwal Setup 4 / 14

Contextual Bandit with Loss Predictors

For t = 1, . . . , T :

environment chooses a context xt ∈ X , a loss vector `t ∈ [0, 1]K ,
and a loss predictor mt ∈ [0, 1]K

learner receives xt and mt

learner chooses action at ∈ [K] and observes its loss `t(at)

Examples of mt:

mt(a) = fθ(xt, a) (some learned or fixed loss regressor fθ)

mt(a) = avg(̂̀t−τ (a), . . . , ̂̀t−1(a)) (for slowly changing MAB)

Wei, Luo, Agarwal Setup 4 / 14

Contextual Bandit with Loss Predictors

For t = 1, . . . , T :

environment chooses a context xt ∈ X , a loss vector `t ∈ [0, 1]K ,
and a loss predictor mt ∈ [0, 1]K

learner receives xt and mt

learner chooses action at ∈ [K] and observes its loss `t(at)

Examples of mt:

mt(a) = fθ(xt, a) (some learned or fixed loss regressor fθ)

mt(a) = avg(̂̀t−τ (a), . . . , ̂̀t−1(a)) (for slowly changing MAB)

Wei, Luo, Agarwal Setup 4 / 14

Contextual Bandit with Loss Predictors

Key Q: if E =
∑T

t=1 ‖`t −mt‖2∞ is small, can we improve over O(
√
T)?

(note: E ≤ T always holds)

Previous work studied the full-information setting and the MAB setting
(RS’13, WL’18), and get Reg = O(

√
E).

Prior Works on Contextual Bandits:
Closely related to doubly-robust methods that use loss estimators mt to
reduce the variance of off-policy evaluation.
Theoretical benefits in the online exploration scenario? (no prior work)

Wei, Luo, Agarwal Setup 5 / 14

Contextual Bandit with Loss Predictors

Key Q: if E =
∑T

t=1 ‖`t −mt‖2∞ is small, can we improve over O(
√
T)?

(note: E ≤ T always holds)

Previous work studied the full-information setting and the MAB setting
(RS’13, WL’18), and get Reg = O(

√
E).

Prior Works on Contextual Bandits:
Closely related to doubly-robust methods that use loss estimators mt to
reduce the variance of off-policy evaluation.
Theoretical benefits in the online exploration scenario? (no prior work)

Wei, Luo, Agarwal Setup 5 / 14

Contextual Bandit with Loss Predictors

Key Q: if E =
∑T

t=1 ‖`t −mt‖2∞ is small, can we improve over O(
√
T)?

(note: E ≤ T always holds)

Previous work studied the full-information setting and the MAB setting
(RS’13, WL’18), and get Reg = O(

√
E).

Prior Works on Contextual Bandits:
Closely related to doubly-robust methods that use loss estimators mt to
reduce the variance of off-policy evaluation.
Theoretical benefits in the online exploration scenario? (no prior work)

Wei, Luo, Agarwal Setup 5 / 14

A More General Setting

For t = 1, . . . , T :

environment chooses a context xt ∈ X , a loss vector `t ∈ [0, 1]K , and
M loss predictors m1

t , . . . ,m
M
t ∈ [0, 1]K

learner receives xt and m1
t , . . . ,m

M
t

learner chooses action at ∈ [K] and observes its loss `t(at)

Key Q: if E∗ = mini
∑T

t=1

∥∥`t −mi
t

∥∥2

∞ is small, can we improve over

O(
√
T)?

MAB or full-information setting: Reg = O(
√
E∗ + lnM) (RS’13)

Wei, Luo, Agarwal Setup 6 / 14

A More General Setting

For t = 1, . . . , T :

environment chooses a context xt ∈ X , a loss vector `t ∈ [0, 1]K , and
M loss predictors m1

t , . . . ,m
M
t ∈ [0, 1]K

learner receives xt and m1
t , . . . ,m

M
t

learner chooses action at ∈ [K] and observes its loss `t(at)

Key Q: if E∗ = mini
∑T

t=1

∥∥`t −mi
t

∥∥2

∞ is small, can we improve over

O(
√
T)?

MAB or full-information setting: Reg = O(
√
E∗ + lnM) (RS’13)

Wei, Luo, Agarwal Setup 6 / 14

A More General Setting

For t = 1, . . . , T :

environment chooses a context xt ∈ X , a loss vector `t ∈ [0, 1]K , and
M loss predictors m1

t , . . . ,m
M
t ∈ [0, 1]K

learner receives xt and m1
t , . . . ,m

M
t

learner chooses action at ∈ [K] and observes its loss `t(at)

Key Q: if E∗ = mini
∑T

t=1

∥∥`t −mi
t

∥∥2

∞ is small, can we improve over

O(
√
T)?

MAB or full-information setting: Reg = O(
√
E∗ + lnM) (RS’13)

Wei, Luo, Agarwal Setup 6 / 14

Our results
Regret tight bound (in Θ(·)) when M = 1:{√

ET
1
4 when E ≤

√
T√

T when E ≥
√
T

= min
{√
ET

1
4 ,
√
T
}
.

cf. MAB or full-info:
√
E

The tight bound is unachievable if the learner does not know E :

we show ω(
√
ET

1
4) and O(

√
ET

1
3) for unknown E .

cf. MAB or full-info: tight bound is achievable without knowing E

For M > 1 (multiple predictor case): we show Ω(
√
E∗T

1
4 +M) and

O(
√
ME∗T

1
4)

cf. MAB or full-info: O(lnM) overhead

For all upper bound results, we give 1) algorithms for general adversarial
sequences, and 2) ERM oracle-efficient algorithms for i.i.d. sequences.

Wei, Luo, Agarwal Result Overview 7 / 14

Our results
Regret tight bound (in Θ(·)) when M = 1:{√

ET
1
4 when E ≤

√
T√

T when E ≥
√
T

= min
{√
ET

1
4 ,
√
T
}
.

cf. MAB or full-info:
√
E

The tight bound is unachievable if the learner does not know E :

we show ω(
√
ET

1
4) and O(

√
ET

1
3) for unknown E .

cf. MAB or full-info: tight bound is achievable without knowing E

For M > 1 (multiple predictor case): we show Ω(
√
E∗T

1
4 +M) and

O(
√
ME∗T

1
4)

cf. MAB or full-info: O(lnM) overhead

For all upper bound results, we give 1) algorithms for general adversarial
sequences, and 2) ERM oracle-efficient algorithms for i.i.d. sequences.

Wei, Luo, Agarwal Result Overview 7 / 14

Our results
Regret tight bound (in Θ(·)) when M = 1:{√

ET
1
4 when E ≤

√
T√

T when E ≥
√
T

= min
{√
ET

1
4 ,
√
T
}
.

cf. MAB or full-info:
√
E

The tight bound is unachievable if the learner does not know E :

we show ω(
√
ET

1
4) and O(

√
ET

1
3) for unknown E .

cf. MAB or full-info: tight bound is achievable without knowing E

For M > 1 (multiple predictor case): we show Ω(
√
E∗T

1
4 +M) and

O(
√
ME∗T

1
4)

cf. MAB or full-info: O(lnM) overhead

For all upper bound results, we give 1) algorithms for general adversarial
sequences, and 2) ERM oracle-efficient algorithms for i.i.d. sequences.

Wei, Luo, Agarwal Result Overview 7 / 14

Our results
Regret tight bound (in Θ(·)) when M = 1:{√

ET
1
4 when E ≤

√
T√

T when E ≥
√
T

= min
{√
ET

1
4 ,
√
T
}
.

cf. MAB or full-info:
√
E

The tight bound is unachievable if the learner does not know E :

we show ω(
√
ET

1
4) and O(

√
ET

1
3) for unknown E .

cf. MAB or full-info: tight bound is achievable without knowing E

For M > 1 (multiple predictor case): we show Ω(
√
E∗T

1
4 +M) and

O(
√
ME∗T

1
4)

cf. MAB or full-info: O(lnM) overhead

For all upper bound results, we give 1) algorithms for general adversarial
sequences, and 2) ERM oracle-efficient algorithms for i.i.d. sequences.

Wei, Luo, Agarwal Result Overview 7 / 14

Our results
Regret tight bound (in Θ(·)) when M = 1:{√

ET
1
4 when E ≤

√
T√

T when E ≥
√
T

= min
{√
ET

1
4 ,
√
T
}
.

cf. MAB or full-info:
√
E

The tight bound is unachievable if the learner does not know E :

we show ω(
√
ET

1
4) and O(

√
ET

1
3) for unknown E .

cf. MAB or full-info: tight bound is achievable without knowing E

For M > 1 (multiple predictor case): we show Ω(
√
E∗T

1
4 +M) and

O(
√
ME∗T

1
4)

cf. MAB or full-info: O(lnM) overhead

For all upper bound results, we give 1) algorithms for general adversarial
sequences, and 2) ERM oracle-efficient algorithms for i.i.d. sequences.

Wei, Luo, Agarwal Result Overview 7 / 14

Our results
Regret tight bound (in Θ(·)) when M = 1:{√

ET
1
4 when E ≤

√
T√

T when E ≥
√
T

= min
{√
ET

1
4 ,
√
T
}
.

cf. MAB or full-info:
√
E

The tight bound is unachievable if the learner does not know E :

we show ω(
√
ET

1
4) and O(

√
ET

1
3) for unknown E .

cf. MAB or full-info: tight bound is achievable without knowing E

For M > 1 (multiple predictor case): we show Ω(
√
E∗T

1
4 +M) and

O(
√
ME∗T

1
4)

cf. MAB or full-info: O(lnM) overhead

For all upper bound results, we give 1) algorithms for general adversarial
sequences, and 2) ERM oracle-efficient algorithms for i.i.d. sequences.

Wei, Luo, Agarwal Result Overview 7 / 14

Our results
Regret tight bound (in Θ(·)) when M = 1:{√

ET
1
4 when E ≤

√
T√

T when E ≥
√
T

= min
{√
ET

1
4 ,
√
T
}
.

cf. MAB or full-info:
√
E

The tight bound is unachievable if the learner does not know E :

we show ω(
√
ET

1
4) and O(

√
ET

1
3) for unknown E .

cf. MAB or full-info: tight bound is achievable without knowing E

For M > 1 (multiple predictor case): we show Ω(
√
E∗T

1
4 +M) and

O(
√
ME∗T

1
4)

cf. MAB or full-info: O(lnM) overhead

For all upper bound results, we give 1) algorithms for general adversarial
sequences, and 2) ERM oracle-efficient algorithms for i.i.d. sequences.

Wei, Luo, Agarwal Result Overview 7 / 14

Adversarial Setting + Single Predictor + Known E

Wei, Luo, Agarwal Adversarial Setting 8 / 14

Algorithm
EXP4

For t = 1, . . . , T :

compute Qt(π) ∝ Q′t(π) exp(−ηmt(π(xt)))

compute pt(a) =
∑

π:π(xt)=a
Q′t(π) and sample at ∼ pt

compute Q′t+1(π) ∝ Q′t(π) exp(−η̂̀t(π(xt)))

loss estimator: ̂̀t(a) = (`t(a)−mt(a))1[at=a]
pt(a) +mt(a)

Reg ≤ ln |Π|
η

+ 2ηE

[
T∑
t=1

pt(at)(̂̀t(at)−mt(at))
2

]

= O(
√
E) ??

issue: requires ̂̀t(at)−mt(at) ≥ − 1
η

naive fix: ensure pt(a) ≥ η via uniform exploration ⇒ Ω(
√
T) regret :(

Wei, Luo, Agarwal Adversarial Setting 9 / 14

Algorithm
Optimistic EXP4

For t = 1, . . . , T :

compute Qt(π) ∝ Q′t(π) exp(−ηmt(π(xt)))

compute pt(a) =
∑

π:π(xt)=a
Qt(π) and sample at ∼ pt

compute Q′t+1(π) ∝ Q′t(π) exp(−η̂̀t(π(xt)))

loss estimator: ̂̀t(a) = (`t(a)−mt(a))1[at=a]
pt(a) +mt(a)

Reg ≤ ln |Π|
η

+ 2ηE

[
T∑
t=1

pt(at)(̂̀t(at)−mt(at))
2

]

= O(
√
E) ??

issue: requires ̂̀t(at)−mt(at) ≥ − 1
η

naive fix: ensure pt(a) ≥ η via uniform exploration ⇒ Ω(
√
T) regret :(

Wei, Luo, Agarwal Adversarial Setting 9 / 14

Algorithm
Optimistic EXP4

For t = 1, . . . , T :

compute Qt(π) ∝ Q′t(π) exp(−ηmt(π(xt)))

compute pt(a) =
∑

π:π(xt)=a
Qt(π) and sample at ∼ pt

compute Q′t+1(π) ∝ Q′t(π) exp(−η̂̀t(π(xt)))

loss estimator: ̂̀t(a) = (`t(a)−mt(a))1[at=a]
pt(a) +mt(a)

Reg ≤ ln |Π|
η

+ 2ηE

[
T∑
t=1

pt(at)(̂̀t(at)−mt(at))
2

]

= O(
√
E) ??

issue: requires ̂̀t(at)−mt(at) ≥ − 1
η

naive fix: ensure pt(a) ≥ η via uniform exploration ⇒ Ω(
√
T) regret :(

Wei, Luo, Agarwal Adversarial Setting 9 / 14

Algorithm
Optimistic EXP4

For t = 1, . . . , T :

compute Qt(π) ∝ Q′t(π) exp(−ηmt(π(xt)))

compute pt(a) =
∑

π:π(xt)=a
Qt(π) and sample at ∼ pt

compute Q′t+1(π) ∝ Q′t(π) exp(−η̂̀t(π(xt)))

loss estimator: ̂̀t(a) = (`t(a)−mt(a))1[at=a]
pt(a) +mt(a)

Reg ≤ ln |Π|
η

+ 2ηE

[
T∑
t=1

pt(at)(̂̀t(at)−mt(at))
2

]

= O(
√
E) ??

issue: requires ̂̀t(at)−mt(at) ≥ − 1
η

naive fix: ensure pt(a) ≥ η via uniform exploration ⇒ Ω(
√
T) regret :(

Wei, Luo, Agarwal Adversarial Setting 9 / 14

Algorithm
Optimistic EXP4

For t = 1, . . . , T :

compute Qt(π) ∝ Q′t(π) exp(−ηmt(π(xt)))

compute pt(a) =
∑

π:π(xt)=a
Qt(π) and sample at ∼ pt

compute Q′t+1(π) ∝ Q′t(π) exp(−η̂̀t(π(xt)))

loss estimator: ̂̀t(a) = (`t(a)−mt(a))1[at=a]
pt(a) +mt(a)

Reg ≤ ln |Π|
η

+ 2ηE

[
T∑
t=1

pt(at)(̂̀t(at)−mt(at))
2

]

= O(
√
E) ??

issue: requires ̂̀t(at)−mt(at) ≥ − 1
η

naive fix: ensure pt(a) ≥ η via uniform exploration ⇒ Ω(
√
T) regret :(

Wei, Luo, Agarwal Adversarial Setting 9 / 14

Algorithm
Optimistic EXP4

For t = 1, . . . , T :

compute Qt(π) ∝ Q′t(π) exp(−ηmt(π(xt)))

compute pt(a) =
∑

π:π(xt)=a
Qt(π) and sample at ∼ pt

compute Q′t+1(π) ∝ Q′t(π) exp(−η̂̀t(π(xt)))

loss estimator: ̂̀t(a) = (`t(a)−mt(a))1[at=a]
pt(a) +mt(a)

Reg ≤ ln |Π|
η

+ 2ηE

[
T∑
t=1

pt(at)(̂̀t(at)−mt(at))
2

]
= O(

√
E) ??

issue: requires ̂̀t(at)−mt(at) ≥ − 1
η

naive fix: ensure pt(a) ≥ η via uniform exploration ⇒ Ω(
√
T) regret :(

Wei, Luo, Agarwal Adversarial Setting 9 / 14

Algorithm
Optimistic EXP4

For t = 1, . . . , T :

compute Qt(π) ∝ Q′t(π) exp(−ηmt(π(xt)))

compute pt(a) =
∑

π:π(xt)=a
Qt(π) and sample at ∼ pt

compute Q′t+1(π) ∝ Q′t(π) exp(−η̂̀t(π(xt)))

loss estimator: ̂̀t(a) = (`t(a)−mt(a))1[at=a]
pt(a) +mt(a)

Reg ≤ ln |Π|
η

+ 2ηE

[
T∑
t=1

pt(at)(̂̀t(at)−mt(at))
2

]
= O(

√
E) ??

issue: requires ̂̀t(at)−mt(at) ≥ − 1
η

naive fix: ensure pt(a) ≥ η via uniform exploration ⇒ Ω(
√
T) regret :(

Wei, Luo, Agarwal Adversarial Setting 9 / 14

Algorithm
Optimistic EXP4

For t = 1, . . . , T :

compute Qt(π) ∝ Q′t(π) exp(−ηmt(π(xt)))

compute pt(a) =
∑

π:π(xt)=a
Qt(π) and sample at ∼ pt

compute Q′t+1(π) ∝ Q′t(π) exp(−η̂̀t(π(xt)))

loss estimator: ̂̀t(a) = (`t(a)−mt(a))1[at=a]
pt(a) +mt(a)

Reg ≤ ln |Π|
η

+ 2ηE

[
T∑
t=1

pt(at)(̂̀t(at)−mt(at))
2

]
= O(

√
E) ??

issue: requires ̂̀t(at)−mt(at) ≥ − 1
η

naive fix: ensure pt(a) ≥ η via uniform exploration ⇒ Ω(
√
T) regret :(

Wei, Luo, Agarwal Adversarial Setting 9 / 14

Key Technique: Action Remapping

For t = 1, . . . , T :

define “baseline” a∗t = argminamt(a),

At = {a : mt(a) ≤ mt(a
∗
t) + σ}, φt(a) =

{
a, if a ∈ At
a∗t , else

compute Qt(π) ∝ Q′t(π) exp(−ηmt(π(xt)))

compute pt(a) = (1− µ)
∑

π:π(xt)=a
Qt(π) + µ

K

sample at ∼ pt
compute Q′t+1(π) ∝ Q′t(π) exp(−η̂̀t(π(xt)))

Wei, Luo, Agarwal Adversarial Setting 10 / 14

Key Technique: Action Remapping

For t = 1, . . . , T :

define “baseline” a∗t = argminamt(a),

At = {a : mt(a) ≤ mt(a
∗
t) + σ}, φt(a) =

{
a, if a ∈ At
a∗t , else

compute Qt(π) ∝ Q′t(π) exp(−ηmt(π(xt)))

compute pt(a) = (1− µ)
∑

π:π(xt)=a
Qt(π) + µ

K

sample at ∼ pt
compute Q′t+1(π) ∝ Q′t(π) exp(−η̂̀t(π(xt)))

Wei, Luo, Agarwal Adversarial Setting 10 / 14

Key Technique: Action Remapping

For t = 1, . . . , T :

define “baseline” a∗t = argminamt(a),

At = {a : mt(a) ≤ mt(a
∗
t) + σ},

φt(a) =

{
a, if a ∈ At
a∗t , else

compute Qt(π) ∝ Q′t(π) exp(−ηmt(π(xt)))

compute pt(a) = (1− µ)
∑

π:π(xt)=a
Qt(π) + µ

K

sample at ∼ pt
compute Q′t+1(π) ∝ Q′t(π) exp(−η̂̀t(π(xt)))

Wei, Luo, Agarwal Adversarial Setting 10 / 14

Key Technique: Action Remapping

For t = 1, . . . , T :

define “baseline” a∗t = argminamt(a),

At = {a : mt(a) ≤ mt(a
∗
t) + σ}, φt(a) =

{
a, if a ∈ At
a∗t , else

compute Qt(π) ∝ Q′t(π) exp(−ηmt(π(xt)))

compute pt(a) = (1− µ)
∑

π:π(xt)=a
Qt(π) + µ

K

sample at ∼ pt
compute Q′t+1(π) ∝ Q′t(π) exp(−η̂̀t(π(xt)))

Wei, Luo, Agarwal Adversarial Setting 10 / 14

Key Technique: Action Remapping

For t = 1, . . . , T :

define “baseline” a∗t = argminamt(a),

At = {a : mt(a) ≤ mt(a
∗
t) + σ}, φt(a) =

{
a, if a ∈ At
a∗t , else

compute Qt(π) ∝ Q′t(π) exp(−ηmt(φt(π(xt))))

compute pt(a) = (1− µ)
∑

π:φt(π(xt))=a
Qt(π) + µ

|At|1[a ∈ At]
sample at ∼ pt
compute Q′t+1(π) ∝ Q′t(π) exp(−η̂̀t(φt(π(xt))))

Wei, Luo, Agarwal Adversarial Setting 10 / 14

Intuition

1. At excludes actions whose mt(a) are bad (i.e., large).

2. Because E =
∑

t ‖`t −mt‖2∞ is small, `t(a) for a /∈ At are also
generally bad.

3. Because of 2., it suffices to explore the actions in At (this reduces the
regret overhead due to exploration compared to standard uniform
exploration).

Wei, Luo, Agarwal Adversarial Setting 11 / 14

Intuition

1. At excludes actions whose mt(a) are bad (i.e., large).

2. Because E =
∑

t ‖`t −mt‖2∞ is small, `t(a) for a /∈ At are also
generally bad.

3. Because of 2., it suffices to explore the actions in At (this reduces the
regret overhead due to exploration compared to standard uniform
exploration).

Wei, Luo, Agarwal Adversarial Setting 11 / 14

Intuition

1. At excludes actions whose mt(a) are bad (i.e., large).

2. Because E =
∑

t ‖`t −mt‖2∞ is small, `t(a) for a /∈ At are also
generally bad.

3. Because of 2., it suffices to explore the actions in At (this reduces the
regret overhead due to exploration compared to standard uniform
exploration).

Wei, Luo, Agarwal Adversarial Setting 11 / 14

i.i.d. Setting + Single Predictor + Known E

(xt, `t,mt) ∼ D

+ Oracle efficient

Wei, Luo, Agarwal Stochastic Setting 12 / 14

ε-Greedy and Oracle-efficiency

ERM-oracle: argminπ∈Π

∑t
s=1

̂̀
s(xs, π(xs))

The simplest oracle-efficient CB algorithm: ε-Greedy

For t = 1, . . . , T :

find πt = ERM({xs, ̂̀s}s<t)

(1 ERM-Oracle call)

compute pt(a) = (1− µ)1[a = πt(xt)] + µ
K

sample at ∼ pt and construct loss estimator ̂̀t

ε-Greedy with Action Remapping and Catoni’s Estimator

For t = 1, . . . , T :

find πt = argminπ Catoni({xs, ̂̀s}s<t)

(lnT ERM-Oracle call)

compute pt(a) = (1− µ)1[a = φt(πt(xt))] + µ
|At|1[a ∈ At]

sample at ∼ pt and construct loss estimator ̂̀t

Wei, Luo, Agarwal Stochastic Setting 13 / 14

ε-Greedy and Oracle-efficiency

ERM-oracle: argminπ∈Π

∑t
s=1

̂̀
s(xs, π(xs))

The simplest oracle-efficient CB algorithm: ε-Greedy

For t = 1, . . . , T :

find πt = ERM({xs, ̂̀s}s<t)

(1 ERM-Oracle call)

compute pt(a) = (1− µ)1[a = πt(xt)] + µ
K

sample at ∼ pt and construct loss estimator ̂̀t

ε-Greedy with Action Remapping and Catoni’s Estimator

For t = 1, . . . , T :

find πt = argminπ Catoni({xs, ̂̀s}s<t)

(lnT ERM-Oracle call)

compute pt(a) = (1− µ)1[a = φt(πt(xt))] + µ
|At|1[a ∈ At]

sample at ∼ pt and construct loss estimator ̂̀t

Wei, Luo, Agarwal Stochastic Setting 13 / 14

ε-Greedy and Oracle-efficiency

ERM-oracle: argminπ∈Π

∑t
s=1

̂̀
s(xs, π(xs))

The simplest oracle-efficient CB algorithm: ε-Greedy

For t = 1, . . . , T :

find πt = ERM({xs, ̂̀s}s<t) (1 ERM-Oracle call)

compute pt(a) = (1− µ)1[a = πt(xt)] + µ
K

sample at ∼ pt and construct loss estimator ̂̀t

ε-Greedy with Action Remapping and Catoni’s Estimator

For t = 1, . . . , T :

find πt = argminπ Catoni({xs, ̂̀s}s<t)

(lnT ERM-Oracle call)

compute pt(a) = (1− µ)1[a = φt(πt(xt))] + µ
|At|1[a ∈ At]

sample at ∼ pt and construct loss estimator ̂̀t

Wei, Luo, Agarwal Stochastic Setting 13 / 14

ε-Greedy and Oracle-efficiency

ERM-oracle: argminπ∈Π

∑t
s=1

̂̀
s(xs, π(xs))

The simplest oracle-efficient CB algorithm: ε-Greedy

For t = 1, . . . , T :

find πt = ERM({xs, ̂̀s}s<t) (1 ERM-Oracle call)

compute pt(a) = (1− µ)1[a = πt(xt)] + µ
K

sample at ∼ pt and construct loss estimator ̂̀t
ε-Greedy with Action Remapping and Catoni’s Estimator

For t = 1, . . . , T :

find πt = argminπ Catoni({xs, ̂̀s}s<t)

(lnT ERM-Oracle call)

compute pt(a) = (1− µ)1[a = φt(πt(xt))] + µ
|At|1[a ∈ At]

sample at ∼ pt and construct loss estimator ̂̀t
Wei, Luo, Agarwal Stochastic Setting 13 / 14

ε-Greedy and Oracle-efficiency

ERM-oracle: argminπ∈Π

∑t
s=1

̂̀
s(xs, π(xs))

The simplest oracle-efficient CB algorithm: ε-Greedy

For t = 1, . . . , T :

find πt = ERM({xs, ̂̀s}s<t) (1 ERM-Oracle call)

compute pt(a) = (1− µ)1[a = πt(xt)] + µ
K

sample at ∼ pt and construct loss estimator ̂̀t
ε-Greedy with Action Remapping and Catoni’s Estimator

For t = 1, . . . , T :

find πt = argminπ Catoni({xs, ̂̀s}s<t) (lnT ERM-Oracle call)

compute pt(a) = (1− µ)1[a = φt(πt(xt))] + µ
|At|1[a ∈ At]

sample at ∼ pt and construct loss estimator ̂̀t
Wei, Luo, Agarwal Stochastic Setting 13 / 14

Summary

We initiate the study of online contextual bandits with loss predictors.

For the single predictor (M = 1) case, we give complete answers
(matching regret lower and upper bound).

There are sharp contrasts between CB and MAB
I regret dependence on E
I regret dependence on M
I whether the prior knowledge of E matters

Future work: empirical evaluation of our algorithms

Wei, Luo, Agarwal Summary 14 / 14

Summary

We initiate the study of online contextual bandits with loss predictors.

For the single predictor (M = 1) case, we give complete answers
(matching regret lower and upper bound).

There are sharp contrasts between CB and MAB
I regret dependence on E
I regret dependence on M
I whether the prior knowledge of E matters

Future work: empirical evaluation of our algorithms

Wei, Luo, Agarwal Summary 14 / 14

Summary

We initiate the study of online contextual bandits with loss predictors.

For the single predictor (M = 1) case, we give complete answers
(matching regret lower and upper bound).

There are sharp contrasts between CB and MAB
I regret dependence on E
I regret dependence on M
I whether the prior knowledge of E matters

Future work: empirical evaluation of our algorithms

Wei, Luo, Agarwal Summary 14 / 14

Summary

We initiate the study of online contextual bandits with loss predictors.

For the single predictor (M = 1) case, we give complete answers
(matching regret lower and upper bound).

There are sharp contrasts between CB and MAB
I regret dependence on E
I regret dependence on M
I whether the prior knowledge of E matters

Future work: empirical evaluation of our algorithms

Wei, Luo, Agarwal Summary 14 / 14

	Introduction
	Setup
	Result Overview
	Adversarial Setting
	Stochastic Setting
	Summary

