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Contextual Bandit Setup

For t = 1, . . . , T :

environment chooses a context xt ∈ X , a loss vector `t ∈ [0, 1]K ,

learner receives xt

learner chooses action at ∈ [K] and observes its loss `t(at)

Multi-armed bandit is a special case of contextual bandit (MAB = CB
without contexts)
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Regret Bounds

A policy π is a mapping: X (contexts) −→ [K] (action)

Suppose that the learner is given a fixed policy set Π . The goal of the

learner is to be competitive w.r.t. the best policy in Π.

Reg = max
π∈Π

E
[∑T

t=1 `t(at)−
∑T

t=1 `t(π(xt))
]

Minimax regret is O(
√
KT ln |Π|) (we simplify it as O(

√
T ))

Exp4, ILOVETOCONBANDITS (ACFS’02, AHKLLS’14)

Question: Can we do better when the losses are predictable?
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Contextual Bandit with Loss Predictors

For t = 1, . . . , T :

environment chooses a context xt ∈ X , a loss vector `t ∈ [0, 1]K ,

and a loss predictor mt ∈ [0, 1]K

learner receives xt

and mt

learner chooses action at ∈ [K] and observes its loss `t(at)

Examples of mt:

mt(a) = fθ(xt, a) (some learned or fixed loss regressor fθ)

mt(a) = avg(̂̀t−τ (a), . . . , ̂̀t−1(a)) (for slowly changing MAB)
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Contextual Bandit with Loss Predictors

Key Q: if E =
∑T

t=1 ‖`t −mt‖2∞ is small, can we improve over O(
√
T )?

(note: E ≤ T always holds)

Previous work studied the full-information setting and the MAB setting
(RS’13, WL’18), and get Reg = O(

√
E).

Prior Works on Contextual Bandits:
Closely related to doubly-robust methods that use loss estimators mt to
reduce the variance of off-policy evaluation.
Theoretical benefits in the online exploration scenario? (no prior work)
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A More General Setting

For t = 1, . . . , T :

environment chooses a context xt ∈ X , a loss vector `t ∈ [0, 1]K , and
M loss predictors m1

t , . . . ,m
M
t ∈ [0, 1]K

learner receives xt and m1
t , . . . ,m

M
t

learner chooses action at ∈ [K] and observes its loss `t(at)

Key Q: if E∗ = mini
∑T

t=1

∥∥`t −mi
t

∥∥2

∞ is small, can we improve over

O(
√
T )?

MAB or full-information setting: Reg = O(
√
E∗ + lnM) (RS’13)
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Our results
Regret tight bound (in Θ(·)) when M = 1:{√

ET
1
4 when E ≤

√
T√

T when E ≥
√
T

= min
{√
ET

1
4 ,
√
T
}
.

cf. MAB or full-info:
√
E

The tight bound is unachievable if the learner does not know E :

we show ω(
√
ET

1
4 ) and O(

√
ET

1
3 ) for unknown E .

cf. MAB or full-info: tight bound is achievable without knowing E

For M > 1 (multiple predictor case): we show Ω(
√
E∗T

1
4 +M) and

O(
√
ME∗T

1
4 )

cf. MAB or full-info: O(lnM) overhead

For all upper bound results, we give 1) algorithms for general adversarial
sequences, and 2) ERM oracle-efficient algorithms for i.i.d. sequences.
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Adversarial Setting + Single Predictor + Known E

Wei, Luo, Agarwal Adversarial Setting 8 / 14



Algorithm
EXP4

For t = 1, . . . , T :

compute Qt(π) ∝ Q′t(π) exp(−ηmt(π(xt)))

compute pt(a) =
∑

π:π(xt)=a
Q′t(π) and sample at ∼ pt

compute Q′t+1(π) ∝ Q′t(π) exp(−η̂̀t(π(xt)))

loss estimator: ̂̀t(a) = (`t(a)−mt(a))1[at=a]
pt(a) +mt(a)

Reg ≤ ln |Π|
η

+ 2ηE

[
T∑
t=1

pt(at)(̂̀t(at)−mt(at))
2

]

= O(
√
E) ??

issue: requires ̂̀t(at)−mt(at) ≥ − 1
η

naive fix: ensure pt(a) ≥ η via uniform exploration ⇒ Ω(
√
T ) regret :(

Wei, Luo, Agarwal Adversarial Setting 9 / 14
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Key Technique: Action Remapping

For t = 1, . . . , T :

define “baseline” a∗t = argminamt(a),

At = {a : mt(a) ≤ mt(a
∗
t ) + σ}, φt(a) =

{
a, if a ∈ At
a∗t , else

compute Qt(π) ∝ Q′t(π) exp(−ηmt(π(xt)))

compute pt(a) = (1− µ)
∑

π:π(xt)=a
Qt(π) + µ

K

sample at ∼ pt
compute Q′t+1(π) ∝ Q′t(π) exp(−η̂̀t(π(xt)))
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Qt(π) + µ

K

sample at ∼ pt
compute Q′t+1(π) ∝ Q′t(π) exp(−η̂̀t(π(xt)))
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Intuition

1. At excludes actions whose mt(a) are bad (i.e., large).

2. Because E =
∑

t ‖`t −mt‖2∞ is small, `t(a) for a /∈ At are also
generally bad.

3. Because of 2., it suffices to explore the actions in At (this reduces the
regret overhead due to exploration compared to standard uniform
exploration).
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i.i.d. Setting + Single Predictor + Known E

(xt, `t,mt) ∼ D

+ Oracle efficient
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ε-Greedy and Oracle-efficiency

ERM-oracle: argminπ∈Π

∑t
s=1

̂̀
s(xs, π(xs))

The simplest oracle-efficient CB algorithm: ε-Greedy

For t = 1, . . . , T :

find πt = ERM({xs, ̂̀s}s<t)

(1 ERM-Oracle call)

compute pt(a) = (1− µ)1[a = πt(xt)] + µ
K

sample at ∼ pt and construct loss estimator ̂̀t

ε-Greedy with Action Remapping and Catoni’s Estimator

For t = 1, . . . , T :

find πt = argminπ Catoni({xs, ̂̀s}s<t)

(lnT ERM-Oracle call)

compute pt(a) = (1− µ)1[a = φt(πt(xt))] + µ
|At|1[a ∈ At]

sample at ∼ pt and construct loss estimator ̂̀t
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Summary

We initiate the study of online contextual bandits with loss predictors.

For the single predictor (M = 1) case, we give complete answers
(matching regret lower and upper bound).

There are sharp contrasts between CB and MAB
I regret dependence on E
I regret dependence on M
I whether the prior knowledge of E matters

Future work: empirical evaluation of our algorithms
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