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Multi-armed Bandits

regret = E

[
T∑
t=1

`t,at

]
−min

i
E

[
T∑
t=1

`t,i

]

I K : number of arms
at : the arm the learner chooses at time t

I Minimax regret bound: Θ
(√

KT
)



Main Theme: Path-length Regret Bound

I Path length bound: regret only depends on
∑T

t=1 ‖`t − `t−1‖

I First path-length regret bound for bandits [Wei&Luo18]:

Õ


√√√√K

T∑
t=1

‖`t − `t−1‖1


I Main results (notation: Vp :=

∑T
t=1 ‖`t − `t−1‖p)

I [WL18]’s O(
√
KV1) is tight when the adversary is adaptive,

but the dependency on K is improvable when the adversary is
oblivious and when V1 is large.

I O(
√
KV1) can be improved to O(

√
KV∞)

I First path-length bound for linear bandits
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1.
√
KV1 →

√
KV∞ for Multi-armed Bandits



Wei&Luo’18: Optimistic FTRL

This Paper: FTRL with biased distribution

Regularizer: ψ(x) =
∑

i log 1
xi

For t = 1, 2, . . . ,T :

1. Solve

xt = argmin
x∈∆K

{ t−1∑
τ=1

〈
x , ˆ̀

τ

〉
+
〈
x ,mt

〉
+ ψ(x)

}
where mt,i = last observed loss of arm i

2. at ∼ xt

at ∼ xt{
at ∼ xt w .p. 1− αt

at = at−1 w .p. αt

where αt ≈ α(1− `t−1,at−1)

3. Construct variance-reduced loss estimator ˆ̀
t centered at mt

`t−1,at−1
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2. A Gap Between

Oblivious and Adaptive Adversaries

In Path-length Bound



Oblivious and Adaptive Adversaries

I Oblivious: `1, . . . , `T are all selected before the game starts.

I Adaptive: `t may depend on learner’s previous actions.



Theorems

Lower bound. For any V1 ≤ T , the regret is Ω(
√
KV1) when the

adversary is adaptive.

I when V1 = T ⇒ Ω(
√
KT )

Upper bound. For any V1, the regret is O(K
1
3V

1
3

1 T
1
6 ) when the

adversary is oblivious.

I when V1 = T ⇒ O(K
1
3

√
T )



The algorithm with O(K
1
3V

1
3

1 T
1
6 ) upper bound against

oblivious adversary

I FTRL with regularizer: ψ(x) =
∑K

i=1 xi log(xi ) + 1
K

∑K
i=1 log 1

xi

I For heavy arms (i.e., arms with larger xt,i ),

I use the old mechanism (optimistic prediction with last
observed loss) as in [WL18]

I the xi log(xi ) regularizer part is taking effect

I For light arms (i.e., arms with smaller xt,i )

I use the new mechanism (biased distribution) as in the
previously introduced algorithm

I the log 1
xi

regularizer part is taking effect

I Open question: Is O
(√

V1

)
possible for oblivious adversary?

(recall: Ω(
√
KV1) for adaptive adversary)
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3. Path-length Bounds for Linear Bandits



Linear Bandits

For t = 1, 2, . . . ,T :

I Adversary decides loss vector `t

I Learner picks an action at ∈ A ⊆ {x : ‖x‖ ≤ 1}.
I Learner observes loss a>t `t



Optimistic SCRiBLe [Rakhlin&Sridharan’13]

Regularizer: a self-concordant barrier ψ for conv(A)
For t = 1, 2, . . . ,T :

1. Solve

xt = argmin
x∈conv(A)

{ t−1∑
τ=1

〈
x , ˆ̀

τ

〉
+

〈
x ,mt

〉︸ ︷︷ ︸
optimistic prediction

+ ψ(x)

}

2. Sample at from the Dikin ellipsoid centered at xt .

3. Construct loss unbiased estimator ˆ̀
t .

regret = E

[
T∑
t=1

〈at , `t〉

]
−min

a∈A
E

[
T∑
t=1

〈a, `t〉

]
≤ Õ

d
3
2

√√√√ T∑
t=1

〈at , `t −mt〉2
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mt =?

Õ


√√√√ T∑

t=1

〈at , `t −mt〉2

 ?−→ Õ


√√√√ T∑

t=1

‖`t − `t−1‖


How to set mt?

I mt = `t−1 is not feasible – the learner does not know `t−1.



Our Solutions

Õ


√√√√ T∑

t=1

〈at , `t −mt〉2

 ?−→ Õ


√√√√ T∑

t=1

‖`t − `t−1‖



I For ‖ · ‖ = ‖ · ‖2: Greedy projection

mt+1 = ΠCt (mt) , where Ct =
{
m : 〈at , `t −m〉 = 0

}
.

⇒
T∑
t=1

〈at , `t −mt〉2 = O

(
T∑
t=1

‖`t − `t−1‖2

)
.

I For general ‖ · ‖: reduction to the Convex Body Chasing
problem [Friedman&Linial’93] (using [Sellke’19]’s algorithm)
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Summary

I A gap between adaptive adversary and oblivious adversary settings
in path-length bound

I Improving O(
√
KV1) to O(

√
KV∞)

I First path-length bound for linear bandits


