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Two-Player Zero-Sum Markov Games

• Markov games are multi-player Markov decision processes where the 

transition and reward are jointly determined by the all players.  

• We study two-player zero-sum Markov games:  Player 1’s loss is equal to 

Player 2’s reward  (e.g., board games, sports games). 

• Recently there are extensive study on using centralized algorithms to find 

the Nash equilibrium of the game (Wei et al.’17, Bai and Jin’20, Xie et al.’20)

• However, how to solve Markov games using decentralized algorithms is 

much less clear. 

Centralized algorithms:  a central controller collects samples from the players, 

and assign the policies or actions to be played by the players. 

Decentralized algorithms:  Players independently optimize their payoff without 

coordination.  



Two-Player Zero-Sum Markov Games

Motivation of studying decentralized algorithms: 

• Simple and scalable – no need to model other players 

• Versatile and robust – applicable to other types of games (e.g., general-sum, 

more than 2 players). 

A player usually can converge to the best-response of other players if other 

players are stationary.  (rational) 

How to design decentralized algorithms with which the system converges to 

Nash equilibria when both players use the same algorithm. (convergent)

However, since all players simultaneously update, when all players use 

decentralized algorithms, the system may be chaotic (e.g., cycling).

Since each player myopically optimizes their payoff

We are seeking an algorithm that is both rational and convergent.



Two-Player Zero-Sum Markov Games

Bowling and Veloso (2001) “Rational and convergent learning in stochastic games”

Besides, in our algorithm, the learner does not need to observe the opponent’s 

action (only need reward feedback).  

Our contribution:  developed a provably rational and convergent algorithm with a 

finite-time guarantee for the first time. 



Prior Works

Provably rational algorithms:  
Standard algorithms for MDPs (e.g., Q-learning, Policy Gradient)
(not convergent / unclear whether they converge)

Provably convergent algorithms: 
Minimax-Q   (Szepesvari and Littman, 1999)
Algorithms with coordinated policies (Bai and Jin, 2020; Xie et al., 2020)
(not rational)

Provably rational and convergent algorithms:
(Perolat et al., 2018) and (Sayin et al., 2020)
(only asymptotic convergence is proven)



Two-Player Zero-Sum Markov Games

State space (finite): 

Player 1’s action space (finite):      

Player 2’s action space (finite):  

Loss/payoff function:                     

Transition kernel:

Discount factor:   

For

Player 1 chooses

Player 2 chooses

Player 1 pays to Player 2

simultaneously

Protocol



Two-Player Zero-Sum Markov Games

(simultaneously for all   )

Nash equilibrium :

Value function under stationary policies                        and                       : 



Settings

1. Full-information Setting

Players know the transition kernel  

Players share             after round  

2. Learning Setting

Players do not know the transition kernel  

Players only observes                        and           after round

For

Player 1 chooses

Player 2 chooses

Player 1 pays to Player 2

Player 1&2 share 
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Matrix Game (     = 1)

known
known

Projected Gradient Descent/Ascent (GDA)



The dynamics of GDA

Update direction Trajectory (              )



Optimistic Gradient Descent/Ascent (OGDA)



The dynamics of OGDA

Update direction Trajectory (              )

Blue: GDA

Red: OGDA



Convergence Analysis for Matrix Games under OGDA

Define potential 

OGDA ensures

where               is such that

(the move between round           and   ) 

(Wei et al. (2021))



Extension to Markov Games (naively)

Perform OGDA on individual states:  for all              ,

Game matrix

(y’s updates are similar)



Extension to Markov Games (naively)

Similarly, define

Then

Because              is unstable, the potential             does not monotonically decrease.  



Addressing the Issue

1. Making the “game matrix” on each state more stable
(reducing the positive terms)

2. Using the extra negative term to cancel the positive terms 



Addressing the Issue

Making       change slowly

Actor (OGDA)

Critic



Analysis

cancel cancel

The cancellation happens after we (weighted) sum the inequality over    and    



Theorem (Convergence in the Full-info Setting)

:  A quantity that depends on the Markov game; always positive   

With and , our algorithm ensures 

1.

2.



Open Problems

• Removing the       dependency in the bound (necessary for the function 
approximation setting)

• (for the Learning Setting) removing the irreducible assumption

• (for the Learning Setting) removing the requirement of synchronization


