Linear Last-iterate Convergence in Constrained Saddle-point Optimization

Chen-Yu Wei
University of Southern California

Collaborators

Chung-Wei Lee

Haipeng Luo

Mengxiao Zhang

Background

Today's topic

Two-player zero-sum game / saddle-point problem: $\min _{x} \max _{y} f(x, y)$
The goal is to find an (approximate) solution of it. (a.k.a. equilibrium)

Applications:

- Generative Adversarial Networks
- Primal-dual methods (e.g., max flow, MDP, optimal transport)
- Multi-agent (reinforcement) learning problems (e.g., game of Go)

We will focus on a specific class of algorithm "optimistic mirror descent".

Formalization

$$
\min _{x \in \mathcal{X}} \max _{y \in \mathcal{Y}} f(x, y)
$$

Define $\mathcal{Z} \triangleq \mathcal{X} \times \mathcal{Y}$ and write $z=(x, y) \in \mathcal{Z}$

Assumption 1. Convex-concave game

$$
\begin{aligned}
& \mathcal{X} \subseteq \mathbb{R}^{A}, \mathcal{Y} \subseteq \mathbb{R}^{B} \text { are convex sets } \\
& f(z)=f(x, y) \text { is convex in } x \text { and concave in } y
\end{aligned}
$$

Assumption 2. Smoothness
Let $F(z)=\left[\begin{array}{c}\nabla_{x} f(x, y) \\ -\nabla_{y} f(x, y)\end{array}\right] \quad$ Assume $\left\|F(z)-F\left(z^{\prime}\right)\right\| \leq L\left\|z-z^{\prime}\right\|$

A simple first-order method

Gradient Descent (GD)

$$
\begin{aligned}
x_{t+1} & =\Pi_{\mathcal{X}}\left[x_{t}-\eta \nabla_{x} f\left(x_{t}, y_{t}\right)\right] \\
y_{t+1} & =\Pi_{\mathcal{Y}}\left[y_{t}+\eta \nabla_{y} f\left(x_{t}, y_{t}\right)\right]
\end{aligned}
$$

which can be simplified as

$$
z_{t+1}=\Pi_{\mathcal{Z}}\left[z_{t}-\eta F\left(z_{t}\right)\right]
$$

The dynamics of GD

Update direction

$$
f(x, y)=x^{\top}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] y
$$

Trajectory ($\eta=0.1$)

Proximal-Point Method (Rockafellar'76)

$$
z_{t+1}=\Pi_{\mathcal{Z}}\left[z_{t}-\eta F\left(z_{t+1}\right)\right]
$$

$$
\left(x_{t+1}, y_{t+1}\right)=\operatorname{argmin}_{x \in \mathcal{X}, y \in \mathcal{Y}}\left\{f(x, y)+\frac{1}{2 \eta}\left\|x-x_{t}\right\|^{2}-\frac{1}{2 \eta}\left\|y-y_{t}\right\|^{2}\right\}
$$

The dynamics of Proximal-Point Method

Update direction

Trajectory ($\eta=0.1$)

Extra Gradient Descent (EG) (Tseng'95)

$$
\begin{aligned}
z_{t+1}^{\prime} & =\Pi_{\mathcal{Z}}\left[z_{t}-\eta F\left(z_{t}\right)\right] \quad \text { Prediction Step } \\
z_{t+1} & =\Pi_{\mathcal{Z}}\left[z_{t}-\eta F\left(z_{t+1}^{\prime}\right)\right] \quad \text { Real Update }
\end{aligned}
$$

Optimistic Gradient Descent (OGD) (Popov’80)

$$
\begin{aligned}
z_{t+1}^{\prime} & =\Pi_{\mathcal{Z}}\left[z_{t}-\eta F\left(z_{t}^{\prime}\right)\right] \quad \text { Prediction Step } \\
z_{t+1} & =\Pi_{\mathcal{Z}}\left[z_{t}-\eta F\left(z_{t+1}^{\prime}\right)\right] \quad \text { Real Update }
\end{aligned}
$$

Comparing EG and OGD

EG

$$
\begin{aligned}
z_{t+1}^{\prime} & =\Pi_{\mathcal{Z}}\left[z_{t}-\eta F\left(z_{t}\right)\right] \\
z_{t+1} & =\Pi_{\mathcal{Z}}\left[z_{t}-\eta F\left(z_{t+1}^{\prime}\right)\right]
\end{aligned}
$$

Algorithm	Converge under self-play?	No regret against adversary?
GD		V
EG	V	
OGD	V	V

OGD

$$
\begin{aligned}
z_{t+1}^{\prime} & =\Pi_{\mathcal{Z}}\left[z_{t}-\eta F\left(z_{t}^{\prime}\right)\right] \\
z_{t+1} & =\Pi_{\mathcal{Z}}\left[z_{t}-\eta F\left(z_{t+1}^{\prime}\right)\right]
\end{aligned}
$$

Single gradient call per update Run alone, it is a no-regret algorithm

Optimistic Multiplicative Weight Update

$$
\begin{aligned}
& f(x, y)=x^{\top} G y \\
& x_{t+1, i}^{\prime} \propto x_{t, i} e^{-\eta\left(G y_{t}^{\prime}\right)_{i}} \text { Prediction Step } \\
& x_{t+1, i} \propto x_{t, i} e^{-\eta\left(G y_{t+1}^{\prime}\right)_{i}} \text { Real Update } \\
& y_{t+1, i}^{\prime} \propto y_{t, i} e^{\eta\left(G^{\top} x_{t}^{\prime}\right)_{i}} \text { Prediction Step } \\
& y_{t+1, i} \propto y_{t, i} e^{\eta\left(G^{\top} x_{t+1}^{\prime}\right)_{i}} \text { Real Update }
\end{aligned}
$$

Related works and contributions (1/2)

Results for OGD in smooth convex-concave games

paper	function	iterate	constrained setting	rate
Popov'80		last	\checkmark	asymptotic
Rakhlin \& Sridharan'13		average	\checkmark	$\Theta(1 / t)$
Gidel et al'19	strongly convex/concave	last	V	$e^{-\lambda t}$
Liang \& Stokes'19	bilinear	last		$e^{-\lambda t}$
Ours	SP-MS (β)	last	\checkmark	$(\lambda t)^{-\frac{1}{\beta}}, e^{-\lambda t}$
Ours (special case)	bilinear in polytope	last	\checkmark	$e^{-\lambda t}$
Golowich et al.'20	$2^{\text {nd }}$-order smoothness	last		$\Theta(1 / \sqrt{t})$

We also show that in some non-polytope bilinear games (parabolic boundary), the rate can be $\Omega\left(1 / t^{2}\right)$

Related works and contributions (2/2)

Results for Optimistic Multiplicative Weight in bilinear games on simplexes

paper	Iterate	step size	assumption	rate
Rakhlin \& Sridharan'13	average	constant	-	$1 / t$
Daskalakis \& Panageas'19	last	$<(A B)^{-1 / z_{i}^{*}}$	unique equilibrium	asymptotic
Ours	last	constant	unique equilibrium	$e^{-\lambda t}$
Ours	last	constant	-	asymptotic

Convergence Analysis

Convergence Analysis (1/3)

Let's focus on the unconstrained setting

$$
\begin{aligned}
& z_{t+1}^{\prime}=z_{t}-\eta M_{t+1} \\
& z_{t+1}=z_{t}-\eta F\left(z_{t+1}^{\prime}\right)
\end{aligned}
$$

$$
M_{t+1}= \begin{cases}0 & \text { GD } \\ F\left(z_{t+1}\right) & \text { Proximal } \\ F\left(z_{t}\right) & \text { EG } \\ F\left(z_{t}^{\prime}\right) & \text { OGD }\end{cases}
$$

Equilibrium: $\quad z_{\star}=\left(x_{\star}, y_{\star}\right) \quad f\left(x_{\star}, y\right) \leq f\left(x_{\star}, y_{\star}\right) \leq f\left(x, y_{\star}\right)$

$$
\begin{aligned}
\left\|z_{t}-z_{\star}\right\|^{2} & =\left\|z_{t+1}-z_{\star}+\eta F\left(z_{t+1}^{\prime}\right)\right\|^{2} \\
& =\left\|z_{t+1}-z_{\star}\right\|^{2}+2 \eta\left(z_{t+1}-z_{\star}\right) \cdot F\left(z_{t+1}^{\prime}\right)+\eta^{2}\left\|F\left(z_{t+1}^{\prime}\right)\right\|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& z_{t+1}^{\prime}=z_{t}-\eta M_{t+1} \\
& z_{t+1}=z_{t}-\eta F\left(z_{t+1}^{\prime}\right)
\end{aligned}
$$

$$
M_{t+1}=\left\{\begin{array}{l}
0 \\
F\left(z_{t+1}\right) \\
F\left(z_{t}\right) \\
F\left(z_{t}^{\prime}\right)
\end{array}\right.
$$

GD
Proximal
$\forall z \in \mathcal{Z}$,

$$
\left(z-z_{\star}\right) \cdot F(z)
$$

$$
\left.=\left(x-x_{\star}\right) \cdot \nabla f_{x}(x, y)-\left(y-y_{\star}\right) \cdot \nabla f_{y}(x, y)\right)
$$

$$
\geq f(x, y)-f\left(x_{\star}, y\right)-f(x, y)+f\left(x, y_{\star}\right) \geq 0
$$

$$
\left\|z_{t+1}-z_{\star}\right\|^{2} \leq\left\|z_{t}-z_{\star}\right\|^{2}-2 \eta\left(z_{t+1}-z_{\star}\right) \cdot F\left(z_{t+1}^{\prime}\right)-\eta^{2}\left\|F\left(z_{t+1}^{\prime}\right)\right\|^{2}
$$

Proximal

$$
-2 \eta\left(z_{t+1}-z_{\star}\right) \cdot F\left(z_{t+1}\right)-\eta^{2}\left\|F\left(z_{t+1}^{\prime}\right)\right\|^{2} \leq 0
$$

Other cases

$$
\begin{aligned}
&-2 \eta\left(z_{t+1}-z_{\star}\right) \cdot F\left(z_{t+1}^{\prime}\right)-\eta^{2}\left\|F\left(z_{t+1}^{\prime}\right)\right\|^{2} \\
&=-2 \eta\left(z_{t+1}^{\prime}-z_{\star}\right) \cdot F\left(z_{t+1}^{\prime}\right)+2 \eta\left(\frac{\left.z_{t+1}^{\prime}-z_{t+1}\right)}{}=\eta\left(F\left(z_{t+1}^{\prime}\right)-\eta^{2}\left\|F\left(z_{t+1}^{\prime}\right)\right\|^{2}\right.\right. \\
&\left.\leq 0\left(z_{t+1}^{\prime}\right)-M_{t+1}\right) \\
& \leq 2 \eta^{2}\left(F\left(z_{t+1}^{\prime}\right)-M_{t+1}\right) \cdot F\left(z_{t+1}^{\prime}\right)-\eta^{2}\left\|F\left(z_{t+1}^{\prime}\right)\right\|^{2} \\
&= \eta^{2}\left\|F\left(z_{t+1}^{\prime}\right)-M_{t+1}\right\|^{2}-\eta^{2}\left\|M_{t+1}\right\|^{2} \quad \text { For GD, this } \geq 0
\end{aligned}
$$

$$
\left\|z_{t+1}-z_{\star}\right\|^{2} \leq\left\|z_{t}-z_{\star}\right\|^{2}+\eta^{2}\left(\left\|F\left(z_{t+1}^{\prime}\right)-M_{t+1}\right\|^{2}-\left\|M_{t+1}\right\|^{2}\right)
$$

EG

$$
\begin{aligned}
& z_{t+1}^{\prime}=z_{t}-\eta F\left(z_{t}\right) \\
& z_{t+1}=z_{t}-\eta F\left(z_{t+1}^{\prime}\right)
\end{aligned}
$$

$$
\left\|F\left(z_{t+1}^{\prime}\right)-M_{t+1}\right\|^{2}-\left\|M_{t+1}\right\|^{2}
$$

$$
=\left\|F\left(z_{t+1}^{\prime}\right)-F\left(z_{t}\right)\right\|^{2}-\left\|F\left(z_{t}\right)\right\|^{2}
$$

$$
\leq L^{2}\left\|z_{t+1}^{\prime}-z_{t}\right\|^{2}-\left\|F\left(z_{t}\right)\right\|^{2}
$$

$$
\leq \eta^{2} L^{2}\left\|F\left(z_{t}\right)\right\|^{2}-\left\|F\left(z_{t}\right)\right\|^{2}
$$

$$
\zeta \leq-\frac{1}{2}\left\|F\left(z_{t}\right)\right\|^{2}
$$

$$
\eta \leq \frac{1}{\sqrt{2} L}
$$

OGD

$$
\begin{aligned}
& z_{t+1}^{\prime}=z_{t}-\eta F\left(z_{t}^{\prime}\right) \\
& z_{t+1}=z_{t}-\eta F\left(z_{t+1}^{\prime}\right)
\end{aligned}
$$

$$
\left\|F\left(z_{t+1}^{\prime}\right)-M_{t+1}\right\|^{2}-\left\|M_{t+1}\right\|^{2}
$$

$$
=\left\|F\left(z_{t+1}^{\prime}\right)-F\left(z_{t}^{\prime}\right)\right\|^{2}-\left\|F\left(z_{t}^{\prime}\right)\right\|^{2}
$$

$$
\leq L^{2}\left\|z_{t+1}^{\prime}-z_{t}^{\prime}\right\|^{2}-\left\|F\left(z_{t}^{\prime}\right)\right\|^{2}
$$

$$
\leq \eta^{2} L^{2}\left\|2 F\left(z_{t}^{\prime}\right)-F\left(z_{t-1}^{\prime}\right)\right\|^{2}-\left\|F\left(z_{t}^{\prime}\right)\right\|^{2}
$$

$$
\leq 8 \eta^{2} L^{2}\left\|F\left(z_{t}^{\prime}\right)\right\|^{2}+2 \eta^{2} L^{2}\left\|F\left(z_{t-1}^{\prime}\right)\right\|^{2}-\left\|F\left(z_{t}^{\prime}\right)\right\|^{2}
$$

$$
\leq-\frac{1}{2}\left\|F\left(z_{t}^{\prime}\right)\right\|^{2}+\frac{1}{8}\left\|F\left(z_{t-1}^{\prime}\right)\right\|^{2}
$$

$$
\eta \leq \frac{1}{4 L}
$$

Convergence Analysis

$$
\mathrm{EG} \quad\left\|z_{t+1}-z_{\star}\right\|^{2} \leq\left\|z_{t}-z_{\star}\right\|^{2}-\frac{1}{2} \eta^{2}\left\|F\left(z_{t}\right)\right\|^{2}
$$

OGD $\quad\left\|z_{t+1}-z_{\star}\right\|^{2} \leq\left\|z_{t}-z_{\star}\right\|^{2}-\frac{1}{2} \eta^{2}\left\|F\left(z_{t}^{\prime}\right)\right\|^{2}+\frac{1}{8} \eta^{2}\left\|F\left(z_{t-1}^{\prime}\right)\right\|^{2}$

$$
\underbrace{\left\|z_{t+1}-z_{\star}\right\|^{2}+\frac{1}{8} \eta^{2}\left\|F\left(z_{t}^{\prime}\right)\right\|^{2}}_{\Theta_{t+1}} \leq \underbrace{\left\|z_{t}-z_{\star}\right\|^{2}+\frac{1}{8} \eta^{2}\left\|F\left(z_{t-1}^{\prime}\right)\right\|^{2}}_{\Theta_{t}}-\frac{3}{8} \eta^{2}\left\|F\left(z_{t}^{\prime}\right)\right\|^{2}
$$

Formal Result for the Constrained Setting

Define $\Theta_{t}=\left\|z_{t}-\Pi_{\mathcal{Z}_{\star}}\left(z_{t}\right)\right\|^{2}+\frac{1}{16}\left\|z_{t}-z_{t}^{\prime}\right\|^{2}$

$$
\begin{aligned}
& \Theta_{t+1} \leq \Theta_{t}-c \Theta_{t} \Rightarrow \Theta_{t}=\mathcal{O}\left(e^{-c t}\right) \\
& \Theta_{t+1} \leq \Theta_{t}-c \Theta_{t}^{2} \Rightarrow \Theta_{t}=\mathcal{O}(1 / t) \\
& \Theta_{t+1} \leq \Theta_{t}-c \Theta_{t}^{3} \Rightarrow \Theta_{t}=\mathcal{O}(1 / \sqrt{t})
\end{aligned}
$$

Then OGD with $\eta \leq \frac{1}{8 L}$ guarantees

$$
\Theta_{t+1} \leq \Theta_{t}-\frac{1}{2} \eta^{2} \max _{z^{\prime} \in \mathcal{Z}} \frac{\left[\left(z_{t+1}-z^{\prime}\right)^{\top} F\left(z_{t+1}\right)\right]_{+}^{2}}{\left\|z_{t+1}-z^{\prime}\right\|^{2}}
$$

Convergence rate? Relate this part to Θ_{t} (or Θ_{t+1})

Convergence Rate

Saddle-point Metric-subregularity (SP-MS) Condition:

$$
\exists C>0, \beta \geq 0 \quad \forall z \in \mathcal{Z} \quad \max _{z^{\prime} \in \mathcal{Z}} \frac{\left(z-z^{\prime}\right)^{\top} F(z)}{\left\|z-z^{\prime}\right\|} \geq C\left\|z-\Pi_{\mathcal{Z}_{\star}}(z)\right\|^{1+\beta}
$$

$$
\beta=0: \quad \Theta_{t+1} \leq e^{-\lambda t}
$$

bilinear games in polytopes
strongly-convex-strongly-concave games
$\beta>0: \quad \Theta_{t+1} \leq(\lambda t)^{-1 / \beta}$

Result for Optimistic Multiplicative Weight Update

Define $\Theta_{t}=\operatorname{KL}\left(z_{\star}, z_{t}\right)+\frac{1}{16} \operatorname{KL}\left(z_{t}^{\prime}, z_{t}\right)$
Then OMWU with $\eta \leq \frac{1}{8 L}$ guarantees

$$
\Theta_{t+1} \leq \Theta_{t}-\underbrace{\frac{15}{16}\left(\mathrm{KL}\left(z_{t+1}, z_{t+1}^{\prime}\right)+\operatorname{KL}\left(z_{t+1}^{\prime}, z_{t}\right)\right)}_{\zeta_{t}}
$$

Phase 1: $\quad \zeta_{t} \geq \eta^{2} C_{1} \mathrm{KL}\left(z_{\star}, z_{t+1}\right)^{2} \Rightarrow \Theta_{t} \leq 1 /\left(\lambda_{1} t\right)$
Phase 2 (when $\left.\left\|z_{t}-z_{\star}\right\| \leq \eta \xi\right): \quad \zeta_{t} \geq \eta^{2} C_{2} \mathrm{KL}\left(z_{\star}, z_{t+1}\right) \Rightarrow \Theta_{t} \leq e^{-\lambda_{2} t}$

Extension to Markov Games

Last-iterate Convergence of Decentralized Optimistic Gradient Descent/Ascent in Infinite-horizon Competitive Markov Games

Markov Games

State: s
Player 1's action a, Player 2's action b
Loss/payoff function: $\sigma(s, a, b)$
Transition function: $s^{\prime} \sim p(\cdot \mid s, a, b)$

Markov Games

Existing provably convergent algorithms usually belong to one of the following:

- Centralized algorithm
- Two-timescale algorithm (Golowich et al'20)
- Algorithm that only handles multi-stage games (Perolat et al.'18)

Is there an algorithm in general Markov games that

- Converges to Nash equilibria when both players use the same algorithm
- Converges to the best response when the other player converges to a fixed policy

A rational and convergent algorithm (Bowling \& Veloso'01)

Markov Games

We propose an actor-critic algorithm where
The policy learner (actor) runs OGD on each state
The value learner (critic) slows down the variation of the game matrix
critic
actor

$$
\begin{aligned}
& {\left[\begin{array}{l}
Q_{t}(s, a, b) \triangleq \sigma(s, a, b)+\gamma \mathbb{E}_{s^{\prime} \sim p(\cdot \mid s, a, b)}\left[V_{t-1}\left(s^{\prime}\right)\right] \\
V_{t}(s)=\left(1-\alpha_{t}\right) V_{t-1}(s)+\alpha_{t} \sum_{a, b} x_{t}^{\prime}(a \mid s) y_{t}^{\prime}(b \mid s) Q_{t}(s, a, b) \\
{\left[\begin{array}{l}
x_{t+1}^{\prime}(\cdot \mid s)=\Pi_{\Delta_{A}}\left(x_{t}(\cdot \mid s)-\eta \sum_{b \in B} Q_{t}(s, \cdot, b) y_{t}^{\prime}(b \mid s)\right) \\
x_{t+1}(\cdot \mid s)=\Pi_{\Delta_{A}}\left(x_{t}(\cdot \mid s)-\eta \sum_{b \in B} Q_{t+1}(s, \cdot, b) y_{t+1}^{\prime}(b \mid s)\right)
\end{array}\right.}
\end{array} . \begin{array}{l}
\end{array}\right]}
\end{aligned}
$$

Theorem for Markov Games

$$
\sqrt{\frac{1}{S} \sum_{s}\left\|z_{t}(\cdot \mid s)-\Pi_{\mathcal{Z}^{*}(\cdot \mid s)}\left(z_{t}(\cdot \mid s)\right)\right\|^{2}}=\mathcal{O}\left(\frac{S}{\eta^{2} C^{2}(1-\gamma)^{2}} \sqrt{\frac{1}{t}}\right)
$$

