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Problem Formulation

Consider a Markov Decision Process (MDP) with
I A finite set of states S
I A finite set of actions A
I known reward function r(s,a)
I unknown transition kernel p(s′|s,a)



Goal
Maximize the sum of reward

∑T
t=1 r(st ,at).

(average-reward setting)

To evaluate the performance, define

J∗ = max
π:S→A

lim
T→∞

1
T
E

[
T∑

t=1

r(st , π(st))

]
,

and

RegretT = TJ∗ −
T∑

t=1

r(st ,at).

A regret sublinear in T implies that the learner’s performance is
asymptotically same as the best policy.
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Model-based vs. Model-free Methods

I Model-based methods: learns the underlying rules of the
world and performs planning based on them.
e.g., modeling the transition probability p(s′|s,a)

I Model-free methods: directly learns how to act
e.g., modeling the state-action value Q∗(s,a) or the
optimal policy π∗(a|s)



Model-based vs. Model-free Methods

I Pros and Cons: Empirically, model-based methods are
more sample efficient; however, model-free methods are
more memory efficient and robust against model error.

I In many applications, model-free methods achieve
state-of-the-art performance (e.g., many Atari games).

I Theoretical analysis on model-free methods is relatively
scarce despite its empirical success (there is a resurge
since the recent work of [Jin et al.’18]).
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Contribution
We provide the state-of-the-art regret bound for the
average-reward setting under model-free methods.

Comparing with previous work:

Sub-class of MDP Ours Best MF Best MB
Ergodic O(

√
T ) O(T

3
4 ) (Politex) O(

√
T )

Weakly-comm. O(T
2
3 ) No previous bound O(

√
T )

I Ergodic MDPs ⊂ weakly communicating MDPs
I Weakly communicating is the minimal assumption required

for sublinear regret to be possible.
I open problem: Can the bound of model-free methods

match that of model-based methods?
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Two cases that we study

I Ergodic MDPs:
⇒ all policies are explorative in the state space
⇒ no need to worry about exploring the state space
⇒ O(

√
T ) regret

I Weakly communicating MDPs:
⇒ there exist strategies that explores the state space
⇒ adding exploration bonus to guide exploration
⇒ O(T

2
3 ) regret



Case 1. Ergodic MDP

MDP-OOMD (Optimistic Online Mirror Descent)



Ergodic MDPs

1. Uniformly mixing: Under any policy π, any initial state s1,∣∣∣Pr{st = s} − µπ(s)︸ ︷︷ ︸
stationary distribution

∣∣∣ ≤ O(e−t/tmix).

2. Lower bounded stationary probability: for any policy π,

µπ(s) ≥ ε > 0.



Ergodic MDPs – MDP-OOMD Algorithm
I Running a multi-armed bandit (MAB) algorithm on each

state.
I Feed cumulative reward in the trajectory of length N ≈ tmix

to the MAB algorithms.

Parameters: B (epoch length), N (trajectory length)
For k = 1,2, . . .

I Execute πk for B steps and get the sequence

T = (s1,a1, s2,a2, . . . , sB,aB).

I For each state-action pair (s,a),
I Find several length-N sub-trajectories of T that starts

from (s,a). Let R(s,a) be their reward average.
I For each state s,

I Update the MAB on state s with rewards R(s,a) ∀a.
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Ergodic MDPs – Regret Bound

The MAB algorithm we use is Optimistic Online Mirror
Descent with log-barrier as the regularizer.

MDP-OOMD achieves

E

[
TJ∗ −

T∑
t=1

r(st ,at)

]
≤ O

(√
t3
mixρ|A|T

)
where

ρ = max
π

∑
s

µπ
∗
(s)

µπ(s)
(distribution mismatch coefficient)

Remark. MDP-OOMD is essentially a policy-gradient algorithm
with some new variance reduction scheme.
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Case 2. Weakly Communicating MDP

Discounted optimistic Q-learning



Weakly Communicating MDPs

Bounded bias span: for any pair of states s, s′, under the best
policy π∗, the advantage of starting from s over starting from s′

is bounded.

E

[
τ∑

t=1

r(st , π
∗(st))

∣∣∣∣ s1 = s

]
− E

[
τ∑

t=1

r(st , π
∗(st))

∣∣∣∣ s1 = s′
]
≤ D

for any τ .



Weakly Communicating MDPs – Optimistic Q-learning
I Discounted Q-learning with adaptive discount factor γt

I Exploration bonus bτ
I Carefully tuned learning rates ατ

Parameters: C (bonus parameter)
For t = 1,2, . . .

I Choose at = argmaxa Qt(st ,a)
I Update Qt+1(st ,at) =

Qt(st ,at) + ατ︸︷︷︸
learning rate

r(st ,at) + γtVt(st+1)−Qt(st ,at) + bτ︸︷︷︸
bonus



where γt = 1−
(

t
|S||A|

)− 1
3 , τ , #visit(st ,at)

ατ = 1
1+τ(1−γt )

, bτ = C
√

1
τ(1−γt )
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Weakly Communicating MDPs – Regret Bound

Optimistic Q-learning achieves

E

[
TJ∗ −

T∑
t=1

r(st ,at)

]
≤ O

(
D 3
√

SAT 2
)

where D is the bias span.

Technical contribution: how to use a discount algorithm to
solve an average-reward problem.
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Summary

I We propose two model-free online reinforcement learning
algorithms for MDPs with finite states and actions in the
average-reward setting

I We formalize the regret bounds of our algorithms, which
are either new or improve over previous results.

I MDP-OOMD gets O(
√

T ) regret under the ergodic
assumption. Optimistic Q-learning gets O(T

2
3 ) regret

under weakly communicating assumption.
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