A Model Selection Approach for Corruption Robust Reinforcement Learning

Chen-Yu Wei, Chris Dann, Julian Zimmert (USC) (Google) (Google)

Online Decision Making

Given: policy set Π

For t = 1, ..., T:

The learner chooses $\pi_t \in \Pi$ The learner receives $r_t \in [0, 1]$ with $\mathbb{E}[r_t] = f(\pi_t)$

Examples: multi-armed bandits, contextual bandits, episodic MDP, etc.

$$\operatorname{Reg} = \sum_{t=1}^{T} \left(\max_{\pi \in \Pi} f(\pi) - f(\pi_t) \right)$$

Online Decision Making with Corrupted Samples

Given: policy set Π

For t = 1, ..., T: The adversary decides $f_t: \Pi \rightarrow [0, 1]$ The learner chooses $\pi_t \in \Pi$ The learner receives $r_t \in [0, 1]$ with $\mathbb{E}[r_t] = f_t(\pi_t)$

Examples: multi-armed bandits, contextual bandits, episodic MDP, etc.

 $\operatorname{Reg} = \sum_{t=1}^{T} \left(\max_{\pi \in \Pi} f(\pi) - f(\pi_t) \right)$ $C := \sum_{t=1}^{T} \max_{\pi} |f_t(\pi) - f(\pi)| \quad \text{(For MDPs, } C := \text{transition corruption} + \text{reward corruption})$ C is unknown to the learner

Corrupted Multi-Armed Bandits and MDPs

 $\min\left(\frac{1}{\Delta_A}, \sqrt{T}\right) + C$

Chen et al. (2021)

 $\min\left(\frac{1}{\Delta_{\Pi}},\sqrt{T}\right) + C^2$

(omitting log terms, #actions, #states)

(only allow $C \leq \sqrt{T}$)

Lykouris et al. (2018)

 $C\min\left(\frac{1}{\Delta_A},\sqrt{T}\right)$

Lykouris et al. (2021)

 $C\min\left(\frac{1}{\Delta_A},\sqrt{T}\right) + C^2$

Gupta et al. (2019) 2

Zimmert and Seldin (2019)

$$\min\left(\frac{1}{\Delta_{\mathcal{A}}}, \sqrt{T}\right) + C$$

$$\downarrow$$
Jin et al. (2021)
$$\min\left(\frac{1}{\Delta_{\mathcal{A}}}, \sqrt{T}\right) + C$$

(only allow corruption in reward)

$$\begin{split} &\Delta_{\mathcal{A}} = \text{action value gap} \\ &\Delta_{\Pi} = \text{policy value gap} = f(\pi^{\star}) - \max_{\pi \neq \pi^{\star}} f(\pi) \\ &\Delta_{\Pi} \leq \Delta_{\mathcal{A}} \end{split}$$

Observations

There are obstacles in extending from MAB to MDP: if transition is corrupted, previous works only tolerate $C \leq \sqrt{T}$

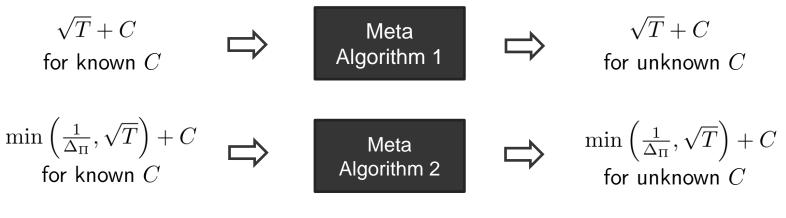
But if C is known, the tight bound $\min\left(\frac{1}{\Delta_{\mathcal{A}}}, \sqrt{T}\right) + C$ can be easily achieved.

(Lykouris et al. (2021): UCB + widened confidence interval)

 \rightarrow Difficulties come from " C is unknown"

Contributions

Reduction from "unknown C" to "known C"



$$\Delta_{\Pi} = f(\pi^{\star}) - \max_{\pi \neq \pi^{\star}} f(\pi)$$

Implications of the Reduction

Tabular MDP			
Algorithm	Regret	Limitations	
Lykouris et al., 2021	$C\min\{\frac{1}{\Delta_{\mathcal{A}}},\sqrt{T}\}+C^2$		
Chen et al., 2021	$\min\{\frac{1}{\Delta_{\Pi}}, \sqrt{T}\} + C^2$	computationally inefficient	
Jin et al., 2021	$\min\{\frac{1}{\Delta_{\mathcal{A}}}, \sqrt{T}\} + C$	only for corrupted reward	
Ours	$\min\{\frac{1}{\Delta_{\Pi}}, \sqrt{T}\} + C$		

First result that tolerate all $C \leq T$ with corrupted transition without knowing C

Linear bandit

Algorithm	Regret	Limitations			
Li et al., 2019	$\frac{1}{\Delta^2} + \frac{C}{\Delta}$				
Bogunovic et al., 2020/2021	$\sqrt{T}+C^2$ and $C\sqrt{T}$				
Lee, et al., 2021	$\min\{\tfrac{1}{\Delta}, \sqrt{T}\} + C$	only for linearized corruption			
Ours	$\min\{\tfrac{1}{\Delta}, \sqrt{T}\} + C$				
Linear contextual bandit					

Foster et al. 2020	\sqrt{CT}	
Ours	\sqrt{CT}	
	$\sqrt{T} + C$	Computationally inefficient
	Linear MDP	
Lykouris et al., 2021	$C^2\sqrt{T}$	
0	\sqrt{CT}	
Ours –	$\sqrt{T} + C$	Computationally inefficient

MDPs with low Bellman-Eluder dimension

Algorithm	Regret	Limitations
Ours	\sqrt{CT}	computationally inefficient

Meta Algorithm 1 $(\sqrt{T} + C)$

Simplified Formulation

Assume that either $C = c_1$ or $C = c_2$ ($\sqrt{T} \le c_1 \ll c_2$). How to achieve Reg $\lesssim \sqrt{T} + C$?

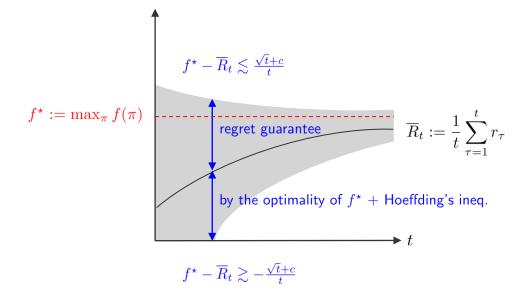
BaseAlg(c) If the total corruption $C \le c$, then best policy's total reward in [1...t] - learner's total reward in $[1...t] \lesssim \sqrt{t} + c$.

Idea 1. Confidence region via regret bounds

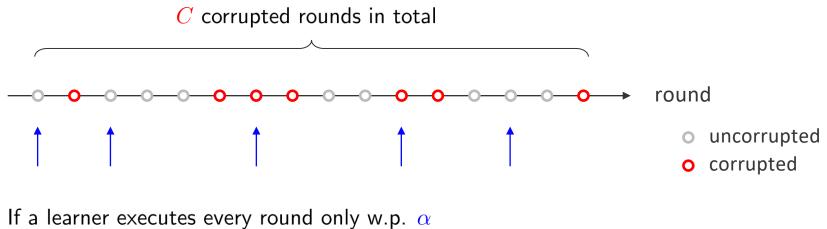
Idea 2. Robustness through sub-sampling

Idea 1. Confidence region via regret bounds

Suppose that we run **BaseAlg**(c) under $C \leq c$



Idea 2. Robustness through sub-sampling (Lykouris et al., 2018)

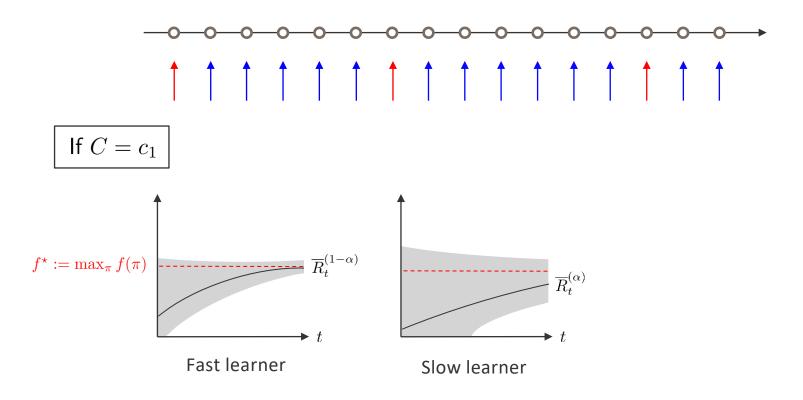


(and skip w.p. $1 - \alpha$)

Then in expectation, the learner only experiences $\alpha \cdot C$ corrupted rounds

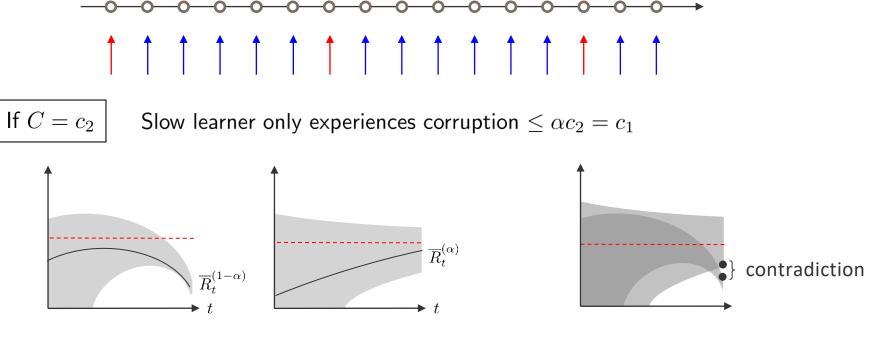
$$\alpha := \frac{c_1}{c_2} \ll 1$$

Execute two independent BaseAlg(c_1), w.p. $1 - \alpha$ and α respectively.



$$\alpha := \frac{c_1}{c_2} \ll 1$$

Execute two independent $BaseAlg(c_1)$, w.p. $1 - \alpha$ and α respectively.



Fast learner

Slow learner

Algorithm

Initiate two independent $\text{BaseAlg}(c_1)$. Execute them w.p. $\alpha = \frac{c_1}{c_2}$ (slow learner) and $1 - \alpha$ (fast learner). At every t, if $\overline{R}_t^{\text{fast}} \lesssim \overline{R}_t^{\text{slow}} - \Omega\left(\frac{1}{\sqrt{\alpha t}} + \frac{c_1}{t}\right)$, (must be $C = c_2$) terminate the algorithms; start running $\text{BaseAlg}(c_2)$.

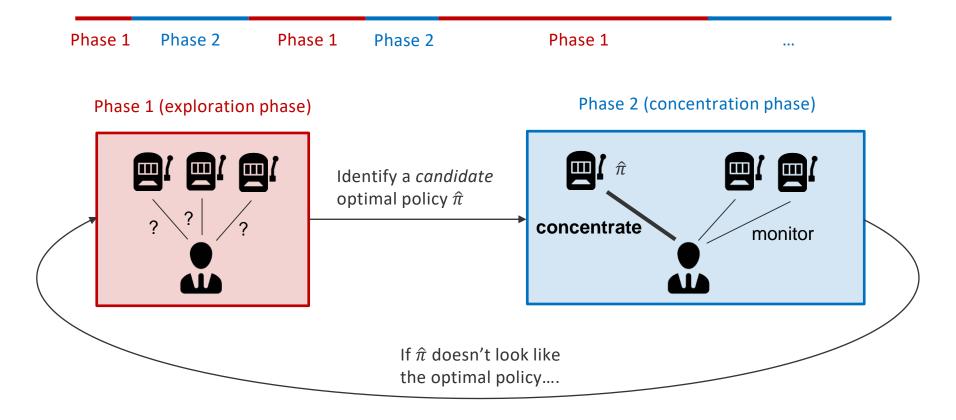
Theorem

Let $C \in \{c_1, c_2\}$. The algorithm above ensures Regret $= \tilde{\mathcal{O}}(\sqrt{T} + C)$.

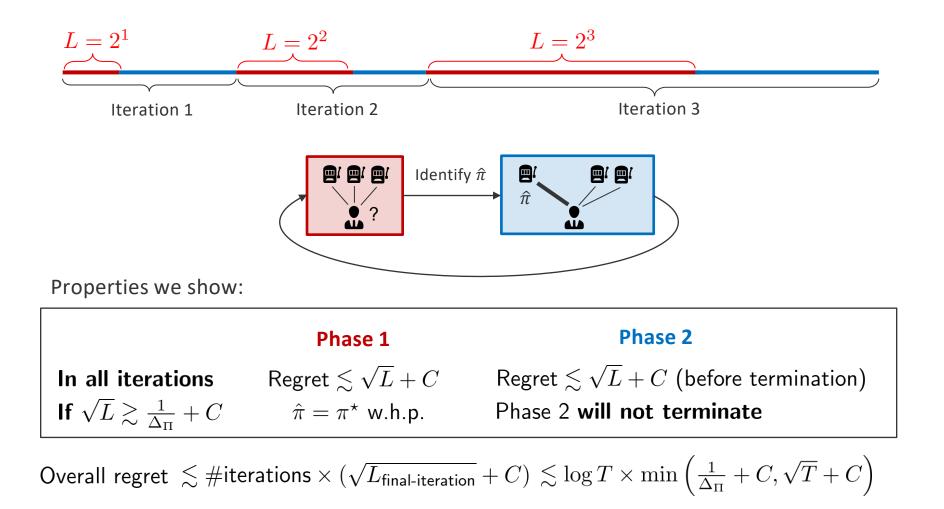
Meta Algorithm 2 $(\min\{\frac{1}{\Delta_{\Pi}}, \sqrt{T}\} + C)$

Limitation of Meta Algorithm 1

Always have $\text{Reg} = \Omega(\sqrt{T})$ (using Hoeffding's ineq. to construct confidence interval)

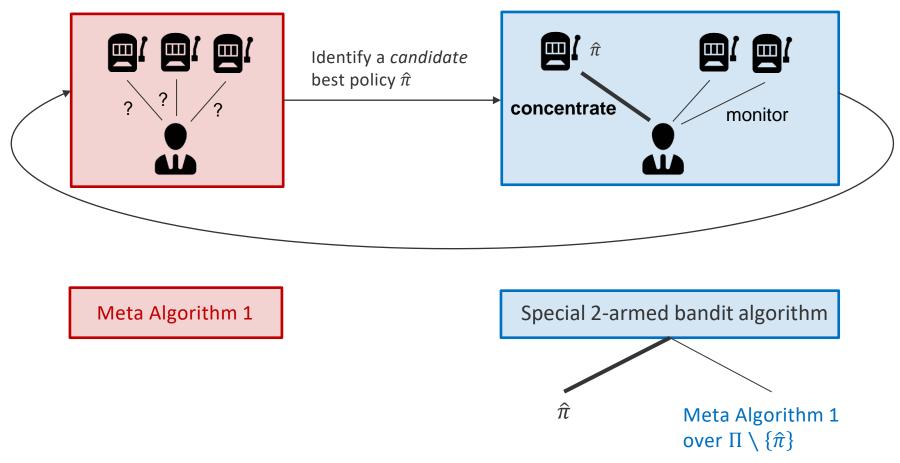


Inspired by [Bubeck and Slivkins 2012, Auer and Chiang, 2016, Lee et al., 2021]



Phase 1

Phase 2



Summary and Open Problem

 $\begin{array}{cccc} \sqrt{T} + C & & & \\ \text{for known } C & & & \\ \min\left(\frac{1}{\Delta_{\Pi}}, \sqrt{T}\right) + C & & \\ \text{for known } C & & \\ \end{array} \xrightarrow{\text{Meta}} & & \\ \text{Meta} & & \\ \text{Algorithm 2} & & \\ \end{array} \xrightarrow{\text{Meta}} & & \\ \min\left(\frac{1}{\Delta_{\Pi}}, \sqrt{T}\right) + C & & \\ \text{for unknown } C & & \\ \end{array}$

$$\min\left(\frac{1}{\Delta_{\mathcal{A}}}, \sqrt{T}\right) + C \text{ or } \min\left(\mathsf{inst}, \sqrt{T}\right) + C$$
for unknown C?