More Adaptive Algorithms for Adversarial Bandits

Chen-Yu Wei and Haipeng Luo

University of Southern California

Multi-Armed Bandit

- For $t=1, \ldots, T$,
- Player picks arm $i_{t} \in\{1, \ldots, K\}$
- Adversary reveals the loss of arm $i_{t}: \ell_{t, i_{t}} \in[0,1]$ (but not $\ell_{t, i}$ for $i \neq i_{t}$)
- Player suffers loss $\ell_{t, i_{t}}$ in this round

Multi-Armed Bandit

- For $t=1, \ldots, T$,
- Player picks arm $i_{t} \in\{1, \ldots, K\}$
- Adversary reveals the loss of arm $i_{t}: \ell_{t, i_{t}} \in[0,1]$ (but not $\ell_{t, i}$ for $i \neq i_{t}$)
- Player suffers loss $\ell_{t, i_{t}}$ in this round
- Goal: minimize the regret against the best arm:

$$
\text { regret }=\sum_{t=1}^{T} \ell_{t, i_{t}}-\min _{i} \sum_{t=1}^{T} \ell_{t, i}
$$

Multi-Armed Bandit

- For $t=1, \ldots, T$,
- Player picks arm $i_{t} \in\{1, \ldots, K\}$
- Adversary reveals the loss of arm $i_{t}: \ell_{t, i_{t}} \in[0,1]$ (but not $\ell_{t, i}$ for $i \neq i_{t}$)
- Player suffers loss $\ell_{t, i_{t}}$ in this round
- Goal: minimize the regret against the best arm:

$$
\text { regret }=\sum_{t=1}^{T} \ell_{t, i_{t}}-\min _{i} \sum_{t=1}^{T} \ell_{t, i}
$$

Target of this work: designing algorithms that always have (nearly) minimax regret guarantee $(\mathcal{O}(\sqrt{K T}))$ but are much better when data is easy.

Result 1: Best of both worlds

- Using a SINGLE algorithm
when losses are i.i.d. $\Rightarrow \mathcal{O}\left(\frac{K \log T}{\Delta}\right)$
when losses are adversarial $\Rightarrow \tilde{\mathcal{O}}\left(\sqrt{K L^{*}}\right)$
- Δ : gap between the mean of best arm and the 2nd-best arm
- $L^{*}=\sum_{t=1}^{T} \ell_{t, i^{*}}$: best arm's total loss

Result 1: Best of both worlds

- Using a SINGLE algorithm
when losses are i.i.d. $\Rightarrow \mathcal{O}\left(\frac{K \log T}{\Delta}\right)$
when losses are adversarial $\Rightarrow \tilde{\mathcal{O}}\left(\sqrt{K L^{*}}\right)$
- Δ : gap between the mean of best arm and the 2 nd-best arm
- $L^{*}=\sum_{t=1}^{T} \ell_{t, i *}$: best arm's total loss
- Similar to
[Bubeck\&Slivkins'12, Seldin\&Slivkins'14, Auer\&Chiang'16, Seldin\&Lugosi'17]

Result 1: Best of both worlds

- Using a SINGLE algorithm
when losses are i.i.d. $\Rightarrow \mathcal{O}\left(\frac{K \log T}{\Delta}\right)$
when losses are adversarial $\Rightarrow \tilde{\mathcal{O}}\left(\sqrt{K L^{*}}\right)$
- Δ : gap between the mean of best arm and the 2nd-best arm
- $L^{*}=\sum_{t=1}^{T} \ell_{t, i *}$: best arm's total loss
- Similar to
[Bubeck\&Slivkins'12, Seldin\&Slivkins'14, Auer\&Chiang'16, Seldin\&Lugosi'17]
- Benefits of our algorithm:

Result 1: Best of both worlds

- Using a SINGLE algorithm
when losses are i.i.d. $\Rightarrow \mathcal{O}\left(\frac{K \log T}{\Delta}\right)$
when losses are adversarial $\Rightarrow \tilde{\mathcal{O}}\left(\sqrt{K L^{*}}\right)$
- Δ : gap between the mean of best arm and the 2nd-best arm
- $L^{*}=\sum_{t=1}^{T} \ell_{t, i *}$: best arm's total loss
- Similar to
[Bubeck\&Slivkins'12, Seldin\&Slivkins'14, Auer\&Chiang'16, Seldin\&Lugosi'17]
- Benefits of our algorithm:
- In the adversarial setting: $\sqrt{K T} \rightarrow \sqrt{K L^{*}}$

Result 1: Best of both worlds

- Using a SINGLE algorithm
when losses are i.i.d. $\Rightarrow \mathcal{O}\left(\frac{K \log T}{\Delta}\right)$ when losses are adversarial $\Rightarrow \tilde{\mathcal{O}}\left(\sqrt{K L^{*}}\right)$
- Δ : gap between the mean of best arm and the 2nd-best arm
- $L^{*}=\sum_{t=1}^{T} \ell_{t, i *}$: best arm's total loss
- Similar to
[Bubeck\&Slivkins'12, Seldin\&Slivkins'14, Auer\&Chiang'16, Seldin\&Lugosi'17]
- Benefits of our algorithm:
- In the adversarial setting: $\sqrt{K T} \rightarrow \sqrt{K L^{*}}$
- In the stochastic setting: $\frac{K \log T}{\Delta}$ bound holds under weaker assumption: $\mathbb{E}_{t}\left[\ell_{t, i^{*}}\right] \leq \mathbb{E}_{t}\left[\ell_{t, i}\right]+\Delta$ (can be neither independent nor identical)

Result 1: Best of both worlds

- Using a SINGLE algorithm
when losses are i.i.d. $\Rightarrow \mathcal{O}\left(\frac{K \log T}{\Delta}\right)$ when losses are adversarial $\Rightarrow \tilde{\mathcal{O}}\left(\sqrt{K L^{*}}\right)$
- Δ : gap between the mean of best arm and the 2nd-best arm
- $L^{*}=\sum_{t=1}^{T} \ell_{t, i *}$: best arm's total loss
- Similar to
[Bubeck\&Slivkins'12, Seldin\&Slivkins'14, Auer\&Chiang'16, Seldin\&Lugosi'17]
- Benefits of our algorithm:
- In the adversarial setting: $\sqrt{K T} \rightarrow \sqrt{K L^{*}}$
- In the stochastic setting: $\frac{K \log T}{\Delta}$ bound holds under weaker assumption: $\mathbb{E}_{t}\left[\ell_{t, i^{*}}\right] \leq \mathbb{E}_{t}\left[\ell_{t, i}\right]+\Delta$ (can be neither independent nor identical)
- Much SIMPLER algorithm and analysis: no extra statistical tests are required

Result 2: Adaptive bounds

- when losses have small empirical variance
- $Q_{i}=\sum_{t=1}^{T}\left(\ell_{t, i}-\mu_{i}\right)^{2}$, where $\mu_{i}=\frac{1}{T} \sum_{t=1}^{T} \ell_{t, i}$.

Result 2: Adaptive bounds

- when losses have small empirical variance
- $Q_{i}=\sum_{t=1}^{T}\left(\ell_{t, i}-\mu_{i}\right)^{2}$, where $\mu_{i}=\frac{1}{T} \sum_{t=1}^{T} \ell_{t, i}$.

full-info	bandit
$\sqrt{\text { max }_{i} Q_{i}}[$ Hazan\&Kale'08]	$\sqrt{\sum_{i} Q_{i}}$ [Bubeck et al: 18]
$\sqrt{Q_{i^{*}}}[$ Steinhardt\&LLiang'14]	

Result 2: Adaptive bounds

- when losses have small empirical variance
- $Q_{i}=\sum_{t=1}^{T}\left(\ell_{t, i}-\mu_{i}\right)^{2}$, where $\mu_{i}=\frac{1}{T} \sum_{t=1}^{T} \ell_{t, i}$.

full-info	bandit
$\sqrt{\max _{i} Q_{i}}$ [Hazan\&Kale'08]	$\sqrt{\sum_{i} Q_{i} \text { [Bubecketal }{ }^{\text {a }} \text { '18] }}$
$\sqrt{Q_{i^{*}}}$ [SteinhartitLLiang' 14$]$	$\sqrt{K Q_{i^{*}}}{ }^{\text {[his paper] }}$

Result 2: Adaptive bounds

- when losses have small empirical variance
- $Q_{i}=\sum_{t=1}^{T}\left(\ell_{t, i}-\mu_{i}\right)^{2}$, where $\mu_{i}=\frac{1}{T} \sum_{t=1}^{T} \ell_{t, i}$.

full-info	bandit
$\sqrt{\max _{i} Q_{i}}$ [Hazan\&Kale'08]	$\sqrt{\sum_{i} Q_{i} \text { [Bubecketal }{ }^{\text {a }} \text { '18] }}$
$\sqrt{Q_{i^{*}}}$ [SteinhartitcLiang' 14$]$	$\sqrt{K Q_{i^{*}}}{ }_{\text {[this paper] }}$

- when losses have small path length

Result 2: Adaptive bounds

- when losses have small empirical variance
- $Q_{i}=\sum_{t=1}^{T}\left(\ell_{t, i}-\mu_{i}\right)^{2}, \quad$ where $\mu_{i}=\frac{1}{T} \sum_{t=1}^{T} \ell_{t, i}$.

full-info	bandit
$\sqrt{\text { max }_{i} Q_{i}}$ [Hazan\&Kale'08]	$\sqrt{\sum_{i} Q_{i}}$ [Bubeck et al.'18]
$\sqrt{\text { Q }_{i^{*}}}$ [Steinhardt\&Liang'14]	$\sqrt{K Q_{i^{*}}}$ [this paper]

- when losses have small path length
- $D_{i}=\sum_{t}\left(\ell_{t, i}-\ell_{t-1, i}\right)^{2}$

Result 2: Adaptive bounds

- when losses have small empirical variance
- $Q_{i}=\sum_{t=1}^{T}\left(\ell_{t, i}-\mu_{i}\right)^{2}, \quad$ where $\mu_{i}=\frac{1}{T} \sum_{t=1}^{T} \ell_{t, i}$.

full-info	bandit
$\sqrt{\mathrm{max}_{i} Q_{i}}[$ Hazan\&Kale'08]	$\sqrt{\sum_{i} Q_{i}}$ [Bubeck et al.'18]
$\sqrt{Q_{i^{*}}}$ [Steinhard\&LLiang'14]	$\sqrt{K Q_{i^{*}}}$ [this paper]

- when losses have small path length
- $D_{i}=\sum_{t}\left(\ell_{t, i}-\ell_{t-1, i}\right)^{2}$

full-info	bandit
$\sqrt{\max _{i} D_{i}}$ [Ching e eta. 2012]	
$\sqrt{\overline{D_{i *}^{*}} \text { [SteinhardtelLLLiang 2014] }}$	

Result 2: Adaptive bounds

- when losses have small empirical variance
- $Q_{i}=\sum_{t=1}^{T}\left(\ell_{t, i}-\mu_{i}\right)^{2}, \quad$ where $\mu_{i}=\frac{1}{T} \sum_{t=1}^{T} \ell_{t, i}$.

full-info	bandit
$\sqrt{\mathrm{max}_{i} Q_{i}}$ [Hazan\&Kale'08]	$\sqrt{\sum_{i} Q_{i}}$ [Bubeck et al.'18]
$\sqrt{Q_{i^{*}}}$ [Steinhard\&LLiang'14]	$\sqrt{K Q_{i^{*}}}$ [this paper]

- when losses have small path length
- $D_{i}=\sum_{t}\left(\ell_{t, i}-\ell_{t-1, i}\right)^{2} \longrightarrow V_{i}=\sum_{t}\left|\ell_{t, i}-\ell_{t-1, i}\right|$

full-info	bandit
$\sqrt{\max _{i} D_{i}}[$ [Chiang etal. 2012]	
$\sqrt{D_{i *}^{*} \text { [SteinhardetelLLiang 2014] }}$	

Result 2: Adaptive bounds

- when losses have small empirical variance
- $Q_{i}=\sum_{t=1}^{T}\left(\ell_{t, i}-\mu_{i}\right)^{2}, \quad$ where $\mu_{i}=\frac{1}{T} \sum_{t=1}^{T} \ell_{t, i}$.

full-info	bandit
$\sqrt{\mathrm{max}_{i} Q_{i}}$ [Hazan\&Kale'08]	$\sqrt{\sum_{i} Q_{i}}$ [Bubeck et al.'18]
$\sqrt{Q_{i^{*}}}$ [Steinhard\&LLiang'14]	$\sqrt{K Q_{i^{*}}}$ [this paper]

- when losses have small path length
- $D_{i}=\sum_{t}\left(\ell_{t, i}-\ell_{t-1, i}\right)^{2} \longrightarrow V_{i}=\sum_{t}\left|\ell_{t, i}-\ell_{t-1, i}\right|$

full-info	bandit
$\sqrt{\max _{i} D_{i}}$ [Chiong etal. 2012]	$\sqrt{K \sum_{i} V_{i} \text { [this paperf] }}$
$\sqrt{D_{i *}^{*}}$ [SteinhardtellLLiang 2014]	$K \sqrt{V_{i^{*}} \text { [this pppeef] }}$

Result 2: Adaptive bounds

- when losses have small empirical variance
- $Q_{i}=\sum_{t=1}^{T}\left(\ell_{t, i}-\mu_{i}\right)^{2}, \quad$ where $\mu_{i}=\frac{1}{T} \sum_{t=1}^{T} \ell_{t, i}$.

full-info	bandit
$\sqrt{\text { max }_{i} Q_{i}}$ [Hazan\&Kale'08]	$\sqrt{\sum_{i} Q_{i}}$ [Bubeck et al.'18]
$\sqrt{Q_{i^{*}}}$ [Steinhardt\&LLiang' 14]	$\sqrt{K Q_{i^{*}}}$ [this paper]

- when losses have small path length
- $D_{i}=\sum_{t}\left(\ell_{t, i}-\ell_{t-1, i}\right)^{2} \longrightarrow V_{i}=\sum_{t}\left|\ell_{t, i}-\ell_{t-1, i}\right|$

full-info	bandit
$\sqrt{\left.\max _{i} D_{i} \text { [Chiong et al. } 2012\right]}$	$\sqrt{K \sum_{i} V_{i} \text { [this paper] }}$
$\sqrt{D_{i^{*}}}$ [Steinharattelilang 2014]	$K \sqrt{V_{i *}{ }^{*} \text { [this paper] }}$

- Application: faster convergence $\left(1 / T^{\frac{3}{4}}\right)$ for multi-player games with bandit feedback (\sim [Rakhlin\&Sridharan'13, Syrgkanis et al.'15, Abernethy et al.'18]). Typical bandit algorithm: $1 / \sqrt{T}$.

Algorithm: Broad-OMD

- BROAD=Barrier-Regularized with Optimism and ADaptivity

Algorithm: Broad-OMD

- BROAD=Barrier-Regularized with Optimism and ADaptivity
- Online Mirror Descent (OMD):

$$
\begin{aligned}
& \text { Sample } i_{t} \sim p_{t} \\
& p_{t+1}=\arg \min _{p}\left\{\left\langle p, \hat{\ell}_{t}\right\rangle+D_{\psi_{t}}\left(p, p_{t}\right)\right\}
\end{aligned}
$$

Algorithm: Broad-OMD

- BROAD=Barrier-Regularized with Optimism and ADaptivity
- Optimistic OMD [Rakhlin\&Sridharan'13]:

Sample $i_{t} \sim p_{t}$

$$
\begin{aligned}
& p_{t+1}^{\prime}=\arg \min _{p}\left\{\left\langle p, \hat{\ell}_{t}\right\rangle+D_{\psi_{t}}\left(p, p_{t}^{\prime}\right)\right\} \\
& p_{t+1}=\arg \min _{p}\left\{\left\langle p, m_{t+1}\right\rangle+D_{\psi_{t+1}}\left(p, p_{t+1}^{\prime}\right)\right\}
\end{aligned}
$$

Algorithm: Broad-OMD

- BROAD=Barrier-Regularized with Optimism and ADaptivity
- OMD with Adaptivity and Optimism [\sim Steinhardt\&Liang'14]:

Sample $i_{t} \sim p_{t}$

$$
\begin{aligned}
& p_{t+1}^{\prime}=\arg \min _{p}\left\{\left\langle p, \hat{\ell}_{t}+a_{t}\right\rangle+D_{\psi_{t}}\left(p, p_{t}^{\prime}\right)\right\} \\
& p_{t+1}=\arg \min _{p}\left\{\left\langle p, m_{t+1}\right\rangle+D_{\psi_{t+1}}\left(p, p_{t+1}^{\prime}\right)\right\}
\end{aligned}
$$

Algorithm: Broad-OMD

- BROAD=Barrier-Regularized with Optimism and ADaptivity
- OMD with Adaptivity and Optimism [\sim Steinhardt\&Liang'14]:

Sample $i_{t} \sim p_{t}$

$$
\begin{aligned}
& p_{t+1}^{\prime}=\arg \min _{p}\left\{\left\langle p, \hat{\ell}_{t}+a_{t}\right\rangle+D_{\psi_{t}}\left(p, p_{t}^{\prime}\right)\right\} \\
& p_{t+1}=\arg \min _{p}\left\{\left\langle p, m_{t+1}\right\rangle+D_{\psi_{t+1}}\left(p, p_{t+1}^{\prime}\right)\right\}
\end{aligned}
$$

where ψ_{t} is a time-varying log-barrier [Foster et al.'16]:

$$
\psi_{t}(p)=\sum_{i=1}^{K} \frac{1}{\eta_{t, i}} \log \frac{1}{p_{i}}
$$

Algorithm: Broad-OMD

- BROAD=Barrier-Regularized with Optimism and ADaptivity
- OMD with Adaptivity and Optimism [\sim Steinhardt\&Liang'14]:

Sample $i_{t} \sim p_{t}$

$$
\begin{aligned}
& p_{t+1}^{\prime}=\arg \min _{p}\left\{\left\langle p, \hat{\ell}_{t}+a_{t}\right\rangle+D_{\psi_{t}}\left(p, p_{t}^{\prime}\right)\right\} \\
& p_{t+1}=\arg \min _{p}\left\{\left\langle p, m_{t+1}\right\rangle+D_{\psi_{t+1}}\left(p, p_{t+1}^{\prime}\right)\right\},
\end{aligned}
$$

where ψ_{t} is a time-varying log-barrier [Foster et al.'16]:

$$
\psi_{t}(p)=\sum_{i=1}^{K} \frac{1}{\eta_{t, i}} \log \frac{1}{p_{i}}
$$

- Set $a_{t}=0$ with appropriately chosen m_{t} to achieve $\sqrt{K \sum_{i} V_{i}}$ and best of both worlds.

Algorithm: Broad-OMD

- BROAD=Barrier-Regularized with Optimism and ADaptivity
- OMD with Adaptivity and Optimism [\sim Steinhardt\&Liang'14]:

Sample $i_{t} \sim p_{t}$

$$
\begin{aligned}
& p_{t+1}^{\prime}=\arg \min _{p}\left\{\left\langle p, \hat{\ell}_{t}+a_{t}\right\rangle+D_{\psi_{t}}\left(p, p_{t}^{\prime}\right)\right\} \\
& p_{t+1}=\arg \min _{p}\left\{\left\langle p, m_{t+1}\right\rangle+D_{\psi_{t+1}}\left(p, p_{t+1}^{\prime}\right)\right\},
\end{aligned}
$$

where ψ_{t} is a time-varying log-barrier [Foster et al.'16]:

$$
\psi_{t}(p)=\sum_{i=1}^{K} \frac{1}{\eta_{t, i}} \log \frac{1}{p_{i}}
$$

- Set $a_{t}=0$ with appropriately chosen m_{t} to achieve $\sqrt{K \sum_{i} V_{i}}$ and best of both worlds.
- Set $a_{t, i}=6 \eta_{t, i} p_{t, i}\left(\hat{\ell}_{t, i}-m_{t, i}\right)^{2}$ with appropriately chosen m_{t} to adapt to the best arm: $\sqrt{K Q_{i^{*}}}$ and $K \sqrt{V_{i^{*}}}$

Other Elements / Open Problems

- To get some of the results, increasing learning rates are required; for some other results, decreasing learning rates are required.
- Most of our results can be generalized to combinatorial bandits with semi-bandit feedback.

Other Elements / Open Problems

- To get some of the results, increasing learning rates are required; for some other results, decreasing learning rates are required.
- Most of our results can be generalized to combinatorial bandits with semi-bandit feedback.

Open Problems:

- Parameter-free algorithms that achieve $\sqrt{K Q_{i^{*}}}$ and $K \sqrt{V_{i^{*}}}$.
- Second-order path-length bound for bandit
- Extensions to other bandit settings (e.g., linear/contextual)

