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Multi-Armed Bandit

For t = 1, . . . ,T ,

Player picks arm it ∈ {1, . . . ,K}
Adversary reveals the loss of arm it : `t,it ∈ [0, 1] (but not `t,i for i 6= it)
Player suffers loss `t,it in this round

Goal: minimize the regret against the best arm:

regret =
∑T

t=1 `t,it −mini
∑T

t=1 `t,i

Target of this work: designing algorithms that always have
(nearly) minimax regret guarantee (O(

√
KT )) but are much better

when data is easy.
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Result 1: Best of both worlds

Using a SINGLE algorithm

when losses are i.i.d. ⇒ O
(
K log T

∆

)
when losses are adversarial ⇒ Õ

(√
KL∗

)
∆: gap between the mean of best arm and the 2nd-best arm
L∗ =

∑T
t=1 `t,i∗ : best arm’s total loss

Similar to
[Bubeck&Slivkins’12, Seldin&Slivkins’14, Auer&Chiang’16, Seldin&Lugosi’17]

Benefits of our algorithm:

In the adversarial setting:
√
KT →

√
KL∗

In the stochastic setting: K log T
∆ bound holds under weaker

assumption: Et [`t,i∗ ] ≤ Et [`t,i ] + ∆
(can be neither independent nor identical)

Much SIMPLER algorithm and analysis: no extra statistical
tests are required
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Result 2: Adaptive bounds

when losses have small empirical variance

Qi =
∑T

t=1(`t,i − µi )
2, where µi = 1

T

∑T
t=1 `t,i .

full-info bandit√
maxi Qi [Hazan&Kale’08]

√∑
i Qi [Bubeck et al.’18]√

Qi∗ [Steinhardt&Liang’14]

√
KQi∗ [this paper]

when losses have small path length
Di =

∑
t(`t,i − `t−1,i )

2

−→ Vi =
∑

t |`t,i − `t−1,i |

full-info bandit√
maxi Di [Chiang et al. 2012]

√
K
∑

i Vi [this paper]

√
Di∗ [Steinhardt&Liang 2014]

K
√
Vi∗ [this paper]

Application: faster convergence (1/T
3
4 ) for multi-player

games with bandit feedback
(∼[Rakhlin&Sridharan’13, Syrgkanis et al.’15, Abernethy et al.’18]).
Typical bandit algorithm: 1/

√
T .
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Algorithm: Broad-OMD

BROAD=Barrier-Regularized with Optimism and ADaptivity

where ψt is a time-varying log-barrier [Foster et al.’16]:

ψt(p) =
∑K

i=1
1
ηt,i

log 1
pi

Set at = 0 with appropriately chosen mt to achieve√
K
∑

i Vi and best of both worlds.

Set at,i = 6ηt,ipt,i (ˆ̀
t,i −mt,i )

2 with appropriately chosen mt

to adapt to the best arm:
√
KQi∗ and K

√
Vi∗
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Algorithm: Broad-OMD
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Algorithm: Broad-OMD

BROAD=Barrier-Regularized with Optimism and ADaptivity
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Other Elements / Open Problems

To get some of the results, increasing learning rates are
required; for some other results, decreasing learning rates
are required.

Most of our results can be generalized to combinatorial
bandits with semi-bandit feedback.

Open Problems:

Parameter-free algorithms that achieve
√
KQi∗ and K

√
Vi∗ .

Second-order path-length bound for bandit

Extensions to other bandit settings (e.g., linear/contextual)
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