# Optimal Dynamic Regret for Bandits without Prior Knowledge

Chen-Yu Wei Research Fellow @ Simons Institute

# **Online Learning**



# **Online Learning with Bandit Feedback**



#### **Bandit Feedback + Non-Stationarity**





#### Challenge:

How to use the right amount of exploration without prior knowledge on the degree of non-stationarity?

(avoid over-exploration or under-exploration)

## **Multi-Armed Bandits with Non-Stationarity**

Given: K arms For t = 1, ..., T: Environment chooses a *mean reward vector*  $\mu_t \in [0, 1]^K$ Learner chooses an arm  $a_t \in [K]$ Learner observes the reward  $r_t$  with  $\mathbb{E}[r_t] = \mu_t(a_t)$ 

Dynamic-Regret = 
$$\sum_{t=1}^{T} \left( \max_{a \in [K]} \mu_t(a) - r_t \right)$$
$$S = 1 + \sum_{t=2}^{T} \mathbf{1} \{ \mu_t \neq \mu_{t-1} \}$$
Dynamic-regr
$$V = 1 + \sum_{t=2}^{T} \|\mu_t - \mu_{t-1}\|_{\infty}$$

Dynamic-regret lower bound = 
$$\Omega\left(\min\left\{\sqrt{ST}, V^{\frac{1}{3}}T^{\frac{2}{3}}\right\}\right)$$

#### Related works with $\tilde{O}(S^{\alpha}T^{1-\alpha})$ or $\tilde{O}(V^{\alpha}T^{1-\alpha})$ upper bounds

|                          | Multi-armed<br>bandits                         | Multi-armed<br>contextual<br>bandits | Linear<br>bandits | Generalized<br>linear bandits | MDP | Realizable<br>contextual<br>bandits |
|--------------------------|------------------------------------------------|--------------------------------------|-------------------|-------------------------------|-----|-------------------------------------|
| Auer et al., 2002        | $\sqrt{ST}$ (known S)                          |                                      |                   |                               |     |                                     |
| Besbes et al., 2014      | V <sup>1/3</sup> T <sup>2/3</sup> (known V)    |                                      |                   |                               |     |                                     |
| Karnin and Anava, 2016   | $V^{0.18}T^{0.82}$                             |                                      |                   |                               |     |                                     |
| Luo et al., 2018         | $\min\{S^{1/4}T^{3/4}, V^{1/5} T^{4/5}\}$      |                                      |                   |                               |     |                                     |
| Cheung et al., 2018/2019 | $V^{1/3}T^{2/3} + T^{3/4}$                     |                                      | $V^{1/4}T^{3/4}$  |                               |     |                                     |
| Auer et al., 2018/2019   | $\sqrt{ST}$                                    |                                      |                   |                               |     |                                     |
| Chen et al., 2019        | $\min\left\{\sqrt{ST}, V^{1/3}T^{2/3}\right\}$ |                                      |                   |                               |     |                                     |
| W and Luo, 2021          | $\min\left\{\sqrt{ST}, V^{1/3}T^{2/3}\right\}$ |                                      |                   |                               |     |                                     |

# Papers We Will Discuss Today

Auer, Gajane, Ortner: multi-scale change detection [EWRL 2018]: 2-armed bandits [COLT 2019]: K-armed bandits

W and Luo [COLT 2021]: generalizing (Auer et al.) to a wide range of problems Wang [arXiv, 2022]: further generalization

Stationary algorithm 
$$ightarrow$$
 Meta  
Algorithm  $ightarrow$  Non-stationary algorithm

# Which one is the most difficult to detect?



# Simplification

- Two arms
- Means change at most once
- The initial means are known



# Simplification



# **Algorithm Template**





#### What makes a successful detection?

- DB starts after s
- DB length  $\geq 1/C^2$

(To estimate the mean up to an accuracy of C, we need/only need  $\approx \frac{1}{C^2}$  samples)

# Regret = Detection overhead +<br/>(random draws in DB)Non-detection penalty<br/>(detection delay)

Key: smartly schedule DBs to balance the two terms



#### Delay := time from the change point to the beginning of a successful detection



#### Algorithm (just one change point)

Draw two arms uniformly at random, until  $t \gtrsim \frac{1}{|a-b|^2}$ . (Also, perform some non-stationarity detection)

For  $t = 1, 2, \ldots$ : For  $\epsilon = 1, \frac{1}{2}, \frac{1}{4}, \ldots, \frac{\Delta}{2}$ : w.p.  $p_{\epsilon} = \frac{\epsilon}{\sqrt{t}}$ , initiate a DB of length  $\approx \frac{1}{\epsilon^2}$ . (allow overlap)



Uniformly randomly choose arms if t lies in any DB; otherwise choose argmax $\{a, b\}$ 

#### **Detection**:

At the end of every DB with length  $\frac{1}{\epsilon^2}$ , check if  $|a - a'| > \epsilon$  or  $|b - b'| > \epsilon$ ? where a', b' are mean estimations in DB. If so, choose  $\arg\max\{a', b'\}$  in the remaining rounds.





#### Algorithm (Multiple change points)

Draw two arms uniformly at random, until  $t \gtrsim \frac{1}{|a-b|^2}$ . (Also, perform some non-stationarity detection)

For 
$$t = 1, 2, \ldots$$
  
For  $\epsilon = 1, \frac{1}{2}, \frac{1}{4}, \ldots, \frac{\Delta}{2}$ :  
w.p.  $p_{\epsilon} = \frac{\epsilon}{\sqrt{t}}$ , initiate a DB of length  $\approx \frac{1}{\epsilon^2}$ .

Uniformly randomly choose arms if t lies in any DB; otherwise choose  $argmax\{a, b\}$ 

#### **Detection**:

At the end of every DB with length 
$$\frac{1}{\epsilon^2}$$
, check if  
 $|a - a'| > \epsilon$  or  $|b - b'| > \epsilon$ ?  
where  $a', b'$  are new estimations in DB.  
If so, restart the algorithm.



## **General Decision Making with Non-Stationarity**

Given: policy set  $\Pi$ For  $t = 1, \ldots, T$ : Environment chooses a mapping  $f_t \colon \Pi \to [0, 1]$ Learner chooses a policy  $\pi_t \in \Pi$ Learner observes the reward  $r_t$  with  $\mathbb{E}[r_t] = f_t(\pi_t)$ 

Dynamic-Regret = 
$$\sum_{t=1}^{T} \left( \max_{\pi \in \Pi} f_t(\pi) - r_t \right)$$

#### **Extensions to Other Settings**

**K-armed bandit** 

(Auer, Gajane, Ortner, 2019)

Algorithm 1 ADSWITCH

Contextual K-armed banditCombi(Chen, Lee, Luo, W, 2019)(Chen, Water State State

**Combinatorial semi-bandit** (Chen, Wang, Zhao, Zheng, 2021)

1: Input: Time horizon T. 2: Initialization  $\ell \leftarrow 0, t \leftarrow 0$ . 3: Start a new episode:  $\ell \leftarrow \ell + 1.$ Set start of the episode  $t_{\ell} \leftarrow t + 1$ .  $GOOD_{t+1} = \{1, \dots, K\}, BAD_{t+1} = \{\}.$ Next time step: 7:  $t \leftarrow t + 1$ . 8: 9: Add checks for bad arms: For all  $a \in BAD_t$ , and all  $i \ge 1$  with  $2^{-i} \ge \tilde{\Delta}_{\ell}(a)/16$ , 10: with probability  $2^{-i}\sqrt{\ell/(KT\log T)}$  add  $\mathcal{S}_t(a) \leftarrow \mathcal{S}_t(a) \cup (2^{-i}, \lceil 2^{2i+1}\log T \rceil, t)$ . 11: 12: Select an arm: Select  $a_t = \arg \min_a \{ \tau : a \notin \{a_\tau, \dots, a_{t-1}\}, a \in \text{GOOD}_t \lor \mathcal{S}_t(a) \neq \{\} \}.$ 13. Receive reward  $r_t$ . 14: 15: Check for changes of good arms: If there is  $a \in \text{GOOD}_t$  and  $t_\ell < s_1 < s_2 < t$  and  $t_\ell < s < t$  such that condition (3) 16: 17: holds, then start a new episode. 18: Check for changes of bad arms: If there is  $a \in BAD_t$  and  $t_{\ell} \le s \le t$  such that condition (4) holds, 19: 20: then start a new episode. For  $a \in BAD_t$ ,  $S_{t+1}(a) \leftarrow \{(\epsilon, n, s) \in S_t(a) : n_{[s,t]} < n\}$ . 21: 22: *Evict arms from* GOOD<sub>t</sub>:  $BAD_{t+1} = BAD_t \cup \{a \in GOOD_t | \exists s \ge t_\ell \text{ for which (1) holds} \}.$ 23: For evicted arms  $a \in BAD_{t+1} \setminus BAD_t$ , calculate  $\tilde{\mu}_{\ell}(a)$  and  $\tilde{\Delta}_{\ell}(a)$  according to (2), and 24: set  $\mathcal{S}_{t+1}(a) \leftarrow \{\}$ .  $\operatorname{GOOD}_{t+1} = \{1, \ldots, K\} \setminus \operatorname{BAD}_{t+1}.$ 25: 26: Continue with the next time step.

based on ILOVETOCONBANDITS (Agarwal et al., 2014)

Maintain a **distribution over policies**, and control the variance of the reward estimator for all policies.

N/A to MDPs, linear contextual bandits, generalized linear bandits, convex bandits, etc.

## **Rethink about the solution**

Do we really need to track every policy's changes?

We only need to track

- whether the best policy's reward becomes high
- whether the learner's reward becomes low

#### **No-Regret Algorithm**

# No-Regret Algorithm for the Stationary Environment In the stationary environment $(f_t = f)$ , the algorithm ensures $\max_{\pi} \sum_{\tau=1}^{t} (f(\pi) - r_{\tau}) \lesssim \rho(t) \quad \text{for some } \rho(t) \text{ sublinear in } t$

#### **No-Regret Algorithm: Track the Optimal Policy**

In a stationary environment:



#### **No-Regret Algorithm as a Detection Block**



#### Algorithm [Auer, Gajane, Ortner, 2018]

Draw two arms uniformly at random, until  $t \gtrsim \frac{1}{|a-b|^2}$ . (Also, perform some non-stationarity detection)

For 
$$t = 0, 1, 2 \dots$$
:  
For  $\epsilon = 1, \frac{1}{2}, \frac{1}{4}, \dots, \frac{\Delta}{2}$ :  
w.p.  $p_{\epsilon} = \frac{\epsilon}{\sqrt{t}}$ , initiate a DB of length  $\approx \frac{1}{\epsilon^2}$ .

randomly choose arms if t lies in DB; otherwise choose  $\operatorname{argmax}\{a,b\}$ 

## Extra exploration

#### **Detection**:

At the end of every DB with length 
$$\frac{1}{\epsilon^2}$$
, check if  
 $|a - a'| > \epsilon$  or  $|b - b'| > \epsilon$ ?  
where  $a', b'$  are new estimations in DB.  
If so, restart the algorithm.

Check if any arm changes



For t = 0, 1, 2, ...For  $\epsilon = 1, \frac{1}{2}, \frac{1}{4}, ..., \frac{1}{\sqrt{t}}$ : If  $\frac{1}{\epsilon^2}$  divides t, w.p.  $p_{\epsilon} = \frac{1}{\epsilon\sqrt{t}}$ , initiate a Base Algorithm of length  $\approx \frac{1}{\epsilon^2}$ 

Execute the Base Algorithm with the smallest length among overlapping ones.

pause

time

#### **Detection**:

For the Base Algorithm  $\mathcal{A}$  executed at round t,  $U_t \leftarrow \min\left(U_{t-1}, \overline{R}_t^{\mathcal{A}} + \operatorname{confidence}_t^{\mathcal{A}}\right) \quad L_t \leftarrow \max\left(L_{t-1}, \overline{R}_t^{\mathcal{A}} - \operatorname{confidence}_t^{\mathcal{A}}\right)$ If  $U_t < L_t$ , restart. (detect whether  $f_t^*$  changes) If  $\sum_{\tau=1}^t (U_\tau - r_\tau) > \Omega(\rho(t))$ , restart. (detect whether learner's performance drops)

# Remarks on [W and Luo, 2021] and [Wang, 2022]

#### Actual assumption in [W and Luo, 2021]: UCB condition

In the stationary environment  $(f_t = f)$ , the algorithm can output  $f_t$  at time t and ensure

$$f_t \ge \max_{\pi} f(\pi)$$
$$\sum_{\tau=1}^t \left( \tilde{f}_t - r_\tau \right) \lesssim \rho(t) \quad \text{for some } \rho(t) \text{ sublinear in } t$$

[Wang, 2022]: no-regret condition implies UCB condition In the stationary environment  $(f_t = f)$ , the algorithm ensures  $\max_{\pi} \sum_{\tau=1}^{t} (f(\pi) - r_{\tau}) \lesssim \rho(t) \quad \text{for some } \rho(t) \text{ sublinear in } t$ 

#### Assumptions for handling gradual changes

In the near-stationary environment where

$$V_{[1,t]} \triangleq 1 + \sum_{\tau=2}^{t} \max_{\pi} |f_{\tau}(\pi) - f_{\tau-1}(\pi)| \lesssim \frac{\rho(t)}{t}$$

the algorithm ensures

$$\max_{\pi} \sum_{\tau=1}^{t} \left( f(\pi) - r_{\tau} \right) \lesssim \rho(t) + t V_{[1,t]}$$

# Summary



Auer, Gajane, Ortner, 2018W and Luo, 2021Wang, 2022Multi-scale detectionBlack-box usage of algorithms<br/>with UCB conditionNo-regret cond. → UCB cond.

#### **Recent Development and Open Problems**



Thank you!