Optimal Dynamic Regret for Bandits
without Prior Knowledge

Chen-Yu Wei
Research Fellow @ Simons Institute

Online Learning

action

v

Learner Environment

feedback

A

Online Learning with Bandit Feedback

action ‘

Learner feedback Environment

I
reward of the chosen action

a -
Lo e

wom WO BE =5 <« -1(Dontlikeit)
fa BT ab =& " @

Recommender ‘ ? User

Bandit Feedback + Non-Stationarity

Preference Extra exploration
for movies discover changes

A

nder’s choices orror

Romance

v

time

Initial exploration

resolve uncertainty
(e.g., optimism in the face of uncertainty)

Required/optimal amount of exploration

A

A
Extra exploration 1
v

Initial exploration

»
»

Degree of non-stationarity

Challenge:
How to use the right amount of exploration without prior knowledge on the
degree of non-stationarity?

(avoid over-exploration or under-exploration)

Multi-Armed Bandits with Non-Stationarity

Given: K arms
Fort=1,...,T:
Environment chooses a mean reward vector p; € [0, 1]%

Learner chooses an arm a; € [K]|
Learner observes the reward r; with E|r;| = u;(ay)

T
D ic-Regret = —
ynamic-Regre ; (;Iel% pe(a) ?“t>

T
S=1+> Mp #pe1}
t=2 Dynamic-regret lower bound = () (min {V ST,V

T
V=1+ Z et — pee—1|loo
t=2

o=

H

ol
S——
S———

Related works with 0(S*T1~%) or 0(V*T1~%) upper bounds

. Multi-armed . . Realizable
Multi-armed Linear Generalized
. contextual . . . MDP contextual
bandits . bandits linear bandits)
bandits bandits
Auer et al., 2002 VST (known S)
Besbes et al., 2014 V3123 (known V)
Karnin and Anava, 2016 | 0-1870.82
Luo et al., 2018 min{SY/4T3/4,y1/5 74/5}
Cheung et al., 2018/2019 y/312/3 4 73/4 yi/4T3/4
Auer et al., 2018/2019 \ST
Chen et al., 2019 min{\/ST,V1/3T2/3}
W and Luo, 2021 min{\/ST,V1/3T2/3}

Papers We Will Discuss Today

Auer, Gajane, Ortner: multi-scale change detection
[EWRL 2018]: 2-armed bandits
[COLT 2019]: K-armed bandits

W and Luo [COLT 2021]: generalizing (Auer et al.) to a wide range of problems
Wang [arXiv, 2022]: further generalization

Meta

Stationary algorithm |:> |::> Non-stationary algorithm

Algorithm

Which one is the most difficult to detect?

Mean Mean Mean

Time Time

Bad arm = Good Good arm = Bad Both
(need extra exploration)

Time

Simplification

Mean

A

= Two arms
= Means change at most once
= The initial means are known

Time

Simplification

(known) @

C = max{i, :} = ||change||sc (unknown)
(known) b

“------
<----->

v

|
S

(unknown)

Algorithm Template

Detection blocks (DB): uniformly randomly draw two arms

Other time: draw red arm (to re-estimate their means)

If the learner successfully detects the change,
he will choose the arm with better re-estimated
mean till the end.

v

successfully detected

X XX V'

What makes a successful detection?
= DB starts after s
= DBlength > 1/C?

(To estimate the mean up to an accuracy of C, we

1
need/only need = oz samples)

v

P
| <

17
S ZE

Regret = Detection overhead + Non-detection penalty
(random draws in DB) (detection delay)

Key: smartly schedule DBs to balance the two terms

large C > A small C > A C <A

penalty per unit delay

penalty per unit delay

PN P »

v

v

«—py »

delay delay
Shorter DB is enough @ Need longer DB & | No need to detect ©
Higher penalty per unit delay @ Lower penalty per unit delay @

Delay := time from the change point to the beginning of a successful detection

v

penalty per unit delay

<

v

«”

delay

v

penalty per unit delay

delay

v

v

Algorithm (just one change point)

Draw two arms uniformly at random, until ¢t 2 ﬁ

(Also, perform some non-stationarity detection)

Fort=1,2,.
A

For6—1,2,4,... 5

W.p. Pe = \ef, initiate a DB of length ~ % (allow overlap)

Uniformly randomly choose arms if ¢ lies in any DB; otherwise choose argmax{a, b}

Detection:

At the end of every DB with Iength , check if
la —a'| > eor|b—10 >e?
where a’, b’ are mean estimations in DB.
If so, choose argmax{a’, b’} in the remaining rounds.

X XX V Proof sketch: Regret < O(V/T)

change amount = C' (assume C' > A)

A
s e ’
dynamic-regret < detection overhead + non-detection penalty

A X (total DB length in [0, s]) C x (e—s)

S
1 (| L)

AxY Y ek 0 (dcly + 2

=0 ee{1,4,...,A} Cx. = + &

_ €
Pe = 7 = < VS < +e = /DB length

Algorithm (Multiple change points)

Draw two arms uniformly at random, until ¢t 2 ﬁ

(Also, perform some non-stationarity detection)

Fort=1,2,.
For6—1,2,4,... %:
W.p. pe = -, initiate a DB of length =~ %

\/_r
Uniformly randomly choose arms if ¢ lies in any DB; otherwise choose argmax{a, b}

Detection:

At the end of every DB with Iength , check if
la —a'| > eor|b—10 >e?

where a’, b’ are new estimations in DB.

If so, restart the algorithm.

undetectable

ignorable , Proof sketch: Regret < O (ZZ \/Lz')

Ly Ly Ly Ly Only need to show this before restart

C;: change in interval i compared to the
initial reward (i.e., at time 0)

A — ;<5 ignorable

A
C; > 5,[13’ < o

undetectable

1
delay, ¢z

'
‘ L]

T

e := the time we terminate the algorithm and restart

detection overhead < /e

non-detection penalty in ignorable intervals =0
non-detection penalty in undetectable intervals = C;L; < \/L;

intervals = C,L; < C; (delayi + é) < Chdelay; + vV L;

- 1
delay, &z A 1
— > Ci>5,L; > gz detectable

< L}

A 4

To make a successful detection, a DB of length 1/C12 needs to start here.

non-detection penalty in dete

regret < /e + Z \/_ Z C;delay,

i:detectable

General Decision Making with Non-Stationarity

Given: policy set 11
Fort=1,...,T:
Environment chooses a mapping f;: II — |0, 1]

Learner chooses a policy m; € 11
Learner observes the reward r; with E|r;| = f;(m;)

T
Dynamic-Regret = Z (max fi(m) — frt)

mell
t=1

Extensions to Other Settings

K-armed bandit
(Auer, Gajane, Ortner, 2019)

Algorithm 1 ADSWITCH

1: Input: Time horizon 7',
2: Inmitialization ¢ + 0,1 + 0.

3 8

o

10:
11
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

24:

25:
26:

tart a new episode:
fe—f+1.
Set start of the episode t; + t + 1.
GOODy4y = {1,..., K}, BADyy = {}.
Next time step:
b1+ 1.
Add checks for bad arms:
Forall @ € BAD,, and all i > 1 with 2% > A;(a)/16,
with probability 2~ /£/(KT log T) add S;(a) « Si(a) U (277, [2%+ log T, 1).
Select an arm:
Select a; = argmin, {7 : a & {a,.....a¢y_1 },a € GOOD, V S (a) # {}}.
Receive reward ry.
Check for changes of good arms:
If there is a € GOOD; and #; < 87 < s9 < tand #; < s < ¢ such that condition (3)
holds, then start a new episode.
Check for changes of bad arms:
If there is a € BADy and f; < s < ¢ such that condition (4) holds,
then start a new episode.
Fora € BADy, Si11(a) + {(e,n.5) € Sifa) : nj, g < n}.
Evict arms from GOOD,:
BAD,;;; = BAD, U {a € GOOD;|3s > t; for which (1) holds}.
For evicted arms a € BAD,,; \ BAD,, calculate ji;(a) and A,(a) according to (2), and
set 8y q(a) + {}.
GOOD¢ 1 = {1,..., K} \ BAD. 4.
Continue with the next time step.

Contextual K-armed bandit Combinatorial semi-bandit
(Chen, Lee, Luo, W, 2019) (Chen, Wang, Zhao, Zheng, 2021)

\ }
based on ILOVETOCONBANDITS
(Agarwal et al., 2014)

Maintain a distribution over policies, and control
the variance of the reward estimator for all policies.

N/A to MDPs, linear contextual bandits, generalized
linear bandits, convex bandits, etc.

Rethink about the solution

Do we really need to track every policy’s changes?

We only need to track
= whether the best policy’s reward becomes high
= whether the learner’s reward becomes low

No-Regret Algorithm

No-Regret Algorithm for the Stationary Environment
In the stationary environment (f; = f), the algorithm ensures

maxz —r.) S p(t) for some p(t) sublinear in ¢

No-Regret Algorithm: Track the Optimal Policy

In a stationary environment:

A

fri=max, f(m) femmmemalme ool o 1
regret guarantee =

by the optimality of f* 4 concentration ineq.

>
» -

=
LV
|

Jr=

S8

No-Regret Algorithm as a Detection Block

original algorithm = DB
- - ~—"—

fi(m) fi(m)

A TL'; A

[

A

<«—» detection time

»

] e

detection time
5
Ty

v
~

P I - ?L - I
« » < »

delay delay

Algorithm [Auer, Gajane, Ortner, 2018]

Draw two arms uniformly at random, until ¢t 2 ﬁ

Initial exploration
(Also, perform some non-stationarity detection)

Fort=0,1,2.
A —

For6—1,2,4,... 5

W.p. Pe = \ef, initiate a DB of length =~ %

Extra exploration

randomly choose arms if ¢ lies in DB; otherwise choose argmax{a, b}

—

Detection:

At the end of every DB with length Ei check if]

la—a'| >eor |b—0|>¢€? _
Check if any arm changes
where a’, b’ are new estimations in DB.

If so, restart the algorithm. _

Algorithm (combining [W and Luo, 2021] and [Wang, 2022]) = pauise — r time
IR B
Fort=0,1,2,... Y_!: Y_'I :f_‘f i?_'
Fore=1,%,1...., 2 R

If Eiz divides ¢, w.p. p. = EL\/E initiate a Base Algorithm of length ~ Eig

Execute the Base Algorithm with the smallest length among overlapping ones.

Detection:

For the Base Algorithm A executed at round ¢,

U; < min (Ut—1, E:t + confidencef‘) L; < max (Lt_l,ﬁf — confidencef)
If U; < L;, restart. (detect whether f* changes)

If Zizl(UT — 1) > Q(p(t)), restart. (detect whether learner’s performance drops)

Remarks on [W and Luo, 2021] and [Wang, 2022]

Actual assumption in [W and Luo, 2021]: UCB condition

In the stationary environment (f; = f), the algorithm can output ft at time ¢ and
ensure

ft>maxf()

t
Z 7 — r-) S p(t) for some p(t) sublinear in ¢
T=1

[Wang, 2022]: no-regret condition implies UCB condition ft ZT T+ @

In the stationary environment (f; = f), the algorithm ensures

maxz —r;) S p(t) for some p(t) sublinear in ¢

Assumptions for handling gradual changes

In the near-stationary environment where

t
7
Vg 2 143 max|f, (m) = froa ()] S 22
the algorithm ensures

max Z — TT < p(t) + tVi1 g

Summary

Meta

(Near-)stationary algorithm |:> |:> Non-stationary algorithm

Algorithm

Auer, Gajane, Ortner, 2018 W and Luo, 2021 Wang, 2022

Multi-scale detection Black-box usage of algorithms No-regret cond. —» UCB cond.
with UCB condition

Recent Development and Open Problems

Sc: how many times the regret benchmark changes
C vV Sbest] — /ST
ST? —— /S T [Abbasi-Yadkori et al., 2022]
c+ - SIg

[Suk and Kpotufe, 2022]

[Auer et al., 2002] O (\/SC—T) known S,

[Cheungetal., 2018] O (ST + T%) unknown S, oblivious adversary
W
0,

[Marinov & Zimmert, 2021] (S(?‘Tl_o‘), any a unknown S., adaptive adversary

(v/ScT') unknown S,, oblivious adversary?

Thank you!

