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Theoretically less understood
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Policy Optimization

Benefit: directly optimizes policies = less prone to modeling error
(compared to model- or value-based methods)

In fact, standard policy optimization is based on the mirror descent framework,
which can even handle adversarial losses.

Drawback: perform local policy search and lack exploration = slow/unable to

find global optimum

k Can Policy Optimization perform global exploration under adversarial losses?
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Contributions

o A new general way of constructing exploration bonuses for policy optimization
(suitable for adversarial loss + function approximation + bandit feedback)

o Applications to several settings:

------------------------------------------------------------
""""

Linear-Q MDP % {  Linear MDP i
+ simulator : ¢ +exploratory policy i :

------------------------------------------------------------
""""

Tabular MDP Linear MDP

~

regret = O(VT) ii regret = O(T?/3) i regret = O(TS/7) ii regret = O(T'¥/1) i

* * *
- *
-------------------------------------------------------------------------------------------------------------------------------

improving Efroni et al.’s  matching Neu & Olkhovskaya's,  first sublinear regret first sublinear regret
O(T?/3) bound but removing their requirement

_ (only appearing in
of an exploratory policy

our arxiv versian)



Setting and Algorithm

Finite-horizon MDP with horizon length H, state space S, action space A,
and an unknown transition kernel p(s’|s, a)

For episode t =1,2,...,T"
Adversary chooses a loss function 4;(-,+) : § x A — [0, 1]
Learner chooses a policy 7
For step h=0,1,..., H — 1:

Learner observes sy, and chooses aj, ~ m(+|sp) @ function under policy
Learner observes ¢ (sp, ap) /Wt and loss #;

Learner generates Q;(-,-) (an estimator of Q™ (-,-; 4;))

and perform mirror descent update m;11(als) o< m(als) exp (—n@t(s, a)




Deriving Exploration Bonus for Policy Optimization
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involves distribution mismatch coefficient x = sup m that is hard to handle
s,a,t )

(so standard analysis of PO assumes that ~ is bounded)

A simple trick to avoid this factor: using /:(s,a) —nb:(s,a) as loss, instead of /4:(s,a)

T
* ‘ ~(H * assuming we can get the
o T . < - T )
Z ( “(s0 60 —nbi) = V™ (30544 TIbt)) S0 ( n ) + HZV (505 1) same bound for now
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Change of measure: V™ (sg;b;) — V™ (s0; b;)

(no longer involving distribution mismatch coefficient)



Our bonus

b(s,a) = npi

/ \

biased loss estimator Prob { visiting (s,a) }
in episode t in episode t

Constructed from the regret analysis of
mirror descent

To compensate the stability penalty
(= variance of the loss estimator)

Perform policy optimization over the
modified loss




Dilated Bonus?

Recall that we made the following assumption in the previous derivation:

i( “(s0ile) — ”(80;& (H>+niV”*(so;bt)

t=1
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t=1 t=1

Our choice of bonus is slightly modified in order to resolve the above issue. \
We call the modified bonus dilated bonus.

In fact, without modification, almost the same bounds (only slightly worse)
can be achieved for tabular MDPs and linear MDPs. /




Dealing with Linear Models

Linear-Q MDP: for any policy 7, Q™ (s, a;{;) can be represented as ¢(s,a) ' wf
for some w] (unknown to the learner)

Linear MDP: /;(s,a) = ¢(s,a) "0, and p(s’|s,a) = ¢(s,a) T v(s") for some ; and
v(-) (both unknown to the learner)

/Bonus in LSVI-UCB (Jin et al.)\ / Our bonus \
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Summary

o A new general way of constructing exploration bonuses for policy optimization
(suitable for adversarial loss + function approximation + bandit feedback)

o Applications to several settings:

------------------------------------------------------------
""""

Linear-Q MDP % {  Linear MDP i
+ simulator : ¢ +exploratory policy i :

------------------------------------------------------------
""""

Tabular MDP Linear MDP

~

regret = O(V/T) regret = @(TQ/S) regret = @(T6/7) regret = @(T14/15)

* * *
- *
-------------------------------------------------------------------------------------------------------------------------------

improving Efroni et al.’s  matching Neu & Olkhovskaya's,  first sublinear regret first sublinear regret
O(T?/3) bound but removing their requirement

_ (only appearing in
of an exploratory policy

our arxiv versian)



