Swap Regret and Strategic Learning

Chen-Yu Wei

Recruiting

Known

Applicants (Strategic) Optimizer

change features

University

Learner

Setting: Optimizer and Learner

Optimizer / Learner's action sets: [m] and [n]

Optimizer / Learner's utility: $u_O(i,j)$ and $u_L(i,j)$, $i \in [m], j \in [n]$

For t = 1, 2, ..., T:

Optimizer choose $x_t \in \Delta_m$ and Learner chooses $y_t \in \Delta_n$ (simultaneously)

Draw actions $i_t \sim x_t$, $j_t \sim y_t$

Optimizer gains $u_0(i_t, j_t)$ and Learner gains $u_L(i_t, j_t)$

Reveal (x_t, y_t) to both players

Optimizer knows u_0 and u_L ; Learner only cares about u_L Optimizer knows Learner's **algorithm** A_L where $A_L(x_1, x_2, ..., x_{t-1}) = y_t$

No-Regret (NR) Learner

Regret =
$$\max_{j \in [n]} \sum_{t=1}^{T} u_L(x_t, j) - \sum_{t=1}^{T} u_L(x_t, j_t) = o(T)$$

Many natural and standard algorithms are no-regret. For example,

Gradient ascent: $y_{t+1} = \prod_{\Delta_n} (y_t + \eta_t u_L(x_t, \cdot))$

Exponential weights: $y_{t+1}(j) \propto y_t(j) \exp(\eta_t u_L(x_t, j))$

• • •

Mean-Based No-Regret (MB-NR) Learners

 y_{t+1} is an increasing function of $\sum_{s=1}^{t} u_L(x_s, j)$, $j \in [n]$

Follow the Regularized Leader:
$$y_{t+1} = \underset{y}{\operatorname{argmax}} \left\{ \sum_{s=1}^{t} u_L(x_s, y) + \frac{1}{\eta_t} H(y) \right\}$$

Follow the Perturbed Leader:
$$j_{t+1} = \underset{j}{\operatorname{argmax}} \left\{ \sum_{s=1}^{t} u_L(x_s, j) + \frac{1}{\eta_t} \operatorname{perturb}_t(j) \right\}$$

No-Swap-Regret (NSR) Learner

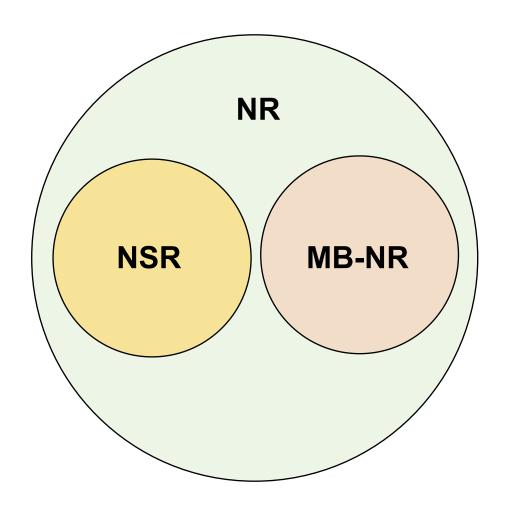
SwapRegret =
$$\max_{\sigma \in [n] \to [n]} \sum_{t=1}^{T} u_L(x_t, \sigma(j_t)) - \sum_{t=1}^{T} u_L(x_t, j_t) = o(T)$$

Regret ≤ SwapRegret

∴ a NSR algorithm is also a NR algorithm.

NSR algorithms are NOT as natural as the NR algorithms we see previously.

There are general reductions to convert an NR into an NSR.



Overview

Optimizer perspective: Optimizer can gain higher u_0 easier when playing with a MB-NR Learner than playing with a NSR Learner.

Yuan Deng, Jon Schneider, Balusubramanian Sivan. Strategizing against No-regret Learners. NeurIPS 2019.

Learner perspective: Optimizer can cause lower u_L easier when playing with a MB-NR Learner than playing with a NSR Learner.

Eshwar Arunachaleswaran, Natalie Collina, Jon Schneider. Pareto-Optimal Algorithms for Learning in Games. EC 2024.

Optimizer can lead to higher u_0 and u_L easier when playing with a MB-NR Learner than playing with a NSR Learner.

Guruganesh et al. Contracting with a Learning Agent. NeurIPS 2024.

EC 2025 "Swap Regret and Strategic Learning" Workshop (link)

Optimizer's Perspective

Stackelberg Value for the Optimizer

$$V = \max_{x} \max_{y \in BR(x)} u_0(x, y)$$

where
$$BR(x) = \left\{ y: \ u_L(x, y) = \max_{y'} u_L(x, y') \right\}$$

$$u_O(A_O, A_L) = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^T u_O(x_t, y_t)$$

Theorem

If
$$A_L \in NR$$
 then $\max_{A_O} u_O(A_O, A_L) \ge V$ for any game

If
$$A_L \in NSR$$
 then $\max_{A_O} u_O(A_O, A_L) \le V$ for any game

If
$$A_L \in \mathsf{MB}\text{-}\mathsf{NR}$$
 then $\max_{A_O} u_O(A_O, A_L) \ge V + \mathsf{const}$ for some game

Consider a fixed Learner's action $j \in [n]$:

Define $\alpha_j \in \Delta_m$ as the Optimizer's action distribution when Learner chooses j:

$$\alpha_j = \frac{\sum_{t=1}^T \mathbb{I}[j_t = j] x_t}{T_i} \quad \text{where } T_j = \sum_{t=1}^T \mathbb{I}[j_t = j]$$

$$\frac{1}{T} \sum_{t=1}^{T} (u_L(x_t, \sigma(j_t)) - u_L(x_t, j_t)) = \sum_{j \in [n]} \frac{1}{T} \sum_{t=1}^{T} \mathbb{I}[j_t = j] (u_L(x_t, \sigma(j)) - u_L(x_t, j))$$

$$= \sum_{j \in [n]} \frac{T_j}{T} \left(u_L \left(\alpha_j, \sigma(j) \right) - u_L(\alpha_j, j) \right)$$

As A_L has No Swap Regret, for $j \notin BR(\alpha_i)$, we have $T_i = o(T)$

Optimizer utility

$$=\sum_{j\in[n]}\frac{T_j}{T}\;u_O(\alpha_j,j)$$

$$= \sum_{j: j \in BR(\alpha_j)} \frac{T_j}{T} u_0(\alpha_j, j) + \sum_{j: j \notin BR(\alpha_j)} \frac{T_j}{T} u_0(\alpha_j, j)$$

$$\leq \sum_{j: j \in BR(\alpha_j)} \frac{T_j}{T} \times V + \sum_{j: j \notin BR(\alpha_j)} \frac{T_j}{T} \times 1$$

$$= V$$

If $A_L \in \mathsf{MB-NR}$ then $\max_{A_O} u_O(A_O, A_L) \ge V + \mathsf{const}$ for some game

	Left	Middle	Right
Up	0, ε	-2, -1	-2, 0
Down	0, -1	-2, 1	2, 0

The Stackelberg value is V = 0: (½ Up + ½ Down, Right)

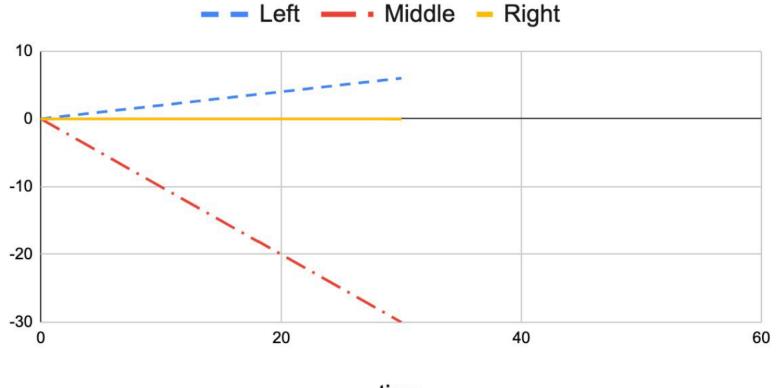
Against mean-based algorithm

	Left	Middle	Right
Up	0, ε	-2, -1	-2, 0
Down	0, -1	-2, 1	2, 0

Cumulative Utility

Play *Up* for T/2 rounds

- learner plays Left
- earn 0 per round



time

Against mean-based algorithm

	Left	Middle	Right
Up	0, ε	-2, -1	-2, 0
Down	0, -1	-2, 1	2, 0

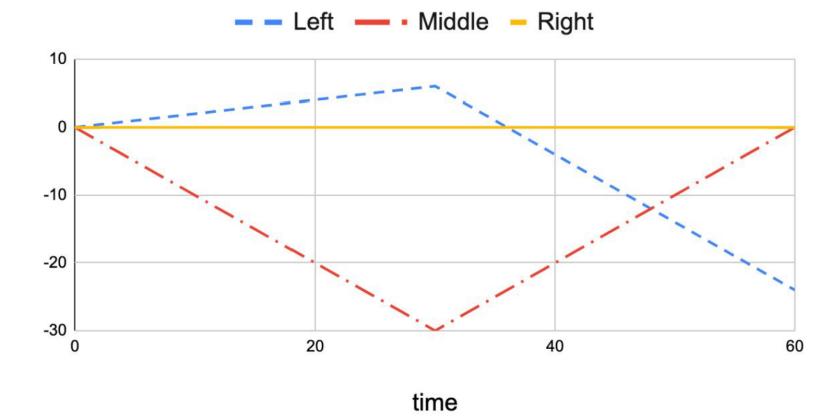
Cumulative Utility

Play *Up* for T/2 rounds

- learner plays *Left*
- earn 0 per roundthen

Play *Down* for T/2 rounds

- learner plays *Right*
- earn **2** per round (for most rounds)



Learner's Perspective

Pareto Dominance

$$u_L(A_O, A_L) = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} u_L(x_t, y_t)$$

For a Learner utility u_L , we say A_L is Pareto-dominated by A_L' if for all u_O ,

$$u_L(\mathrm{BR}(A_L'), A_L') \ge u_L(\mathrm{BR}(A_L), A_L)$$
 (*)

where $BR(A_L)$ is an Optimizer algorithm A_O such that $u_O(A_O, A_L) \ge \max_A u_O(A, A_L)$ (breaking ties in favor of the Learner)

and the inequality (\star) holds strictly for at least one u_0 .

Theorem

There is an u_L such that any $A_L \in MB-NR$ is Pareto-dominated.

For any u_L , any $A_L \in NSR$ is NOT Pareto-dominated (i.e., Pareto-optimal)

Geometric Interpretation

Menu

Given Learner's algorithm A_L

- Any Optimizer sequence $(x_1, x_2, ..., x_T)$ induces a correlated strategy profile (CSP) $\frac{1}{T} \sum_{t=1}^{T} x_t \otimes y_t \in \Delta_{mn}$ (recall that $y_t = A_L(x_1, ..., x_{t-1})$)
- The menu $M(A_L) \in \Delta_{mn}$ produced by A_L is defined as

$$M(A_L) = \text{ConvexHull} \left\{ \frac{1}{T} \sum_{t=1}^{T} x_t \otimes y_t : \text{ all possible } x_1, \dots, x_T \right\}$$

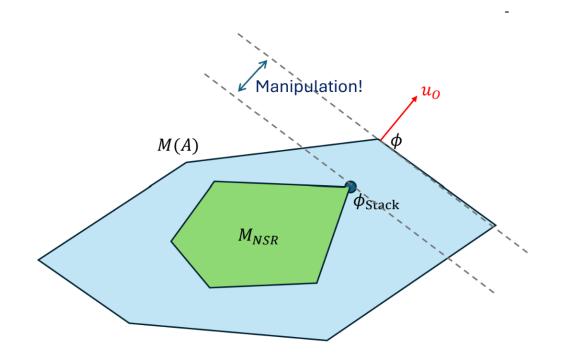
By selecting $x_1, ..., x_T$ (essentially selecting a point $\phi \in M(A_L)$), the Optimizer can control the CSP induced by the players

CSP directly affects utility $u_{L/O}(A_O, A_L) = \sum_{i,j} \phi_{ij} u_{L/O}(i,j)$

Menu

Lemma

All $A_L \in \text{NSR}$ induces the same menu $M(A_L) = M_{\text{NSR}}$ All $A_L \in \text{NR}$ induces a menu $M(A_L) \supseteq M_{\text{NSR}}$



Proof of the Lemma (1/2)

Claim: For any $A_L \in \mathbf{NSR}$, $M(A_L)$ is the convex hull of all CSPs of the form $x \otimes y$, with $x \in \Delta_m$ and $y \in \mathrm{BR}(x)$.

Proof:

- 1. Any CSPs of the form $x \otimes BR(x)$ is contained in $M(A_L)$
- 2. Any point $\phi \in M(A_L)$ can be written as a convex combination of $x \otimes BR(x)$

$$\frac{1}{T}\sum_{t=1}^{T}x_t\otimes y_t \approx \frac{1}{T}\sum_{t=1}^{T}x_t\otimes e_{j_t} = \sum_{j\in[n]}\frac{1}{T}\sum_{t=1}^{T}\mathbb{I}[j_t=j] x_t\otimes e_j = \sum_{j\in[n]}\frac{T_j}{T} \alpha_j\otimes e_j$$

As A_L is NSR, either $\frac{T_j}{T} \to 0$ or $j = BR(\alpha_j)$

$$\Rightarrow \frac{1}{T} \sum_{t=1}^{T} x_t \otimes y_t = \sum_{j=1}^{T} \frac{T_j}{T} \alpha_j \otimes BR(\alpha_j)$$

$$\alpha_j \triangleq \frac{\sum_{t=1}^T \mathbb{I}[j_t = j] x_t}{T_j}$$

$$T_j \triangleq \sum_{t=1}^T \mathbb{I}[j_t = j]$$

Proof of the Lemma (2/2)

Claim: For any $A_L \in \mathbf{NR}$, $M(A_L)$ contains all CSPs of the form $x \otimes BR(x)$

Summary

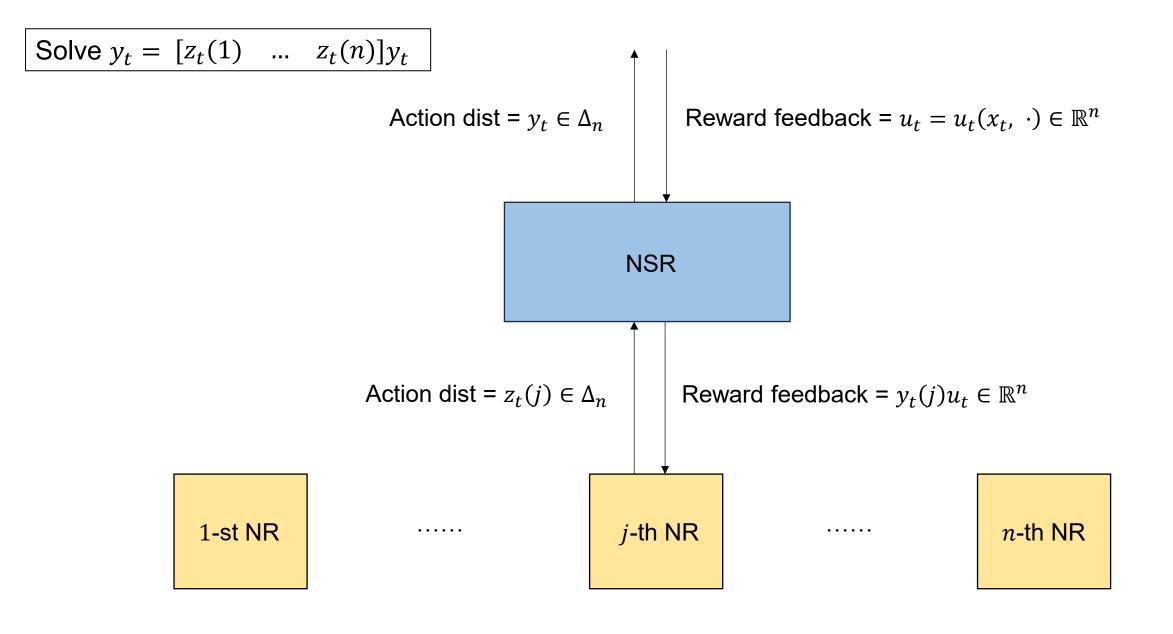
 The correlated strategy profile (CSP) induced by any Optimizer and a NSR Learner is always of the form:

$$\frac{1}{T} \sum_{t=1}^{T} x_t \otimes y_t = \sum_{x} c_x \ x \otimes BR(x) + o(1)$$

This makes the time-averaged profile just like one-shot Stackelberg game.

This leaves less room of manipulation (good or bad) by the Optimizer.

Reduction: NSR to NR



Blum and Mansour. From External to Internal Regret. JMLR 2007.