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Setting: Optimizer and Learner

Optimizer / Learner’s action sets: [m] and [n]
Optimizer / Learner’s utility: up(i,j) and u;(i,j), i€ [m],je€ [n]

Fort=1,2,..,T:
Optimizer choose x; € A,,, and Learner chooses y; € A,, (simultaneously)
Draw actions i; ~ x;, j; ~ y;
Optimizer gains u, (i;, j;) and Learner gains u; (i, j;)
Reveal (x;, y;) to both players

Optimizer knows u, and u;; Learner only cares about u;
Optimizer knows Learner’s algorithm A; where A;(x{, x5, ..., X;—1) = V¢




No-Regret (NR) Learner

T T

Regret = maxz: up (X, j) — z up, (x¢,je) = o(T)
t=1

JE[n]

Many natural and standard algorithms are no-regret. For example,

Gradient ascent:  y..q = (v, + e up(xe, -))

Exponential weights:  y,.;(j) « v.(j) exp(n; u(x¢,j))



Mean-Based No-Regret (MB-NR) Learners

y;+1 IS an increasing function of Yt_,u; (x5, j), j € [n]

Follow the Regularized Leader: y;,; = argmax {ZgzluL(xs, y) + niH(y)}
y t

Follow the Perturbed Leader: j;,; = argmax {Z§=1uL(xS, Jj) + niperturbt(j)}
j t



No-Swap-Regret (NSR) Learner

T T
SwapRegret = max Z up(xe,0(:)) — z u(xt,je) = o(T)
o€[n]—-[n]
t=1 t=1
Regret < SwapRegret - a NSR algorithm is also a NR algorithm.

NSR algorithms are NOT as natural as the NR algorithms we see previously.

There are general reductions to convert an NR into an NSR.



NR



Overview

Optimizer perspective: Optimizer can gain higher u, easier when playing with a MB-NR

Learner than playing with a NSR Learner.
Yuan Deng, Jon Schneider, Balusubramanian Sivan. Strategizing against No-regret Learners. NeurlPS 2019.

Learner perspective: Optimizer can cause lower u; easier when playing with a MB-NR
Learner than playing with a NSR Learner.

Eshwar Arunachaleswaran, Natalie Collina, Jon Schneider. Pareto-Optimal Algorithms for Learning in Games. EC 2024.

Optimizer can lead to higher u, and u; easier when playing with a MB-NR Learner than
playing with a NSR Learner.

Guruganesh et al. Contracting with a Learning Agent. NeurlPS 2024.

EC 2025 “Swap Regret and Strategic Learning” Workshop (link)


https://arxiv.org/pdf/1909.13861
https://arxiv.org/pdf/2402.09549
https://arxiv.org/pdf/2401.16198
https://sites.google.com/view/strategic-learning-ec25/

Optimizer’s Perspective



Stackelberg Value for the Optimizer

— where BR(x) = (y: ,Y) = Y
V max yérBl?&(x) Uo(x,y) (x) {J’ uL(x,y) IT;/?J}XUL(x 3’)}

T
1
Up(Ap, AL) = Tll_)fglof Z Uo (Xt Vi)
t=1

Theorem
If A, € NR then Hfllzgx ug(4p,A4;,) =2V for any game
If A, € NSR then rr}l%x Uyg(4p,A)) <V for any game
If A, € MB-NR then Hllq?)x uy(Ap,A;) =V + const for some game




If A, € NSR then max Uug(Ap,A;) <V for any game
)

Consider a fixed Learner’s action j € [n]:

Define a; € A, as the Optimizer’s action distribution when Learner chooses j:

_ ZZ=1 Mje = jlxe

a.
j .
I

where T; = X.{_; I[j, = j]

T T

1 1

T E (up(xe, 0(e)) —up,(xe,jr)) = § T é 0j: = jI (up(xt, 0()) — up(x,j))
t=1 ' t=1

ST o))

J€[n]

As A} has No Swap Regret, for j € BR(«;), we have T; = o(T)




Optimizer utility

T .
= z T up(aj,j)

J€[n]
T; T;
= z 7] uo(@;,j) + z 7] uo (. /)
j: jEBR(CZj) Jj: Jé& BR(aj)

IA

E Uxvs E Jx1
X X
T T

j: jeBR(a;) j: jé BR(a;)



If A, € MB-NR then max uy(49,4;) =V + const for some game

Ao
Left Middle Right
Up 0, ¢ -2, -1 -2,0
Down 0, -1 2.1 2,0

The Stackelberg value is V = 0: ¢ up + 1 Down, Right)

Taken from this tutorial



https://drive.google.com/file/d/10mbfJ73kmciVGuIWybInMOFGxXprnJCY/view

Against mean-based algorithm

Play Up for T/2 rounds

learner plays Left
earn 0 per round

Cumulative Utility
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Against mean-based algorithm

Play Up for T/2 rounds
e learner plays Left
e earn 0 perround

then

Play Down for T/2 rounds
e l|earner plays Right
e earn 2 perround
(for most rounds)
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Learner’s Perspective



. 1
PaFEtO Domlnance uL(Ao;AL) = ,111_{210? Zul,(xt; Yt)
t=1

For a Learner utility u;, we say A; is Pareto-dominated by A4; if for all u,,
u,(BR(AL),AL) = u,(BR(AL),AL) (*)

where BR(4;) is an Optimizer algorithm A, such that u,(4,,4;) = max uo (4,4;)
(breaking ties in favor of the Learner)

and the inequality (x) holds strictly for at least one u,.

Theorem
There is an u; such that any A; € MB-NR is Pareto-dominated.

For any u;, any A; € NSR is NOT Pareto-dominated (i.e., Pareto-optimal)




Geometric Interpretation



Menu

Given Learner’s algorithm A4;

- Any Optimizer sequence (x4, x,, ..., X7 ) induces a correlated strategy profile (CSP)

1
p- t=1% @ ¥ € Ay,

(recall that y, = A;(x4,..,x:_1) )

- The menu M(A,) € A,,,,, produced by A4, is defined as

T

1
M(A;) = ConvexHull TZ x; @y + all possible x4, ..., x7
t=1

By selecting x4,.., x; (essentially selecting a point ¢ € M(A4;)), the Optimizer can control
the CSP induced by the players

CSP directly affects utility u;, (40, AL) = X ¢ij ur0(.j)



Menu

Lemma
All A; € NSR induces the same menu M(4;) = Mysr
All A; € NR induces a menu M(4;) 2 Mysr
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Proof of the Lemma (1/2)

Claim: Forany A; € NSR, M(4,) is the convex hull of all CSPs of the form x & y, with
x € A, and y € BR(x).

Proof:
1. Any CSPs of the form x @ BR(x) is contained in M(4;)

2. Any point ¢ € M(A;) can be written as a convex combination of x @ BR(x)

T T T
=Y =3 Sy 3 o Wi = 1
—_— AN — . —_ - —_ 7 - ] A t—l t t
Tt=1xt®)’t "’Tt:lxt@e]t = ?t_lﬂ[]t—]]xt®ej = ?aj®ej @ = T;

JE[n] JE[n]
Tj = Z=1H[I't = Jj]

As 4, is NSR, either - > 0 or j = BR(«))

T
1 y
= —th@)yt =Z— a; Q BR(«;)
Tt 4 T
- J



Proof of the Lemma (2/2)

Claim: Forany A; € NR, M(A;) contains all CSPs of the form x @ BR(x)



Summary

e The correlated strategy profile (CSP) induced by any Optimizer and a NSR Learner
is always of the form:

T

1

Tz Xt Q Y = z ¢, x @ BR(x) + 0o(1)
t=1 X

This makes the time-averaged profile just like one-shot Stackelberg game.

This leaves less room of manipulation (good or bad) by the Optimizer.



Reduction: NSR to NR



Solve y; = [z:(1) .. z(M)]y; A

Action dist =y, € A, Reward feedback = u; = u;(x;, -) € R™
NSR
Action dist = z,(j) € A, Reward feedback = y;(j)u; € R"
1-stNR | e j-th ‘NR ------ n-th NR

Blum and Mansour. From External to Internal Regret. JMLR 2007.



	Slide 1: Swap Regret and Strategic Learning
	Slide 2: Recruiting
	Slide 3: Setting:  Optimizer and Learner
	Slide 4: No-Regret (NR) Learner
	Slide 5: Mean-Based No-Regret (MB-NR) Learners
	Slide 6: No-Swap-Regret (NSR) Learner
	Slide 7
	Slide 8: Overview
	Slide 9: Optimizer’s Perspective 
	Slide 10: Stackelberg Value for the Optimizer
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Learner’s Perspective
	Slide 17: Pareto Dominance
	Slide 18: Geometric Interpretation
	Slide 19: Menu
	Slide 20: Menu
	Slide 21: Proof of the Lemma (1/2)
	Slide 22: Proof of the Lemma (2/2)
	Slide 23: Summary
	Slide 24: Reduction:  NSR to NR
	Slide 25

