
Swap Regret and Strategic Learning
Chen-Yu Wei

Recruiting

UniversityApplicants

Decision Algorithm

Known

Strategically
change features

Learner(Strategic) Optimizer

Setting: Optimizer and Learner

Optimizer / Learner’s action sets: 𝑚 and [𝑛]

Optimizer / Learner’s utility: 𝑢𝑂 𝑖, 𝑗 and 𝑢𝐿 𝑖, 𝑗 , 𝑖 ∈ 𝑚 , 𝑗 ∈ [𝑛]

Optimizer knows 𝑢𝑂 and 𝑢𝐿; Learner only cares about 𝑢𝐿

For 𝑡 = 1, 2, … , 𝑇:

 Optimizer choose 𝑥𝑡 ∈ Δ𝑚 and Learner chooses 𝑦𝑡 ∈ Δ𝑛 (simultaneously)

 Draw actions 𝑖𝑡 ∼ 𝑥𝑡, 𝑗𝑡 ∼ 𝑦𝑡

 Optimizer gains 𝑢𝑂(𝑖𝑡, 𝑗𝑡) and Learner gains 𝑢𝐿(𝑖𝑡, 𝑗𝑡)

 Reveal (𝑥𝑡, 𝑦𝑡) to both players

Optimizer knows Learner’s algorithm 𝑨𝑳 where 𝐴𝐿 𝑥1, 𝑥2, … , 𝑥𝑡−1 = 𝑦𝑡

No-Regret (NR) Learner

Regret = max
𝑗∈[𝑛]

෍

𝑡=1

𝑇

𝑢𝐿(𝑥𝑡 , 𝑗) − ෍

𝑡=1

𝑇

𝑢𝐿 𝑥𝑡, 𝑗𝑡 = 𝑜(𝑇)

Many natural and standard algorithms are no-regret. For example,

Gradient ascent: 𝑦𝑡+1 = ΠΔ𝑛
𝑦𝑡 + 𝜂𝑡 𝑢𝐿(𝑥𝑡, ⋅)

Exponential weights: 𝑦𝑡+1 𝑗 ∝ 𝑦𝑡(𝑗) exp 𝜂𝑡 𝑢𝐿(𝑥𝑡, 𝑗)

…

Mean-Based No-Regret (MB-NR) Learners

𝑦𝑡+1 is an increasing function of σ𝑠=1
𝑡 𝑢𝐿(𝑥𝑠, 𝑗) , 𝑗 ∈ [𝑛]

Follow the Regularized Leader: 𝑦𝑡+1 = argmax
𝑦

σ𝑠=1
𝑡 𝑢𝐿(𝑥𝑠, 𝑦) +

1

𝜂𝑡
𝐻(𝑦)

Follow the Perturbed Leader: 𝑗𝑡+1 = argmax
𝑗

σ𝑠=1
𝑡 𝑢𝐿(𝑥𝑠, 𝑗) +

1

𝜂𝑡
perturb𝑡(𝑗)

No-Swap-Regret (NSR) Learner

SwapRegret = max
𝜎∈ 𝑛 →[𝑛]

෍

𝑡=1

𝑇

𝑢𝐿(𝑥𝑡 , 𝜎(𝑗𝑡)) − ෍

𝑡=1

𝑇

𝑢𝐿 𝑥𝑡, 𝑗𝑡 = 𝑜(𝑇)

Regret ≤ SwapRegret

NSR algorithms are NOT as natural as the NR algorithms we see previously.

There are general reductions to convert an NR into an NSR.

∴ a NSR algorithm is also a NR algorithm.

NR

NSR MB-NR

Overview

Strategizing against No-regret Learners

Pareto-Optimal Algorithms for Learning in Games

Contracting with a Learning Agent

Optimizer perspective: Optimizer can gain higher 𝑢𝑂 easier when playing with a MB-NR

Learner than playing with a NSR Learner.
Yuan Deng, Jon Schneider, Balusubramanian Sivan. Strategizing against No-regret Learners. NeurIPS 2019.

Learner perspective: Optimizer can cause lower 𝑢𝐿 easier when playing with a MB-NR

Learner than playing with a NSR Learner.

Eshwar Arunachaleswaran, Natalie Collina, Jon Schneider. Pareto-Optimal Algorithms for Learning in Games. EC 2024.

Optimizer can lead to higher 𝑢𝑂 and 𝑢𝐿 easier when playing with a MB-NR Learner than

playing with a NSR Learner.

Guruganesh et al. Contracting with a Learning Agent. NeurIPS 2024.

EC 2025 “Swap Regret and Strategic Learning” Workshop (link)

https://arxiv.org/pdf/1909.13861
https://arxiv.org/pdf/2402.09549
https://arxiv.org/pdf/2401.16198
https://sites.google.com/view/strategic-learning-ec25/

Optimizer’s Perspective

Stackelberg Value for the Optimizer

where BR 𝑥 = 𝑦: 𝑢𝐿 𝑥, 𝑦 = max
𝑦′

 𝑢𝐿(𝑥, 𝑦′)𝑉 = max
𝑥

 max
𝑦∈BR(𝑥)

 𝑢𝑂(𝑥, 𝑦)

𝑢𝑂 𝐴𝑂, 𝐴𝐿 = lim
𝑇→∞

1

𝑇
 ෍

𝑡=1

𝑇

𝑢𝑂(𝑥𝑡 , 𝑦𝑡)

then max
𝐴𝑂

 𝑢𝑂 𝐴𝑂, 𝐴𝐿 ≥ 𝑉 for any gameIf 𝐴𝐿 ∈ NR

then max
𝐴𝑂

 𝑢𝑂 𝐴𝑂, 𝐴𝐿 ≤ 𝑉 for any gameIf 𝐴𝐿 ∈ NSR

then max
𝐴𝑂

 𝑢𝑂 𝐴𝑂, 𝐴𝐿 ≥ 𝑉 + const for some gameIf 𝐴𝐿 ∈ MB-NR

Theorem

then max
𝐴𝑂

 𝑢𝑂 𝐴𝑂, 𝐴𝐿 ≤ 𝑉 for any gameIf 𝐴𝐿 ∈ NSR

Consider a fixed Learner’s action 𝑗 ∈ [𝑛]:

Define 𝛼𝑗 ∈ Δ𝑚 as the Optimizer’s action distribution when Learner chooses 𝑗:

𝛼𝑗 =
σ𝑡=1

𝑇 𝕀[𝑗𝑡 = 𝑗]𝑥𝑡

𝑇𝑗

1

𝑇
෍

𝑡=1

𝑇

𝑢𝐿(𝑥𝑡, 𝜎(𝑗𝑡)) − 𝑢𝐿(𝑥𝑡, 𝑗𝑡) = ෍

𝑗∈[𝑛]

1

𝑇
෍

𝑡=1

𝑇

𝕀 𝑗𝑡 = 𝑗 𝑢𝐿(𝑥𝑡, 𝜎(𝑗)) − 𝑢𝐿(𝑥𝑡, 𝑗)

= ෍

𝑗∈[𝑛]

𝑇𝑗

𝑇
𝑢𝐿 𝛼𝑗 , 𝜎 𝑗 − 𝑢𝐿(𝛼𝑗 , 𝑗)

where 𝑇𝑗 = σ𝑡=1
𝑇 𝕀[𝑗𝑡 = 𝑗]

As 𝐴𝐿 has No Swap Regret, for 𝑗 ∉ BR(𝛼𝑗), we have 𝑇𝑗 = 𝑜(𝑇)

= ෍

𝑗∈[𝑛]

𝑇𝑗

𝑇
 𝑢𝑂(𝛼𝑗 , 𝑗)

= ෍

𝑗: 𝑗∈BR(𝛼𝑗)

𝑇𝑗

𝑇
 𝑢𝑂 𝛼𝑗 , 𝑗 + ෍

𝑗: 𝑗∉ BR(𝛼𝑗)

𝑇𝑗

𝑇
 𝑢𝑂 𝛼𝑗 , 𝑗

≤ ෍

𝑗: 𝑗∈𝐵𝑅 𝛼𝑗

𝑇𝑗

𝑇
× 𝑉 + ෍

𝑗: 𝑗∉ 𝐵𝑅 𝛼𝑗

𝑇𝑗

𝑇
× 1

= 𝑉

Optimizer utility

then max
𝐴𝑂

 𝑢𝑂 𝐴𝑂, 𝐴𝐿 ≥ 𝑉 + const for some gameIf 𝐴𝐿 ∈ MB-NR

Taken from this tutorial

https://drive.google.com/file/d/10mbfJ73kmciVGuIWybInMOFGxXprnJCY/view

Learner’s Perspective

Pareto Dominance 𝑢𝐿 𝐴𝑂, 𝐴𝐿 = lim
𝑇→∞

1

𝑇
 ෍

𝑡=1

𝑇

𝑢𝐿(𝑥𝑡 , 𝑦𝑡)

For a Learner utility 𝑢𝐿, we say 𝑨𝑳 is Pareto-dominated by 𝑨𝑳
′ if for all 𝑢𝑂,

 𝑢𝐿 BR(𝐴𝐿
′), 𝐴𝐿

′ ≥ 𝑢𝐿 BR 𝐴𝐿 , 𝐴𝐿 (⋆)

where BR(𝐴𝐿) is an Optimizer algorithm 𝐴𝑂 such that 𝑢𝑂 𝐴𝑂, 𝐴𝐿 ≥ max
𝐴

 𝑢𝑂 𝐴, 𝐴𝐿

(breaking ties in favor of the Learner)

and the inequality (⋆) holds strictly for at least one 𝑢𝑂.

There is an 𝑢𝐿 such that any 𝐴𝐿 ∈ MB-NR is Pareto-dominated.

For any 𝑢𝐿, any 𝐴𝐿 ∈ NSR is NOT Pareto-dominated (i.e., Pareto-optimal)

Theorem

Geometric Interpretation

Menu

𝑀 𝐴𝐿 = ConvexHull
1

𝑇
෍

𝑡=1

𝑇

𝑥𝑡 ⊗ 𝑦𝑡 ∶ all possible 𝑥1, … , 𝑥𝑇

Given Learner’s algorithm 𝐴𝐿

- Any Optimizer sequence (𝑥1, 𝑥2, … , 𝑥𝑇) induces a correlated strategy profile (CSP)
1

𝑇
σ𝑡=1

𝑇 𝑥𝑡 ⊗ 𝑦𝑡 ∈ Δ𝑚𝑛

(recall that 𝑦𝑡 = 𝐴𝐿 𝑥1, . . , 𝑥𝑡−1)

- The menu 𝑀 𝐴𝐿 ∈ Δ𝑚𝑛 produced by 𝐴𝐿 is defined as

By selecting 𝑥1, . . , 𝑥𝑇 (essentially selecting a point 𝜙 ∈ 𝑀 𝐴𝐿), the Optimizer can control

the CSP induced by the players

CSP directly affects utility 𝑢𝐿/𝑂 𝐴𝑂, 𝐴𝐿 = σ𝑖,𝑗 𝜙𝑖𝑗 𝑢𝐿/𝑂(𝑖, 𝑗)

Menu

All 𝐴𝐿 ∈ NSR induces the same menu 𝑀 𝐴𝐿 = 𝑀NSR

Lemma

All 𝐴𝐿 ∈ NR induces a menu 𝑀 𝐴𝐿 ⊇ 𝑀NSR

Proof of the Lemma (1/2)

Claim: For any 𝐴𝐿 ∈ NSR, 𝑀(𝐴𝐿) is the convex hull of all CSPs of the form 𝑥 ⊗ 𝑦, with

𝑥 ∈ Δ𝑚 and 𝑦 ∈ BR(𝑥).

Proof:

1. Any CSPs of the form 𝑥 ⊗ BR 𝑥 is contained in 𝑀(𝐴𝐿)

2. Any point 𝜙 ∈ 𝑀(𝐴𝐿) can be written as a convex combination of 𝑥 ⊗ BR 𝑥

1

𝑇
෍

𝑡=1

𝑇

𝑥𝑡 ⊗ 𝑦𝑡 ≈
1

𝑇
෍

𝑡=1

𝑇

𝑥𝑡 ⊗ 𝑒𝑗𝑡 = ෍

𝑗∈[𝑛]

1

𝑇
෍

𝑡=1

𝑇

𝕀[𝑗𝑡 = 𝑗] 𝑥𝑡 ⊗ 𝑒𝑗 = ෍

𝑗∈[𝑛]

𝑇𝑗

𝑇
 𝛼𝑗 ⊗ 𝑒𝑗 𝛼𝑗 ≜

σ𝑡=1
𝑇 𝕀[𝑗𝑡 = 𝑗]𝑥𝑡

𝑇𝑗

𝑇𝑗 ≜ σ𝑡=1
𝑇 𝕀[𝑗𝑡 = 𝑗]

As 𝐴𝐿 is NSR, either
𝑇𝑗

𝑇
→ 0 or 𝑗 = BR(𝛼𝑗)

⇒
1

𝑇
෍

𝑡=1

𝑇

𝑥𝑡 ⊗ 𝑦𝑡 = ෍

𝑗

𝑇𝑗

𝑇
 𝛼𝑗 ⊗ BR(𝛼𝑗)

Proof of the Lemma (2/2)

Claim: For any 𝐴𝐿 ∈ NR, 𝑀(𝐴𝐿) contains all CSPs of the form 𝑥 ⊗ BR(𝑥)

Summary

● The correlated strategy profile (CSP) induced by any Optimizer and a NSR Learner

is always of the form:

1

𝑇
෍

𝑡=1

𝑇

𝑥𝑡 ⊗ 𝑦𝑡 = ෍

𝑥

𝑐𝑥 𝑥 ⊗ BR(𝑥) + 𝑜(1)

This makes the time-averaged profile just like one-shot Stackelberg game.

 This leaves less room of manipulation (good or bad) by the Optimizer.

Reduction: NSR to NR

Reward feedback = 𝑦𝑡 𝑗 𝑢𝑡 ∈ ℝ𝑛Action dist = 𝑧𝑡 𝑗 ∈ Δ𝑛

Action dist = 𝑦𝑡 ∈ Δ𝑛 Reward feedback = 𝑢𝑡 = 𝑢𝑡 𝑥𝑡, ⋅ ∈ ℝ𝑛

NSR

𝑗-th NR 𝑛-th NR1-st NR …… ……

Solve 𝑦𝑡 = 𝑧𝑡(1) … 𝑧𝑡(𝑛) 𝑦𝑡

Blum and Mansour. From External to Internal Regret. JMLR 2007.

	Slide 1: Swap Regret and Strategic Learning
	Slide 2: Recruiting
	Slide 3: Setting: Optimizer and Learner
	Slide 4: No-Regret (NR) Learner
	Slide 5: Mean-Based No-Regret (MB-NR) Learners
	Slide 6: No-Swap-Regret (NSR) Learner
	Slide 7
	Slide 8: Overview
	Slide 9: Optimizer’s Perspective
	Slide 10: Stackelberg Value for the Optimizer
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Learner’s Perspective
	Slide 17: Pareto Dominance
	Slide 18: Geometric Interpretation
	Slide 19: Menu
	Slide 20: Menu
	Slide 21: Proof of the Lemma (1/2)
	Slide 22: Proof of the Lemma (2/2)
	Slide 23: Summary
	Slide 24: Reduction: NSR to NR
	Slide 25

