
Homework 1

6501 Reinforcement Learning (Spring 2024)

Submission deadline: 11:59pm, February 23
(updated on February 12)

Rules

• Collaboration is allowed but must be stated in precision per sub-problem. For example, comment in the sub-problem
or beside the equation which idea is a result of a discussion with whom.

• Leveraging large language models is allowed but must be stated. Describe how you use them or provide precise
prompts that you use.

• The submission should be a zip file that contains a single pdf file typed with latex, and a single python file.

• For theoretical problems, rigorous proofs are required.

Notation Õ(·) denotes O(·) but ignoring logarithmic terms. For example,
√
T log2 T = Õ(

√
T). For any positive

integer N , define [N] = {1, 2, . . . , N}. Most of the notations used here follow those in the slides.

Appendix A provides theorems you may use in some problems.

1 O(log T) regret bound for UCB

In the class, we showed that the regret incurred in UCB is bounded by Õ(
√
T). In this problem, we will show that

the same algorithm in fact ensures a more favorable O(log T) regret. We first define the following quantities: Let
R(a) ∈ [0, 1] be the true mean of the reward of arm a. Define R⋆ ≜ maxa∈[A] R(a) and ∆(a) = R⋆ −R(a).

We consider the UCB algorithm described in Algorithm 1 (the same as presented in the class). Assume that the number
of arms A is less or equal to the number of rounds T , and assume wt is zero-mean and 1-sub-Gaussian.

Algorithm 1 UCB for multi-armed bandits
Input: A (number of arms), T (total number of rounds), δ (failure probability).
for t = 1, . . . , A do

Draw at = t and observe rt = R(at) + wt.
for t = A+ 1, . . . , T do

Define

Nt(a) =

t−1∑
s=1

I{as = a}, R̂t(a) =

∑t−1
s=1 I{as = a}rs

Nt(a)
, conft(a) =

√
2 log(2/δ)

Nt(a)
, R̃t(a) = R̂t(a) + conft(a).

Draw at = argmaxa R̃t(a) and observe rt = R(at) + wt.

Recall that the regret is defined as Regret = TR⋆ −
∑T

t=1 R(at).

(a) (3%) Argue that with probability at least 1−ATδ, |R̂t(a)−R(a)| ≤ conft(a) for all time t and arm a.

1

(b) (6%) Assume that the inequality in (a) holds for all t and a. Prove that if Nt(a) > 8 log(2/δ)
∆(a)2 , then R̃t(a) ̸=

maxa′∈[A] R̃t(a
′).

(c) (6%) Prove that with probability at least 1−ATδ, Regret ≤
∑

a: R(a)̸=R⋆

(
1 + 8 log(2/δ)

∆(a)

)
. Pick a δ and argue that

this choice of δ gives E[Regret] = O
(∑

a: R(a)̸=R⋆
log(T)
∆(a)

)
.

2 LinUCB with mis-specified reward

In the class, we provided a proof sketch for the regret bound of LinUCB assuming that the reward is well-specified, that
is, R(x, a) = ϕ(x, a)⊤θ⋆ for some θ⋆ ∈ Rd, where R(x, a) is the true reward of (x, a), and ϕ(x, a) ∈ Rd is the feature
vector. In this problem, we will redo the analysis, but relaxing this assumption. Suppose θ⋆ is such that ϕ(x, a)⊤θ⋆ is a
good approximation for the true reward R(x, a). Define the following mis-specification function:

ϵ(x, a) = R(x, a)− ϕ(x, a)⊤θ⋆.

Consider the LinUCB algorithm Algorithm 2. It is same as the one presented in the lecture, though the β parameter is
unspecified here. Later, we will set its value differently from that in the lecture.

Algorithm 2 LinUCB
Given: action set A, feature mapping ϕ.
Parameter: β
for t = 1, 2, . . . , T do

Receive xt, and choose action

at = argmax
a∈A

ϕ(xt, a)
⊤θ̂t +

√
β∥ϕ(xt, a)∥Λ−1

t
,

where Λt = I +
∑t−1

i=1 ϕ(xi, ai)ϕ(xi, ai)
⊤ and θ̂t = Λ−1

t

∑t−1
i=1 ϕ(xi, ai)ri.

Receive rt = R(xt, at) + wt, for some zero-mean, 1-sub-Gaussian wt.

Define ϵt = ϵ(xt, at) and ϕt = ϕ(xt, at). Assume that ∥ϕ(x, a)∥2 ≤ 1 for any x, a, and assume ∥θ⋆∥2 ≤
√
d.

(a) (5%) Prove that for any u ∈ Rd,

∣∣∣u⊤(θ̂t − θ⋆)
∣∣∣ ≤ ∥u∥Λ−1

t

∥∥∥∥∥
t−1∑
i=1

ϕiwi

∥∥∥∥∥
Λ−1

t

+

∥∥∥∥∥
t−1∑
i=1

ϕiϵi

∥∥∥∥∥
Λ−1

t

+ ∥θ⋆∥Λ−1
t

 .

(b) (5%) Continuing from (a), prove that with probability at least 1− δ, the following hold for all t ∈ [T + 1] and all
u ∈ Rd:

∣∣∣u⊤(θ̂t − θ⋆)
∣∣∣ ≤ ∥u∥Λ−1

t

√d log

(
1 +

T

d

)
+ 2 log(1/δ) +

√√√√d

t−1∑
i=1

ϵ2i +
√
d

 .

(c) (5%) Suppose that the learner know in advance that the following condition on the “total amount of mis-specification”
always holds:

T∑
t=1

max
a

ϵ(xt, a)
2 ≤ E (1)

no matter what choices of at’s are. What would be a reasonable choice for the value of β? With this choice of β,
what regret bound can we obtain for Algorithm 2?

2

Remark Unfortunately, in order to well deal with mis-specification in LinUCB, one has to set β according to some
prior knowledge on the “total amount of mis-specification” E defined in Eq. (1). If we just use the original β as in the
well-specified case, the regret can be much worse (theoretically), as show on Page 12 of Lattimore et al. (2020)

3 ϵ-greedy for general contextual bandits

In the class, we have shown that SquareCB (a.k.a. Inverse Gap Weighting) can reduce contextual bandit to regression,
and ensure a Õ(

√
T) regret. In this problem, we will show that ϵ-Greedy also serves as an easy way to reduce CB to

regression, albeit with a slightly worse Õ(T 2/3) regret bound.

Algorithm 3 ϵ-Greedy
Parameter: ϵ ∈ [0, 1], A (number of actions)
Given: A regression procedure
for t = 1, 2, . . . , T do

Receive xt, and obtain R̂t from the regression procedure.
Define

pt(a) =

{
1− ϵ+ ϵ

A if a = argmaxa′ R̂t(xt, a
′)

ϵ
A otherwise

Sample at ∼ pt, and receive rt = R(xt, at) + wt.

Define a⋆t = argmaxR(xt, a). Assume that R(x, a) ∈ [0, 1] and R̂t(x, a) ∈ [0, 1] for any x, a, t.

(a) (5%) Show that the one-step expected regret can be upper bounded as follows:

R(xt, a
⋆
t)− Eat∼pt

[R(xt, at)] ≤ ϵ+R(xt, a
⋆
t)− R̂t(xt, a

⋆
t) + Eat∼pt

[
R̂t(xt, at)−R(xt, at)

]
.

(b) (5%) Argue that for any α > 0, the following two inequalities hold:

Eat∼pt

[
R̂t(xt, at)−R(xt, at)

]
≤ 1

2α
+

α

2
Eat∼pt

[(
R̂t(xt, at)−R(xt, at)

)2]
,

R(xt, a
⋆
t)− R̂t(xt, a

⋆
t) ≤

1

2αpt(a⋆t)
+

α

2
Eat∼pt

[(
R̂t(xt, at)−R(xt, at)

)2]
.

(c) (5%) Combining (a) and (b), show that the one-step expected regret can be upper bounded as

R(xt, a
⋆
t)− Eat∼pt [R(xt, at)] ≤ ϵ+

A

αϵ
+ αEat∼pt

[(
R̂t(xt, at)−R(xt, at)

)2]
,

for any α > 0. Conclude that the expected regret E
[∑T

t=1 (R(xt, a
⋆
t)−R(xt, at))

]
can be upper bounded by

O

(AE

[
T∑

t=1

(
R̂t(xt, at)−R(xt, at)

)2]) 1
3

T
2
3

 .

by properly choosing ϵ. (Hint: you may find AM-GM x+y+z
3 ≥ (xyz)

1
3 useful)

4 Implementing contextual bandits algorithms

In this problem, we will implement exploration mechanisms for contextual bandits discussed in the class. The starter
code is in https://bahh723.github.io/course/HW/HW1.py.

3

https://bahh723.github.io/course/HW/HW1.py

4.1 Data

To simulate a contextual bandit environment, we use existing classification dataset for supervised learning. Specifically,
in this homework, we mainly use the digit dataset, which has 1797 data samples (i.e., feature-label pairs). Each feature
vector has dimension 64 because it is a 8× 8 gray-scale image, and each label belongs to {0, 1, . . . , 9}.

Based on the relation between supervised classification and contextual bandits, we can simulate a contextual bandit
environment using this dataset. In round t, the learner sees a context xt ∈ R64 and takes an action at ∈ {0, 1, . . . , 9}.
The learner receives a reward of 1 if at equals the true label, and 0 if not.

4.2 Linear Function Approximation

In this problem, you will implement all exploration schemes for linear function approximation that we discussed in
the class. This includes 1) LinUCB, 2) Thompson Sampling, 3) ϵ-Greedy, 4) Inverse Gap Weighting, 5) Boltzmann
Exploration. Notice that all these algorithms share the same “linear regression” component; the only difference is just
how they generate at based on θ̂t and Λt. Therefore, it is easy to implement them together at once. Besides these five,
you are also required to implement two baseline methods: one is 6) Greedy, which is just ϵ-Greedy with ϵ = 0. This is a
strong baseline according to Bietti et al. (2021). The other is 7) Full-Information, that is, assuming the learner can see all
actions’ reward in each round. The performance in the full-information setting should serve as a performance upper
bound for the bandit setting.

Below are some things to notice in the implementation.

• In the class, our formulation for linear contextual bandit is that r ≈ ϕ(x, a)⊤θ. Notice that the feature vector ϕ(x, a)
depends both on the context and the action. However, now our feature is just the 64-dimensional vector, which is
shared among all actions. How should we handle this case? In fact, these are two common formulations of linear
contextual bandits, and one can convert one from another. See Appendix B for how to convert the context-independent
feature setting to the context-dependent feature setting. Based on the idea there, together with some algebraic
manipulation, it turns out the linear regression problem you will implement is the following. Say Φ(xt) ∈ R64 is the
image feature received at round t. Define for every a ∈ {0, 1, . . . , 9},

Λt,a = λI +

t−1∑
i=1

I{ai = a}Φ(xi)Φ(xi)
⊤, θ̂t,a = Λ−1

t,a

t−1∑
i=1

I{ai = a}Φ(xi)ri. (2)

The prediction for the reward of action a would then be Φ(xt)
⊤θ̂t,a, and the bonus for action a in LinUCB would be√

β∥Φ(xt)∥Λ−1
t,a

.

• All constants like β in LinUCB, γ in Inverse Gap Weighting, or the λ in Eq. (2) should be viewed as hyperparameters
to tune. Do not follow the theoretically optimal value derived in the class.

• In the class, Inverse Gap Weighting (or SquareCB) is expressed as

pt(a) =
1

λ+ γGapt(a)

with the normalization factor λ that makes pt a distribution. The value of λ has to be found through binary search,
which adds some complexity to the implementation. A simpler version is

pt(a) =

{
1

A+γGapt(a)
if a ̸= argmaxa′ R̂t(xt, a

′)

1−
∑

a′ ̸=a pt(a
′) otherwise

which is also theoretically sound as mentioned in the original SquareCB paper (Foster and Rakhlin, 2020).

• Notice that the updates of Λt,a every time is by adding a rank-one matrix. If you want to accelerate the calculation
of Λ−1

t,a , take a look at Vieira (2021).

4

https://scikit-learn.org/stable/auto_examples/datasets/plot_digits_last_image.html

4.3 General Function Approximation

For general function approximation, you are only required to implement 1) ϵ-Greedy, 2) Inverse Gap Weighting, 3)
Boltzmann Exploration, 4) Greedy, 5) Full-Information. You do not need to implement the RegCB algorithm since
it involves a slightly more complicated binary search procedure. However, you can earn some bonus points if you
implement it.

To find the best approximated reward function, one can do

θ̂t = argmin
θ

t−1∑
i=1

(Rθ(xi, ai)− ri)
2 (3)

where Rθ(x, a) is a parameterized function with parameter θ. This is implemented as a two-layer neural network in
the starter code. But performing Eq. (3) in every round requires going over the dataset for T = 1797 times. This may
be okay for our toy example, but would not be scalable when the number of rounds become larger. Notice that this
does not happen in the linear case, because in there Eq. (3) has a closed form that can be obtained through the succinct
expressions of

∑
i ϕ(xi, ai)ϕ(xi, ai)

⊤ and
∑

i ϕ(xi, ai)ri.

One option is to only perform Eq. (3) once in a while. Another approach is to use replay buffer. That is, each time, after
obtaining the tuple (xt, at, rt), we add it to a set S . When we would like to update θ, we sample a batch S ′ from S and
perform a gradient descent step on θ by minimizing

∑
(x,a,r)∈S′ (Rθ(x, a)− r)

2. A simple replay buffer approach is
implemented in the starter code. You can decide the relative frequency between obtaining new samples and updating θ.

Below are the tasks. In (b) to (d), there is flexibility to represent the results in a way you feel clear, as long as it fulfills
the requirement.

(a) (25%) Read and understand the starter code. Implement the TODO’s based on the instructions above. You can make
any modifications to the starter code, but try to place all codes in a single file.

(b) (10%) Pick an algorithm that you like (e.g., linear function approximation + ϵ-greedy), and perform hyper-parameter
tuning. Record in a table the values of the hyper-parameter you have tried, and their corresponding performance.
Describe how you conduct the experiments so that others can reproduce the results.

(c) (10%) Generate two figures, one for linear function approximation, and the other for general function approximation.
In each figure, compare the learning curves of different methods (x-axis: time t, y-axis: the learner’s average reward
in [1, t]). For each method, just plot one curve based the best hyper-parameters you have found. Similarly, describe
how you conduct the experiments.

(d) (8%) Elaborate on any interesting observations or tricks you have found in the experiments.

(e) [optional] (15%) Implement the RegCB method, and include it in (b)-(d).

(f) [optional] (15%) Find another (preferably larger-scale) dataset and repeat (b)-(d).

(g) (2%) Did you leverage large language models to finish this problem? If so, how did you use it?

5 Survey

(a) (5%) How much time did you use to complete each of the problems in this homework? Do you have any suggestion
for the course? (e.g., the pace of the lecture, the length of the homework)

5

Appendix

A Useful theorems

Theorem 1 (Hoeffding’s Inequality). Let X1, X2, . . . , XN be i.i.d. σ-sub-Gaussian random variables with mean µ.
Then with probability at least 1− δ, ∣∣∣∣∣ 1N

N∑
i=1

Xi − µ

∣∣∣∣∣ ≤
√

2 log(2/δ)

N
.

Theorem 2 (Concentration Inequality for Self-Normalized Process). Let (ϕ1, w1, ϕ2, w2 . . . , ϕT , wT) be a sequence
of random variables where ϕi ∈ Rd and wi ∈ R. Define Ht = (ϕ1, w1, . . . , ϕt−1, wt−1). Suppose that ϕt may be
arbitrarily depend on Ht, but conditioned on Ht, wt is zero-mean and 1-sub-Gaussian. Then with probability at least
1− δ, for all t ∈ [T + 1], ∥∥∥∥∥

t−1∑
i=1

ϕiwi

∥∥∥∥∥
2

Λ−1
t

≤ d log

(
1 +

T

d

)
+ 2 log(1/δ),

where Λt := I +
∑t−1

i=1 ϕiϕ
⊤
i .

Theorem 3 (Elliptical Potential Lemma). Let ϕi ∈ Rd and ∥ϕi∥2 ≤ 1. Define Λt = I +
∑t−1

i=1 ϕiϕ
⊤
i . Then

T∑
t=1

∥ϕt∥2Λ−1
t

≤ d log

(
1 +

T

d

)
.

B Converting action-independent context to action-dependent context

Define

ϕ(x, a) =

 | | | |
0 0 · · · Φ(x) · · · 0
| | | |

 ∈ R64×10, θ⋆ =

 | | | |
θ⋆1 θ⋆2 · · · θ⋆a · · · θ⋆A
| | | |

 ∈ R64×10,

where in ϕ(x, a), the only non-zero column is the a-th column. In this way, we can model the reward of action a when
seeing context x as ⟨ϕ(x, a), θ⋆⟩ = ⟨Φ(x), θ⋆a⟩.

References
Bietti, A., Agarwal, A., and Langford, J. (2021). A contextual bandit bake-off. The Journal of Machine Learning

Research, 22(1):5928–5976.

Foster, D. and Rakhlin, A. (2020). Beyond ucb: Optimal and efficient contextual bandits with regression oracles. In
International Conference on Machine Learning, pages 3199–3210. PMLR.

Lattimore, T., Szepesvari, C., and Weisz, G. (2020). Learning with good feature representations in bandits and in rl
with a generative model. In International Conference on Machine Learning, pages 5662–5670. PMLR. https:
//arxiv.org/pdf/1911.07676.pdf.

Vieira, T. (2021). Fast rank-one updates to matrix inverse? https://timvieira.github.io/blog/post/
2021/03/25/fast-rank-one-updates-to-matrix-inverse/.

6

https://arxiv.org/pdf/1911.07676.pdf
https://arxiv.org/pdf/1911.07676.pdf
https://timvieira.github.io/blog/post/2021/03/25/fast-rank-one-updates-to-matrix-inverse/
https://timvieira.github.io/blog/post/2021/03/25/fast-rank-one-updates-to-matrix-inverse/

	O(T) regret bound for UCB
	LinUCB with mis-specified reward
	-greedy for general contextual bandits
	Implementing contextual bandits algorithms
	Data
	Linear Function Approximation
	General Function Approximation

	Survey
	Useful theorems
	Converting action-independent context to action-dependent context

