
Homework 2

6501 Reinforcement Learning (Spring 2024)

Submission deadline: 11:59pm, March 17

Rules

• Collaboration is allowed but must be stated in precision per sub-problem. For example, comment in the sub-problem
which idea is a result of a discussion with whom.

• Leveraging large language models is allowed but must be stated. Describe how you use them or provide precise
prompts that you use.

• Please put all proofs (typed in latex) and figures for experiments in a single pdf file. Submit the pdf to the Question 1
in Gradescope. Put all codes in a single .py file (not .ipynb file), and submit it to Question 2 in Gradescope.

• For theoretical problems, rigorous proofs are required.

1 Approximate Bellman Optimality Implies Approximate Value Function

Consider an MDP with state space S , action spaceA, reward function R : S×A → [0, 1], transition P : S×A → ∆(S),
and discount factor γ ∈ [0, 1).

Suppose that V̂ : S → R is a function that satisfies the approximate Bellman optimality equation:

∀s ∈ S,

∣∣∣∣∣V̂ (s)−max
a∈A

(
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V̂ (s′)

)∣∣∣∣∣ ≤ ϵ. (1)

for some ϵ > 0.

For simplicity, below we use the Bellman optimality operator notation T V defined as

T V (s) := max
a∈A

(
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V (s′)

)
for any V . Therefore, Eq. (1) can also be written as

∀s ∈ S,
∣∣∣V̂ (s)− T V̂ (s)

∣∣∣ ≤ ϵ. (2)

(a) (6%) Prove that for all s ∈ S, ∣∣∣V̂ (s)− V ⋆(s)
∣∣∣ ≤ ∣∣∣T V̂ (s)− T V ⋆(s)

∣∣∣+ ϵ.

(b) (8%) Prove that for all s ∈ S, ∣∣∣T V̂ (s)− T V ⋆(s)
∣∣∣ ≤ γmax

s′∈S

∣∣∣V̂ (s′)− V ⋆(s′)
∣∣∣ .

(c) (4%) Combine (a) and (b) to show

∀s ∈ S,
∣∣∣V̂ (s)− V ⋆(s)

∣∣∣ ≤ ϵ

1− γ
.
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2 Approximate Bellman Optimality Implies Near-Optimal Policy

Consider the same condition as in Problem 1: Suppose that V̂ satisfies Eq. (1). Define the greedy policy with respect to
V̂ as

π̂(s) = argmax
a∈A

(
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V̂ (s′)

)
.

(a) (6%) Prove that V̂ satisfies approximate Bellman equations with respect to π̂. That is,

∀s ∈ S,

∣∣∣∣∣V̂ (s)−

(
R(s, π̂(s)) + γ

∑
s′

P (s′|s, π̂(s))V̂ (s′)

)∣∣∣∣∣ ≤ ϵ.

(b) (6%) Prove that

∀s ∈ S,
∣∣∣V̂ (s)− V π̂(s)

∣∣∣ ≤ ϵ

1− γ
.

(c) (4%) Prove that

∀s ∈ S, V ⋆(s)− V π̂(s) ≤ 2ϵ

1− γ
.

3 Implementation of Policy-Based Contextual Bandit Algorithms

In this problem, we will implement a policy-based contextual bandit algorithm. This setting is actually not covered in the
class — we studied exponential weight and projected gradient descent under the setting without contexts. The goal of
this problem is to show how to handle contexts for this class of methods. The algorithm to be implemented is closely
related to the Proximal Policy Optimization (PPO) algorithm for general MDPs, which we will / plan to implement in
future Homework. Therefore, this problem serves as a primer for it.

Recall that the exponential weight algorithm for finite-arm setting is the following:

pt+1(a) =
pt(a) exp (ηr̂t(a))∑
a′ pt(a′) exp (ηr̂t(a′))

(3)

where r̂t(a) is an unbiased reward estimator of the following form:

r̂t(a) =
(rt(a)− bt − ct(a))I{at = a}

pt(a)
+ ct(a)

with bt being an action-independent baseline (see Page 21 here), and ct(a) an action-dependent baseline (we call it
doubly robust estimator in the class; see Page 16 here). In multi-armed bandits, we have shown that by setting bt = 1
and ct(a) = 0 we can get Õ(

√
AT ) regret.

We have shown in the class that Eq. (3) is equivalent to KL-divergence regularized policy update:

pt+1 = argmax
p∈∆(A)

{
⟨p, r̂t⟩ −

1

η
KL(p, pt)

}
= argmax

p∈∆(A)

{∑
a

p(a)r̂t(a)−
1

η

∑
a

p(a) ln
p(a)

pt(a)

}
(4)

where ∆(A) is the probability space over the action set A. Below, we extend the algorithm Eq. (4) to allow context
inputs (Section 3.1) and allow function approximation (Section 3.2).
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3.1 Handling Contexts

When there are contexts, the policy becomes a mapping from context to action distribution. We use p(a|x) to denote
such distribution, where x ∈ X in the context and a ∈ A is the action.

Suppose that the context is i.i.d. drawn from some distribution D. Then we modify Eq. (4) as the following:

pt+1 = argmax
p:X→∆(A)

{
Ex∼D

[
⟨p(·|x), r̂t(x, ·)⟩ −

1

η
KL(p(·|x), pt(·|x))

]}

= argmax
p:X→∆(A)

{
Ex∼D

[∑
a

p(a|x)r̂t(x, a)−
1

η

∑
a

p(a|x) ln p(a|x)
pt(a|x)

]}
, (5)

where r̂t(x, a) is an unbiased reward estimator for action a when context x is presented (will be defined later).

Since D is unknown, in each iteration of the policy update, we will draw several i.i.d. samples to approximate D. Let
xt,1, xt,2, . . . , xt,N be i.i.d. context samples drawn in iteration t. Then we approximate Eq. (5) with the following:

pt+1 = argmax
p:X→∆(A)

{
1

N

N∑
n=1

[∑
a

p(a|xt,n)r̂t(xt,n, a)−
1

η

∑
a

p(a|xt,n) ln
p(a|xt,n)

pt(a|xt,n)

]}
. (6)

To construct the reward estimator r̂t(x, a), we again use the idea of importance sampling / inverse propensity weighting.
Suppose that in iteration t, we use policy p′t to choose actions, i.e., when seeing xt,n, we sample at,n ∼ p′t(·|xt,n), and
obtain reward rt,n with E[rt,n] = R(xt,n, at,n). Then we can construct the following unbiased reward estimator:

r̂t(xt,n, a) =
rt,nI{at,n = a}

p′t(a|xt,n)
. (7)

Note that p′t can be same or different from pt (e.g., adding extra ϵ-greedy exploration as in Page 16 here). It is again
possible to add baselines: let bt(x) be a function of x, and ct(x, a) be a function of (x, a). Then

r̂t(xt,n, a) =
(rt,n − bt(xt,n)− ct(xt,n, a))I{at,n = a}

p′t(a|xt,n)
+ ct(xt,n, a) (8)

also serves as an unbiased reward estimator.

Combining the update rule Eq. (6) and the reward estimator Eq. (7) or Eq. (8), we get a concrete algorithm that allows us
to update policies. To make the algorithm practical, we restrict our search of policies in a parameterized set of policies
(discussed in the next subsection).

3.2 Using Function Approximation

We will use function approximation to represent the policy. Let pθ : X → ∆(A) be a neural network with weights θ,
which takes the context as input, and output a distribution over actions. In iteration t of policy updates, we let pt = pθt .
To perform Eq. (6), we simply run gradient descent on θ to maximize the objective on the right-hand side of Eq. (6). The
update of θ in iteration t can be more concretely written out as Algorithm 1.

We emphasize again that the whole Algorithm 1 is only doing a single update represented in Eq. (6). The m-for-loop is
using multiple gradient steps to approximate the argmax in Eq. (6). This is also the reason why the pθt in Algorithm 1
should be kept fixed over all M steps, instead of changing over m.

3.3 Combining Everything

According to the discussions in the previous two subsections, our contextual-bandit algorithm is designed as in Algo-
rithm 2.
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Algorithm 1 The t-th iteration of Eq. (6)
(Suppose that you have already used p′t to collect data {(xt,n, at,n, rt,n)}Nn=1 and constructed {r̂t(xt,n, a)}Nn=1 as in
Eq. (7) or Eq. (8))
θ ← θt
for m = 1, . . . ,M do

θ ← θ + λ∇θ

{
1

N

N∑
n=1

[∑
a

pθ(a|xt,n)r̂t(xt,n, a)−
1

η

∑
a

pθ(a|xt,n) ln
pθ(a|xt,n)

pθt(a|xt,n)

]}
. (9)

θt+1 ← θ

Algorithm 2 Policy-Based CB Algorithm
1 Randomly initialize a policy network where the input is the context and output is an action distribution.
2 Let θ1 be the initial weights for the policy network.
3 for t = 1, . . . , T do
4 for n = 1, . . . , N do
5 Receive context xt,n.
6 Sample action at,n ∼ pθt(·|xt,n) (may also use some other policy p′t).
7 Receive reward rt,n.
8 Define for all a ∈ A

r̂t(xt,n, a) =
rt,nI{at,n = a}
pθt(a|xt,n)

. (10)

9 (may use baselines as in Eq. (8))

10 θ ← θt
11 for m = 1, . . . ,M do

θ ← θ + λ∇θ

{
1

N

N∑
n=1

[∑
a

pθ(a|xt,n)r̂t(xt,n, a)−
1

η

∑
a

pθ(a|xt,n) ln
pθ(a|xt,n)

pθt(a|xt,n)

]}
. (11)

12 θt+1 ← θ

3.4 Some Practical Considerations

Below, we assume that in iteration t, we simply use p′t = pθt to choose actions.

3.4.1 The regularization term

In Eq. (11), the first summation actually can be written as the following∑
a

pθ(a|xt,n)r̂t(xt,n, a) =
pθ(at,n|xt,n)

pθt(at,n|xt,n)
rt,n (12)

by the definition of r̂t(xt,n, a). This only involves at,n but not other a. The second summation
∑

a pθ(a|xt,n) ln
pθ(a|xt,n)
pθt (a|xt,n)

,
however, requires a summation over all actions, making the implementation slightly more complicated. One straight-
forward way to make it simpler is to use the reversed KL-divergence

∑
a pθt(a|xt,n) ln

pθt (a|xt,n)

pθ(a|xt,n)
to do the distance

regularization (i.e., changing the roles of θ, θt in the KL-divergence regularization term). Then further observe that since
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at,n is drawn from pθt , we have

E
[
ln

pθt(at,n|xt,n)

pθ(at,n|xt,n)

]
=
∑
a

pθt(a|xt,n) ln
pθt(a|xt,n)

pθ(a|xt,n)
,

with which we can replace the regularization term in Eq. (11) by

−1

η
ln

pθt(at,n|xt,n)

pθ(at,n|xt,n)
(13)

without changing its expectation. This way, this term also just involves at,n but not all a, which is simpler to implement.

Actually, this is not the only way to construct an unbiased estimator for KL(pθ(·|xt,n), pθt(·|xt,n)) or KL(pθt(·|xt,n), pθ(·|xt,n)).
According to an anslysis in John Schulman’s article, the following two equalities are true. Define u =

pθ(at,n|xt,n)
pθt (at,n|xt,n)

:

E [u lnu− (u− 1)] = KL(pθ(·|xt,n), pθt(·|xt,n)), (14)
E [u− 1− lnu] = KL(pθt(·|xt,n), pθ(·|xt,n)). (15)

Therefore, one can choose either one of them in the implementation of Eq. (11). As stated in John Schulman’s article,
there are other considerations why we want to use these alternatives besides the fact that they are simpler to implement.

3.4.2 The reward-estimator term

The reward estimator term pθ(at,n|xt,n)
pθt (at,n|xt,n)

rt,n in Eq. (12) could have a large scale due to the division of pθt(at,n|xt,n) < 1.
In exponential weight algorithm, one way to control it is to add a small uniform exploration probability ϵ and so this
reward-estimation term would become pθ(at,n|xt,n)

(1−ϵ)pθt (at,n|xt,n)+
ϵ
A
rt,n (Page 16 here). In fact, by just adding a small number

in the denominator without actual performing extra exploration is also fine (this will make the estimator slightly biased
though). We will introduce some more common clipping trick when we introduce PPO later in the course.

3.5 Tasks

For simplicity, we will use the digit dataset in Homework 1 again. The goal of this homework problem is not to achieve
improved performance compared to Homework 1, but more on getting familiar with this different style of algorithm.

The starter code is provided in https://bahh723.github.io/rl2024sp_files/HW2.py. The N and M
in Algorithm 2 is also denoted as N and M in the starter code. You mainly will implement Eq. (10) and Eq. (11), which
are both in the update_batch function. The number of lines you need to code is ≲ 10. The performance of this
algorithm might be slightly worse than what’s achieved in Homework 1, but still try to tune the parameters to achieve an
average reward ≳ 0.6.

(a) (25%) Read and understand the starter code. Implement the TODO’s based on the instructions above. You can make
any modifications to the starter code, but try to place all codes in a single file.

There is an implementation detail to notice: Observe that in Eq. (11), the values of pθt(a|xt,n) (which appears
both in the reward estimator term and the KL regularization term) need to be viewed as a constant during the
m-for-loop. However, their values are calculated using the initial value of θ. Therefore, you will need to use the
Tensor.detach() function to detach the value of pθt(xt,n, a) from the gradient calculation.

(b) (15%) Find the value of M and N that lead to the best performance. Show the values of M and N you have tried
and their corresponding average reward.

(c) (15%) Implement the simplest baseline where bt(x) = b and ct(x, a) = 0 in Eq. (8). Try five different values of b
and plot their performance (x-axis: time t, y-axis: the learner’s average reward in [1, t]).

(d) [optional] (15%) Implement any more adaptive baseline methods. For example, have another network learning the
value of context bt(x) or the value of context-action pair ct(x, a) on the fly. Compare the performance with the
non-adaptive ones. Describe how you implement those baselines.
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(e) [optional] (15%) Find another (preferably larger-scale) dataset and repeat (b)-(d).

(f) (10%) Elaborate on any interesting observations or tricks you have found in the experiments.

4 Survey

(a) (5%) How much time did you use to complete each of the problems in this homework? Do you have any suggestion
for the course? (e.g., the pace of the lecture, the length of the homework)
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