
Homework 4

6501 Reinforcement Learning (Spring 2024)

Submission deadline: 11:59pm, May 10

Rules

• Collaboration is allowed but must be stated in precision per sub-problem. For example, comment in the sub-problem
which idea is a result of a discussion with whom.

• Leveraging large language models is allowed but must be stated. Describe how you use them or provide precise
prompts that you use.

• Please put all proofs (typed in latex) and figures for experiments in a single pdf file. Submit the pdf to the Question 1
in Gradescope. Put all codes in a single .py file, and submit it to Question 2 in Gradescope.

1 Monotonic Policy Improvement

In this problem, we will prove that policy gradient or actor-critic can produce monotonic policy improvement when the
value estimation is accurate.

As mentioned in the class, policy gradient (PG), natural policy gradient (NPG), and actor-critic are all based on the
following update:

θk+1 ← argmax
θ

(
V πθ (ρ)− V πθk (ρ)− 1

η
D(θ, θk)

)
(1)

for some distance function D that measures the distance between θ and θk, where ρ is the initial state distribution.

(a) (5%) Show that if Eq. (1) can be performed exactly, then V πθk+1 (ρ) − V πθk (ρ) ≥ 1
ηD(θk+1, θk) ≥ 0. (Hint: a

distance function should satisfy D(x, y) ≥ 0 for all x, y, and D(x, x) = 0 for all x).

In on-policy PG and NPG and actor-critic, we use either unbiased estimators or biased but low-variance estimators to
approximate the objective in Eq. (1). This allows us to approximately perform Eq. (1). In off-policy actor-critic (Page
14 here), however, we mentioned that our objective becomes quite different from Eq. (1) due to the state distribution
mismatch between the current policy πθk and behavior policy π̂. Furthermore, this state distribution mismatch is uneasy
to be corrected through importance weight because we do not know the ratio d

πθk
ρ (s)/dπ̂ρ (s). This makes the monotonic

improvement property shown in (a) no longer holds in general.

In the tabular case, however, we can still show monotonic improvement. To get an intuition why this holds, recall that in
the full-information “policy iteration” algorithm (Page 44 here), we simultaneously perform policy updates on all states,
which resembles having a behavior policy that produces a uniform distribution over states, i.e., dπ̂ρ = Uniform(S). This
dπ̂ρ is also not equal to the occupancy measure of the current policy dπk

ρ , but we can still show that πk converges to the
optimal policy. This demonstrates that state distribution mismatch in policy update is not an issue in the tabular case (it
just affects the convergence rate).

Below, we formalize this. By Page 14 here, off-policy actor-critic would approximate the following update in the tabular
case:

πk+1 ← argmax
π

(∑
s

dπ̂ρ (s)

(∑
a

(π(a|s)− πk(a|s))Qπk(s, a)− 1

η
D(π(·|s), πk(·|s))

))
(2)

1

https://bahh723.github.io/rl2024sp_files/actor-critic.pdf
https://bahh723.github.io/rl2024sp_files/actor-critic.pdf
https://bahh723.github.io/rl2024sp_files/mdp.pdf
https://bahh723.github.io/rl2024sp_files/actor-critic.pdf

for some behavior policy π̂ and some distance function D.

(b) (5%) Argue that Eq. (2) is equivalent to

πk+1(·|s)← argmax
π(·|s)

(∑
a

(π(a|s)− πk(a|s))Qπk(s, a)− 1

η
D(π(·|s), πk(·|s))

)
(3)

as long as dπ̂ρ (s) > 0 for all s.

(c) (5%) Show that Eq. (3) implies V πk+1(ρ) ≥ V πk(ρ) for any initial distribution ρ.

Combining (b) and (c), we formally showed that off-policy actor-critic is still performing reasonable update, justifying
that we can eliminate the state distribution ratio in Page 14 here for the tabular special case.

2 Implementing DDPG / TD3

In this problem, we will implement actor-critic algorithms that work for continuous action sets. Specifically, we focus on
deep deterministic policy gradient (DDPG) and twin-delayed DDPG (TD3). Download the starter code here.

2.1 Environment

We focus on the Hopper environment, which is part of the Mujoco environment. The hopper is a two-dimensional
one-legged figure that consist of four main body parts – the torso at the top, the thigh in the middle, the leg in the
bottom, and a single foot on which the entire body rests (Figure 1). The goal is to make hops that move in the forward
(right) direction by applying torques on the three hinges connecting the four body parts. More information about the
environment can be found in https://gymnasium.farama.org/environments/mujoco/hopper/. You
can search for some videos on the internet to see what the expected movement of Hopper looks like.

Figure 1: Hopper

Observation / state space: The observation / state space includes 11 features that describe the height of the hopper,
angles of the joints, velocities, and angular velocities. The range of each feature is (−∞,∞).

Action space: The action space is 3 dimensional. Each dimension represents the amount of torque applied to a joint.
The range of each dimension is [−1, 1].
Rewards: The reward is a sum of three parts. The first part is a constant for each step before termination. The second
part measures how fast the hopper is moving in the positive x direction. The third part is a cost for taking large actions,
i.e., the larger the magnitude of the action is, the larger the cost.

2

https://bahh723.github.io/rl2024sp_files/actor-critic.pdf
https://bahh723.github.io/rl2024sp_files/HW4.py
https://gymnasium.farama.org/environments/mujoco/hopper/

Episode termination / truncation: An episode terminates if the observation / state is outside a pre-defined range
(usually means the hopper is fallen). When the number of steps reaches 1000, the episode will be truncated.

The Hopper environment requires you to install the Mujoco package, which might take some efforts. See the installation
guide here. If issues persist in the installation, you can try to work on alternative environments that also have continuous
actions (for example, the continuous version of Lunar Lander).

2.2 DDPG

DDPG is an off-policy actor-critic algorithm for continuous action space. It can also be viewed as an adaptation of
Q-learning for continuous actions. The pseudocode of DDPG is given in Algorithm 1. Also see actor-critic slides Page
25 or OpenAI spinning up.

Algorithm 1 DDPG
Hyper-Parameters: σ, η, λ, τ,N,M .
Initialize a replay buffer D with capacity N .
Initialize two actor networks (mappings from the state space to the action space) with weights θ and θtar.
Initialize two critic networks (mappings from the state-action space to a scalar value) with weights ϕ and ϕtar.
Initialize the environment with state s1.
for t = 1, . . . do

Select action

at = ΠA
(
µ(st; θtar) +N (0, σ2I)

)
where ΠA is the projection operator to the action space (in Hopper, simply clip each coordinate to [−1, 1]). Execute
action at, observe reward rt, and observe the next state st+1 if the episode hasn’t terminate.
Let s′t be the terminal state if the episode terminates after t; otherwise, let s′t = st+1.
Store transition (st, at, rt, s

′
t) in replay buffer D.

Sample a random minibatch of transitions {(sj , aj , rj , s′j)}Mj=1 with size M from D.
For each j, define

a′j = µ(s′j ; θtar).

Set

yj =

{
rj if s′j is the terminal state
rj + γQ(s′j , a

′
j ;ϕtar) otherwise

(4)

Critic update: Perform a gradient descent step on MSE loss:

ϕ← ϕ− η∇ϕ
1

M

M∑
j=1

(Q(sj , aj ;ϕ)− yj)
2
.

Actor update: Perform a gradient ascent step:

θ ← θ + λ∇θ
1

M

M∑
j=1

Q(sj , µ(sj ; θ);ϕ).

Target network update:

ϕtar ← τϕ+ (1− τ)ϕtar,

θtar ← τθ + (1− τ)θtar.

If the episode is terminated, let st+1 be the initial state of the next episode.

3

https://spinningup.openai.com/en/latest/user/installation.html
https://bahh723.github.io/rl2024sp_files/actor-critic.pdf
https://spinningup.openai.com/en/latest/algorithms/ddpg.html

Tasks (40%) Implement DDPG (Algorithm 1) to play Hopper. Plot the evolution of the episodic return over time
(x-axis: number of episodes, y-axis: episodic return).

2.3 TD3

TD3 is a direct successor of DDPG, which mainly include three additional elements. See actor-critic slides Page 26-29
or OpenAI spinning up. These three elements are:

• Double-Q Use two pairs of critic networks (so there are four critic networks in total: ϕ1, ϕtar1, ϕ2, ϕtar2), and
always use the minimum of the target networks minℓ=1,2 Q(s, a;ϕtarℓ) as the regression target.

• Delayed actor Update Update actor less frequently than critic.

• Target policy smoothing Instead of using Q(s′, µ(s′; θtar);ϕtar) as the regression target, use Q(s′, a′;ϕtar) where
a′ is µ(s′; θtar) plus noise.

The psuedocode of TD3 is given in Algorithm 2, with the differences with DDPG highlighted in this color.

4

https://bahh723.github.io/rl2024sp_files/actor-critic.pdf
https://spinningup.openai.com/en/latest/algorithms/td3.html

Algorithm 2 TD3
Hyper-Parameters: σ, η, λ, τ,N,M, c, σ′, n.
Initialize a replay buffer D with capacity N .
Initialize two actor networks (mappings from the state space to the action space) with weights θ and θtar.
Initialize four critic networks (mappings from the state-action space to a scalar value) with weights ϕ1 and ϕtar1.
Initialize the environment with state s1.
for t = 1, . . . do

Select action

at = ΠA
(
µθtar(st) +N (0, σ2I)

)
where ΠA is the projection operator to the action space (in Hopper, simply clip each coordinate to [−1, 1]). Execute
action at, observe reward rt, and observe the next state st+1 if the episode hasn’t terminate.
Let s′t be the terminal state if the episode terminates after t; otherwise, let s′t = st+1.
Store transition (st, at, rt, s

′
t) in replay buffer D.

Sample a random minibatch of transitions {(sj , aj , rj , s′j)}Mj=1 with size M from D.
For each j, draw

a′j = ΠA
(
µ(s′j ; θtar) + ϵj

)
where ϵj ∼ Π[−c,c](N (0, σ′2I)) is a truncated Gaussian noise.
Set

yj =

{
rj if s′j is the terminal state
rj + γminℓ∈{1,2} Q(s′j , a

′
j ;ϕtarℓ) otherwise

(5)

Critic update: Perform a gradient descent step on MSE loss:

∀ℓ ∈ {1, 2} ϕℓ ← ϕℓ − η∇ϕℓ

1

M

M∑
j=1

(Q(sj , aj ;ϕℓ)− yj)
2
.

if t mod n = 0 then
Actor update: Perform a gradient ascent step:

θ ← θ + λ∇θ
1

M

M∑
j=1

Q(sj , µ(sj ; θ);ϕ1). (6)

Target network update:

∀ℓ ∈ {1, 2} ϕtarℓ ← τϕℓ + (1− τ)ϕtarℓ,

θtar ← τθ + (1− τ)θtar.

If the episode is terminated, let st+1 be the initial state of the next episode.

Task (35%) Implement TD3 (Algorithm 2) to play Hopper. Plot the episodic return over time (x-axis: number of
episodes, y-axis: episodic return). Feel free to not entirely follow the original implementation of TD3, but just incorporate
similar ideas. For example, instead of only updating the actor every n steps, you might simply create a separation
between the learning rates of actor and critic, which could produce a similar effect.

Also, it will be interesting to render the environment and see how your Hopper is performing (we do not have this part of
starter code right now, but will try to include it afterwards).

You will get full score if the final episodic return of your Hopper can reach ≳ 1500 or higher. Please refer to [1] to see
the performance of the original implementation of TD3.

5

3 Survey (20%)

Thank you for staying in the class till the end. Please let us know any suggestions for the course so we can improve it in
the future.

References
[1] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic methods. In

International conference on machine learning, pages 1587–1596. PMLR, 2018.

6

	Monotonic Policy Improvement
	Implementing DDPG / TD3
	Environment
	DDPG
	TD3

	Survey (20%)

