Adversarial Multi-Armed Bandits

Chen-Yu Wei

Adversarial Multi-Armed Bandits

Given: set of arms
$$\mathcal{A} = \{1, \dots, A\}$$

For time
$$t = 1, 2, ..., T$$
:

Environment decides the reward vector $r_t = (r_t(1), ..., r_t(A))$ (not revealing) Learner chooses an arm $a_t \in \mathcal{A}$ Learner observes $r_t(a_t)$

Regret =
$$\max_{a \in \mathcal{A}} \sum_{t=1}^{T} r_t(a) - \sum_{t=1}^{T} r_t(a_t)$$

Exponential Weight Updates for Bandits

$$p_{t+1}(a) = \frac{p_t(a) \exp(\eta r_t(a))}{\sum_{a' \in \mathcal{A}} p_t(a') \exp(\eta r_t(a'))}$$

Exponential Weight Updates for Bandits

No longer observable

$$p_{t+1}(a) = \frac{p_t(a) \exp(\eta r_t(a))}{\sum_{a' \in \mathcal{A}} p_t(a') \exp(\eta r_t(a'))}$$

• Only update the arm that we choose?

Exponential Weight Updates for Bandits

$$p_{t+1}(a) = \frac{p_t(a) \exp(\eta \hat{r}_t(a))}{\sum_{a' \in \mathcal{A}} p_t(a') \exp(\eta \hat{r}_t(a'))}$$

- $\hat{r}_t(a)$ is an "estimator" for $r_t(a)$
- But we can only observe the reward of one arm!
- Furthermore, $r_t(a)$ is different in every round (If I did not sample arm a in round t, I'll never be able to estimate $r_t(a)$ in the future)

Unbiased Reward / Gradient Estimator

$$\mathcal{M}_{t} = \left(\alpha_{1}, \gamma_{1}(\alpha_{1}), \cdots, \alpha_{t}, \gamma_{t-1}(\alpha_{t-1})\right)$$

Inverse Propensity Weighting

$$\hat{r}_{t}(a) = \underbrace{\binom{r_{t}(a)}{p_{t}(a)} \mathbb{I}\{a_{t} = a\}}_{q_{t}(a)} = \begin{cases} \frac{r_{t}(a)}{p_{t}(a)} & \text{if } a_{t} = a \\ 0 & \text{otherwise} \end{cases}$$

$$\forall a, \quad \mathbb{E}\left[\left|\hat{V}_{t}(a)\right| \mathcal{H}_{t}\right] = \mathbb{E}\left[\left|\frac{\mathcal{V}_{t}(a)}{P_{t}(a)} \mathbb{I}\{a_{t} = a\}\right| \mathcal{H}_{t}\right] = \frac{\mathcal{V}_{t}(a)}{P_{t}(a)} \mathbb{E}\left[\mathbb{I}(a_{t} = a) \mathcal{H}_{t}\right]$$

$$= \mathcal{V}_{t}(a)$$

Directly Applying Exponential Weights

 $p_1(a) = 1/A$ for all aFor t = 1, 2, ..., T: Sample a_t from p_t , and observe $r_t(a_t)$ Define for all a:

$$\hat{r}_t(a) = \frac{r_t(a)}{p_t(a)} \mathbb{I}\{a_t = a\}$$

Update policy:

$$p_{t+1}(a) = \frac{p_t(a) \exp(\eta \hat{r}_t(a))}{\sum_{a' \in \mathcal{A}} p_t(a') \exp(\eta \hat{r}_t(a'))}$$

Simple Experiment

- $A = 2, T = 1500, \eta = 1/\sqrt{T}$
- For $t \le 500$, $r_t = [Bernoulli(0.2), Bernoulli(0.8)]$
- For $500 < t \le 1500$, $r_t = [Bernoulli(0.8), Bernoulli(0.2)]$

Applying the Theorem

Theorem.

Assume that $\eta \hat{r}_t(a) \leq 1$ for all t, a. Then EWU $p_{t+1}(a) = \frac{p_t(a) \exp(\eta \hat{r}_t(a))}{\sum_{a' \in \mathcal{A}} p_t(a') \exp(\eta \hat{r}_t(a'))}$ ensures for any a^* , $\sum_{t=1}^T (\hat{r}_t(a^*) - \langle p_t, \hat{r}_t \rangle) \leq \frac{\ln A}{\eta} + \eta \sum_{t=1}^T \sum_{a=1}^A p_t(a) \hat{r}_t(a)^2$

Several Issues / Questions

- The assumption $\eta \hat{r}_t(a) \leq 1$ may not be satisfied
- How are the left-hand side and the regret definition related?

$$\sum_{t=1}^{T} (\hat{r}_t(a^*) - \langle p_t, \hat{r}_t \rangle) \quad \text{vs.} \quad \sum_{t=1}^{T} (r_t(a^*) - r_t(a_t))$$

• How to bound the term on the right hand side?

$$\eta \sum_{t=1}^{T} \sum_{a=1}^{A} p_t(a) \hat{r}_t(a)^2$$

How is the LHS related to the Regret?

How to bound the term on the right-hand side?

$$\begin{split} \sum_{\alpha} p_{t}(\omega) \hat{Y}_{t}(\alpha)^{2} &= \sum_{\alpha} p_{t}(\omega) \cdot \frac{Y_{t}(\omega)}{p_{t}(\omega)} \mathbb{1} \left[a_{t} = \alpha \right] \\ &= \sum_{\alpha} p_{t}(\omega) \cdot \frac{Y_{t}(\omega)^{2}}{p_{t}(\omega)^{2}} \mathbb{1} \left\{ a_{t} = \alpha \right\} \\ &= \sum_{\alpha} \frac{\mathbb{1} \left\{ a_{t} = \alpha \right\}}{p_{t}(\omega)} \frac{Y_{t}(\omega)^{2}}{p_{t}(\omega)^{2}} \leq \sum_{\alpha} \frac{\mathbb{1} \left\{ a_{t} = \alpha \right\}}{p_{t}(\omega)} \\ & E\left[\begin{array}{c} \cdots \end{array} \right] \\ &\leq \sum_{\alpha} E\left[\frac{\mathbb{1} \left[a_{t} = \alpha \right]}{p_{t}(\omega)} \right] \leq A \end{split}$$

The assumption $\eta \hat{r}_t(a) \leq 1$ is not satisfied

Solution 1: Adding Extra Exploration

- Idea: use at least η probability to choose each arm
- Instead of sampling a_t according to p_t , use

$$p_t'(a) = (1 - A\eta)p_t(a) + \eta$$

$$P_t = (1 - A_1) P_t + A_2 \cdot uniform$$

Then the unbiased reward estimator becomes

$$\hat{r}_t(a) = \frac{r_t(a)}{p'_t(a)} \mathbb{I}\{a_t = a\} = \frac{r_t(a)}{(1 - A\eta)p_t(a) + \eta} \mathbb{I}\{a_t = a\}$$

Solution 1: Adding Extra Exploration

Applying Solution 1

 $p_1(a) = 1/A$ for all aFor t = 1, 2, ..., T: Sample a_t from $p'_t = (1 - A\eta)p_t + A\eta$ uniform(\mathcal{A}), and observe $r_t(a_t)$ Define for all a:

$$\hat{r}_t(a) = \frac{r_t(a)}{p'_t(a)} \mathbb{I}\{a_t = a\}$$

Update policy:

$$p_{t+1}(a) = \frac{p_t(a) \exp(\eta \hat{r}_t(a))}{\sum_{a' \in \mathcal{A}} p_t(a') \exp(\eta \hat{r}_t(a'))}$$

Regret Bound for Solution 1

Theorem. Exponential weights with Solution 1 ensures

$$\max_{a^{\star}} \mathbb{E}\left[\sum_{t=1}^{T} (r_t(a^{\star}) - r_t(a_t))\right] \le O\left(\frac{\ln A}{\eta} + \eta AT\right) \sqrt{A \top \log A}$$

Recall we feed $\widehat{F_{t}}(\alpha)$ to the EW algorithm, $\sum_{t=1}^{T} \widehat{F_{t}}(\alpha^{*}) - \sum_{t=1}^{T} \sum_{\alpha} p_{t}(\alpha) \widehat{F_{t}}(\alpha) \leq \frac{\log A}{2} + 2\sum_{t=1}^{T} \sum_{\alpha} p_{t}(\alpha) \widehat{F_{t}}(\alpha)^{2}$ $= \underbrace{F}\left(\sum_{t=1}^{T} F_{t}(\alpha^{*}) - \sum_{t=1}^{T} \sum_{\alpha} p_{t}(\alpha) F_{t}(\alpha)\right) \leq \frac{\log A}{2} + \underbrace{F}\left(2\sum_{t=1}^{T} \sum_{\alpha} p_{t}(\alpha) E\left(\widehat{F_{t}}(\alpha^{2})\right)\right)$ $= \underbrace{F}\left(\sum_{t=1}^{T} F_{t}(\alpha^{*}) - \sum_{t=1}^{T} \sum_{\alpha} p_{t}(\alpha) F_{t}(\alpha)\right) \leq \frac{\log A}{2} + \underbrace{F}\left(2\sum_{t=1}^{T} \sum_{\alpha} p_{t}(\alpha) E\left(\widehat{F_{t}}(\alpha^{2})\right)\right)$

 $\mathbb{E}\left[\sum_{t}r_{t}(a^{t})-\sum_{t}p_{t}(a)r_{t}(a)\right] \lesssim \frac{l_{g}A}{2} + \mathcal{I}E\left[\sum_{t}p_{t}(a)\cdot\frac{l}{R_{t}(a)}\right]$ $P_{t}(a) = \frac{1}{(1-A_{2})P_{t}(a)+\gamma} = \frac{1}{1-A_{2}}$ $P_{t}(a) = \frac{1}{(pick \gamma \leq \frac{1}{A})}$ $=\frac{109A}{7}+2TA\cdot\frac{1}{1-A7}P_{1}^{2}(x)=$ $\leq \frac{109A}{7} + 22TA$ $\leq \mathbb{E}\left(\sum_{t=\alpha}^{T} |P_{t}(\alpha) - P_{t}(\alpha)|\right)$ $E\left[\sum_{t}V_{t}(\alpha^{*}) - \sum_{t}\sum_{A}P_{t}(\alpha)V_{t}(\alpha)\right] \stackrel{(a)}{\hookrightarrow} E\left[\sum_{t}V_{t}(\alpha^{*}) - \sum_{t}\sum_{A}P_{t}(\alpha)V_{t}(\alpha)\right] + E\left[\sum_{t}\sum_{A}\left(P_{t}(\alpha) - P_{t}(\alpha)\right)V_{t}(\alpha)\right] + \frac{1}{2}\frac{1}{2}P_{t}(\alpha) - P_{t}(\alpha) = \left[\frac{A}{2}\right]P_{t}(\alpha) - \frac{1}{2}\left[\frac{1}{2}P_{t}(\alpha) + 2\right] + 2\left[\frac{1}{2}P_{t}(\alpha) + 2\left[\frac{1}{2}P_{t}(\alpha) + 2\left[\frac{1}{2}P_{t}(\alpha) + 2\right] + 2\left[\frac{1}{2}P_{t}(\alpha) + 2\left[\frac{1}{2}P_$

Solution 2: Construct a Different Reward Estimator

- Notice that the condition is only $\eta \hat{r}_t(a) \leq 1$. The reward estimator is allowed to be **very negative**! (Check our proof) $l_{t}(\alpha) = 1 - Y_{t}(\alpha) = 0$ $l_{t}(\alpha) = \frac{l_{t}(\alpha)}{l_{t}(\alpha)} \frac{1}{l_{t}(\alpha)} \frac$
- Still sample a_t from p_t , but construct the reward estimator as

$$\hat{r}_t(a) = \frac{r_t(a) - 1}{p_t(a)} \mathbb{I}\{a_t = a\} + 1$$

Why this resolves the issue?

$$P_{t+1}(\alpha) \propto P_{t}(\alpha) \exp\left(2\Gamma_{t}(\alpha)\right)$$

$$P_{t+1}(\alpha) \propto P_{t}(\alpha) \exp\left(2\Gamma_{t}(\alpha)\right)$$

$$P_{t+1}(\alpha) \propto P_{t}(\alpha) \exp\left(2\cdot\frac{r_{t}(\alpha)-1}{P_{t}(\alpha)}\right)$$

$$= P_{t}(\alpha) \exp\left(-2\hat{Q}_{t}(\alpha)\right)$$

Solution 2: Construct a Different Reward Estimator

Applying Solution 2

Regret Bound for Solution 2

Theorem. Exponential weights with Solution 2 ensures

$$\max_{a^{\star}} \mathbb{E}\left[\sum_{t=1}^{T} (r_t(a^{\star}) - r_t(a_t))\right] \le O\left(\frac{\ln A}{\eta} + \eta AT\right)$$

Exp3 Algorithm

"Exponential weight algorithm for Exploration and Exploitation"

• Exponential weights + either of the two solutions

Another Solution: A Different Update Rule

Regret Bound for Solution 3

Theorem. The new update rule ensures

$$\max_{a^{\star}} \mathbb{E}\left[\sum_{t=1}^{T} (r_t(a^{\star}) - r_t(a_t))\right] \le O\left(\frac{A \ln T}{\eta} + \eta T\right)$$

Comparison with Previous Algorithms

	Exponential weight	Inverse weight
without IPW	$p_t(a) \propto \exp(\lambda_t \hat{R}_t(a))$ Boltzmann exploration	$p_t(a) = \frac{1}{\gamma_t - \lambda_t \hat{R}_t(a)}$ SquareCB
with IPW (for adversarial setting)	$p_t(a) \propto \exp(\lambda_t \tilde{R}_t(a))$ Exp3	$p_t(a) = \frac{1}{\gamma_t - \lambda_t \tilde{R}_t(a)}$
		$\widetilde{R_{t}(a)} = \frac{1}{t-1} \sum_{i=1}^{t-1} \widetilde{r_{i}(a)}$

 $\widehat{R}_{t}(\alpha) = \frac{\sum_{i=1}^{t-1} Y_{i}(\alpha) \mathbb{I}(\alpha_{i}=\alpha)}{\sum_{i=1}^{t-1} \mathbb{I}(\alpha_{i}=\alpha)}$