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Multi-Armed Bandits



Multi-Armed Bandits

Given:  action set 𝒜 = {1, … , 𝐴}

For time 𝑡 = 1, 2, … , 𝑇: 

 Learner chooses an arm 𝑎𝑡 ∈ 𝒜

 Learner observes 𝑟𝑡 = 𝑅 𝑎𝑡 + 𝑤𝑡

Assumption:   𝑅 𝑎  is the (hidden) ground-truth reward function 

                         𝑤𝑡 is a zero-mean noise

Goal:   maximize the total reward σ𝑡=1
𝑇 𝑅(𝑎𝑡)   (or σ𝑡=1

𝑇 𝑟𝑡) 



How to Evaluate an Algorithm’s Performance? 

● “My algorithm obtains 0.3𝑇 total reward within 𝑇 rounds” 

– Is my algorithm good or bad? 

● Benchmarking the problem
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In MAB

Regret ∶=

● “My algorithm ensures Regret ≤ 5𝑇
3

4
 
”

● Regret = 𝑜 𝑇  ⇒  the algorithm is as good as the optimal policy asymptotically



The Exploration and Exploitation Trade-off in MAB

● To perform as well as the best policy (i.e., best arm) asymptotically, the 

learner has to pull the best arm most of the time 

⇒ need to exploit

● To identify the best arm, the learner has to try every arm sufficiently many 

times

⇒ need to explore



A Simple Strategy: Explore-then-Exploit 

What is the right amount of exploration (𝑇0)? 

Explore-then-exploit (Parameter: 𝑇0)

In the first 𝑇0 rounds, sample each arm 𝑇0/𝐴 times. (Explore) 

Compute the empirical mean ෠𝑅(𝑎) for each arm 𝑎  

In the remaining 𝑇 − 𝑇0 rounds, draw ො𝑎 = argmax𝑎 ෠𝑅(𝑎) (Exploit) 



Quantifying the Estimation Error

In the exploration phase, we obtain  𝑁 = 𝑇0/𝐴 i.i.d. samples of each arm. 

 ෠𝑅 𝑎 − 𝑅 𝑎  ≤ 

Empirical mean 
of 𝑁 i.i.d. samples

True mean

Key Question: 

for some decreasing function of 𝑁

𝑓(𝑁)?



Explore-then-Exploit Regret Bound Analysis



Quantifying the Error:  Concentration Inequality

Let 𝑋1, … , 𝑋𝑁 be independent 𝜎-sub-Gaussian random variables. 

Then with probability at least 1 − 𝛿, 
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Theorem.  Hoeffding’s Inequality

A random variable is called 𝜎-sub-Gaussian if  𝔼 𝑒𝜆(𝑋−𝔼[𝑋]) ≤ 𝑒𝜆2𝜎2/2   ∀𝜆 ∈ ℝ.

Fact 1. 𝒩(𝜇, 𝜎2) is 𝜎-sub-Gaussian. 

Fact 2. A random variable ∈ [𝑎, 𝑏] is (𝑏 − 𝑎)-sub-Gaussian.

Intuition:  tail probability Pr |𝑋 − 𝔼 𝑋 | ≥ 𝑧  bounded by that of Gaussians



Regret Bound of Explore-then-Exploit

Then with probability at least 1 − 𝐴𝛿,  Explore-then-Exploit ensures

Regret ≤ 𝑇0 + 2 𝑇 − 𝑇0

2𝐴 log 2/𝛿

𝑇0
 .

Theorem.  Regret Bound of Explore-then-Exploit

Suppose that 𝑅 𝑎 ∈ [0,1] and 𝑤𝑡 is 1-sub-Gaussian. 



𝝐-Greedy

Draw

𝑎𝑡 = ቊ
 uniform 𝒜  with prob.  𝜖 

argmax𝑎 ෠𝑅𝑡 𝑎  with prob.  1 − 𝜖

where ෠𝑅𝑡 𝑎 =
σ𝑠=1

𝑡−1 𝕀 𝑎𝑠=𝑎  𝑟𝑠

σ𝑠=1
𝑡−1 𝕀 𝑎𝑠=𝑎  

is the empirical mean of arm 𝑎 using samples 

up to time 𝑡 − 1.  

𝝐-Greedy  (Parameter: 𝜖)

In the first 𝐴 rounds, draw each arm once. 

In the remaining rounds 𝑡 > 𝐴, 

Mixing exploration and exploitation in time 



Regret Bound of 𝝐-Greedy

With proper choice of 𝜖, the expected regret of 𝜖-Greedy is bounded by

𝔼 Regret ≤ ෨𝑂 𝐴1/3 𝑇2/3  .

Theorem.  Regret Bound of 𝝐-Greedy



Can We Do Better?

In explore-then-exploit and 𝜖-greedy, every arm receives the same amount of 

exploration. 

… Maybe, for those arms that look worse, the amount of exploration on them can 

be reduced? 

Solution: Refine the amount of exploration for each arm based on the current 

mean estimation. 

(Has to do this carefully to avoid under-exploration)



Boltzmann Exploration

In each round, sample 𝑎𝑡 according to

𝑝𝑡 𝑎 ∝  exp 𝜆𝑡 ෠𝑅𝑡(𝑎)

where ෠𝑅𝑡 𝑎  is the empirical mean of arm 𝑎 using samples up to time 𝑡 − 1.  

Boltzmann Exploration  (Parameter: 𝜆𝑡)

Cesa-Bianchi, Gentile, Lugosi, Neu.  Boltzmann Exploration Done Right,  2017.

Bian and Jun. Maillard Sampling: Boltzmann Exploration Done Optimally.  2021. 

Another adaptive exploration 𝑝𝑡 𝑎 =
1

𝛾−𝜆𝑡 ෠𝑅𝑡(𝑎)
 will work!  (later in the course)



Another Idea: “Optimism in the Face of Uncertainty”

In words: 

Act according to the best plausible world. 

Image source: UC Berkeley AI course slide, lecture 11.

http://ai.berkeley.edu/lecture_slides.html
http://ai.berkeley.edu/slides/Lecture%2011%20--%20Reinforcement%20Learning%20II/SP14%20CS188%20Lecture%2011%20--%20Reinforcement%20Learning%20II.pptx


Another Idea: “Optimism in the Face of Uncertainty”

In words: 

Act according to the best plausible world. 

At time 𝑡, suppose that arm 𝑎 has been drawn for 𝑁𝑡 𝑎  times, with empirical 

mean ෠𝑅𝑡(𝑎).  

What can we say about the true mean 𝑅(𝑎)? 

 𝑅 𝑎 − ෠𝑅𝑡 𝑎 ≤
2 log 2/𝛿

𝑁𝑡(𝑎)
   w.p. ≥ 1 − 𝛿 

What’s the most optimistic mean estimation for arm 𝑎? 

෠𝑅𝑡 𝑎 +
2 log 2/𝛿

𝑁𝑡(𝑎)
 



UCB

For the remaining rounds:  in round 𝑡,  draw

𝑎𝑡 = argmax𝑎 ෠𝑅𝑡 𝑎 +
2 log 2/𝛿

𝑁𝑡(𝑎)

where ෠𝑅𝑡 𝑎  is the empirical mean of arm 𝑎 using samples up to time 𝑡 − 1. 

𝑁𝑡(𝑎) is the number of samples of arm 𝑎 up to time 𝑡 − 1. 

UCB  (Parameter: 𝛿)

In the first 𝐴 rounds, draw each arm once. 

P Auer, N Cesa-Bianchi, P Fischer.  Finite-time analysis of the multiarmed bandit problem, 2002. 



Regret Bound of UCB

With probability at least 1 − 𝐴𝑇𝛿, 

Regret ≤ 𝑂 𝐴𝑇 log 1/𝛿 = ෨𝑂( 𝐴𝑇) .

Theorem.  Regret Bound of UCB



UCB Regret Bound Analysis



Exploration Strategies (Review)

𝑎𝑡 = ൝
 uniform 𝒜  𝑡 ≤ 𝑇0 

argmax𝑎 ෠𝑅𝑇0
𝑎  𝑡 > 𝑇0 Explore-then-Exploit

𝑎𝑡 = ቊ
 uniform 𝒜  with prob.  𝜖 

argmax𝑎 ෠𝑅𝑡 𝑎  with prob.  1 − 𝜖
𝜖-Greedy

𝑝𝑡 𝑎 ∝  exp 𝜆𝑡 ෠𝑅𝑡(𝑎)Boltzmann Exploration

𝑎𝑡 = argmax𝑎 ෠𝑅𝑡 𝑎 +
2 log 2/𝛿

𝑁𝑡(𝑎)
UCB

෠𝑅𝑡(𝑎): mean estimation for arm 𝑎 at time 𝑡

𝑁𝑡(𝑎): number of samples for arm 𝑎 at time 𝑡



Comparison

Regret Bound Exploration

Explore-then-Exploit 

𝜖-Greedy
𝐴1/3 𝑇2/3 Non-adaptive

Boltzmann Exploration --- Adaptive

UCB

Thompson Sampling
𝐴𝑇 Adaptive



Visualizing UCB

True mean: [0.2, 0.4, 0.6, 0.7]



Bayesian Setting for MAB

Assumptions: 

● At the beginning, the environment draws a parameter 𝜃⋆ from some prior 

distribution 𝜃⋆ ∼ 𝑃prior

● In every round, the reward vector 𝒓𝒕 = (𝑟𝑡 1 , … , 𝑟𝑡(𝐴)) is generated from 

𝒓𝒕 ∼ 𝑃𝜃⋆

E.g., Gaussian Case

● At the beginning, 𝜃⋆(𝑎) ∼ 𝒩(0, 1)  for all 𝑎 ∈ 1, … , 𝐴 . 

● In every round, the reward of arm 𝑎 is generated by 𝑟𝑡 𝑎 ∼ 𝒩(𝜃⋆(𝑎), 1). 

For the learner,  𝑃prior is known;  𝜃⋆ is unknown;   𝑃𝜃 is known for any 𝜃.  



Thompson Sampling

In words: 

Randomly pick an arm according to the probability you believe it is the optimal arm. 

At time 𝑡, after seeing ℋ𝑡 = (𝑎1, 𝑟1 𝑎1 , 𝑎2, 𝑟2 𝑎2 , … , 𝑎𝑡−1, 𝑟𝑡−1 𝑎𝑡−1 ), the learner 

has a posterior distribution for 𝜃⋆: 

In math: 

Sample 𝑎𝑡 according to 𝑝𝑡 𝑎 = 𝜃׬
𝑃 𝜃 ℋ𝑡 𝕀 𝑎⋆ 𝜃 = 𝑎 = 𝔼𝜃∼𝑃 ⋅| ℋ𝑡

𝕀 𝑎⋆ 𝜃 = 𝑎

Implementation:  Sample 𝜃𝑡 ∼ 𝑃 ⋅ | ℋ𝑡 , and choose 𝑎𝑡 = 𝑎⋆(𝜃𝑡).  

𝑃 𝜃⋆ = 𝜃 ℋ𝑡 =
𝑃 ℋ𝑡 , 𝜃⋆ = 𝜃

𝑃(ℋ𝑡)
=

𝑃𝜃 ℋ𝑡 𝑃prior(𝜃)

𝑃(ℋ𝑡)
∝ 𝑃𝜃 ℋ𝑡 𝑃prior 𝜃

William Thompson. On the likelihood that one unknown 

probability exceeds another in view of the evidence of 

two samples, 1933. 



Thompson Sampling in the Gaussian Case



TS, UCB, BE, 𝜖-Greedy 

෠𝑅𝑡(𝑎)
≈

1

𝑁𝑡(𝑎)

UCB estimators

Mean estimation ( ෠𝑅𝑡(𝑎)) + different exploration mechanism 



More on Thompson Sampling

For Bernoulli reward, the commonly used prior is the Beta prior. 

Regret bound analysis for Thompson sampling

Shipra Agrawal, Navin Goyal. Near-optimal Regret Bounds for Thompson Sampling. 2017. 

Daniel Russo and Ben Van Roy. An Information-Theoretic Analysis of Thompson Sampling. 2016.

https://www.columbia.edu/~sa3305/papers/j3-corrected.pdf
https://www.jmlr.org/papers/volume17/14-087/14-087.pdf


Superior Empirical Performance of TS

Tsuchiya, Ito, Honda. Further Adaptive Best-of-Both-Worlds 

Algorithm for Combinatorial Semi-Bandits. 2023 

Zimmert, Luo, Wei. Beating Stochastic and Adversarial 

Semi-bandits Optimally and Simultaneously. 2019.  

Kaufmann, Korda Munos. Thompson Sampling: An Asymptotically 

Optimal Finite Time Analysis. 2012.
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