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Contextual Bandits and Non-Contextual Bandits
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Multi-Armed Bandits



Multi-Armed Bandits

Given: actionset A ={1, ..., A}
Fortimet=1,2,..,T:
Learner chooses an arm a; € A
Learner observes r; = R(a;) + w;

Assumption: R(a) is the (hidden) ground-truth reward function
w; IS a zero-mean noise

Goal: maximize the total reward Y.7_, R(a,) (or Xi_i1:)



How to Evaluate an Algorithm’s Performance?

e “My algorithm obtains 0.3T total reward within T rounds”
— |Is my algorithm good or bad?

e Benchmarking the problem

T T T
Regret := maxz R(m) — z R(a,) = maxTR(a)— Z R(a,)
. = , t=1 T : t=1
Y
The total reward of the best policy In MAB

b

3
e “My algorithm ensures Regret < 5T+
e Regret = 0o(T) = the algorithm is as good as the optimal policy asymptotically



The Exploration and Exploitation Trade-off in MAB

e To perform as well as the best policy (i.e., best arm) asymptotically, the
learner has to pull the best arm most of the time

= need to exploit

e To identify the best arm, the learner has to try every arm sufficiently many
times

= need to explore



A Simple Strategy: Explore-then-Exploit

Explore-then-exploit (Parameter: T,)

In the first T, rounds, sample each arm T, /A times. (Explore)
Compute the empirical mean R(a) for each arm a
In the remaining T — T, rounds, draw & = argmax, R(a) (Exploit)

What is the right amount of exploration (T)?




Quantifying the Estimation Error

In the exploration phase, we obtain N =T,/A i.i.d. samples of each arm.

Key Question:

|R(a) —R(a) [ <? F(V)

/ \ for some decreasing function of N

Empirical mean True mean
of N i.i.d. samples



Explore-then-Exploit Regret Bound Analysis
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Quantifying the Error: Concentration Inequality

Theorem. Hoeffding’s Inequality

Let X4, ..., Xy be independent g-sub-Gaussian random variables.
Then with probability at least 1 — 6,
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A random variable is called o-sub-Gaussian if E[e?*~EXD] < e4*0°/2 v} e R.
Fact 1. N (u,0?) is o-sub-Gaussian.
Fact 2. Arandom variable € [a, b] is (b — a)-sub-Gaussian.

Intuition: tail probability Pr{|X — E[X]| = z} bounded by that of Gaussians



A ,<V b Means

Regret Bound of Explore-then-Exploit & < comst. b
of & =0(b)

Theorem. Regret Bound of Explore-then-Exploit

Suppose that R(a) € [0,1] and w; is 1-sub-Gaussian.

Then with probability at least 1 — Ad, EXxplore-then-Exploit ensures
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e-Greedy

Mixing exploration and exploitation in time

e-Greedy (Parameter: €)

In the first 4 rounds, draw each arm once.
In the remaining rounds t > A,

Draw

uniform(A) with prob. €
a; = .
‘ argmax, R;(a) withprob. 1 —¢

2l {ag=a}rs

where R,(a) = IS the empirical mean of arm a using samples

E;} [{as=a}

up totime t — 1.




Regret Bound of e-Greedy

Theorem. Regret Bound of e-Greedy

With proper choice of €, the expected regret of e-Greedy is bounded by

E[Regret] < 0(AY3T?/3).




Can We Do Better?

In explore-then-exploit and e-greedy, every arm receives the same amount of
exploration.

... Maybe, for those arms that look worse, the amount of exploration on them can
be reduced?

Solution: Refine the amount of exploration for each arm based on the current
mean estimation.

(Has to do this carefully to avoid under-exploration)



Boltzmann Exploration

Boltzmann Exploration (Parameter: 4;)
In each round, sample a; according to

pe(a) « exp(2; Re(a))

where R,(a) is the empirical mean of arm a using samples up to time t — 1.

Cesa-Bianchi, Gentile, Lugosi, Neu. Boltzmann Exploration Done Right, 2017.
Bian and Jun. Maillard Sampling: Boltzmann Exploration Done Optimally. 2021.

1

Another adaptive exploration p;(a) = —— will work! (later in the course)
Y—AtRe(a)




Another Idea: “Optimism in the Face of Uncertainty”

In words:

Act according to the best plausible world.

AND
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Image source: UC Berkeley Al course slide, lecture 11.



http://ai.berkeley.edu/lecture_slides.html
http://ai.berkeley.edu/slides/Lecture%2011%20--%20Reinforcement%20Learning%20II/SP14%20CS188%20Lecture%2011%20--%20Reinforcement%20Learning%20II.pptx

Another Idea: “Optimism in the Face of Uncertainty”

In words:

Act according to the best plausible world.

At time t, suppose that arm a has been drawn for N;(a) times, with empirical
mean R,(a).

What can we say about the true mean R(a)?

2 log(2/6)
N¢(a)

w.p.=21-96

| R(a) — R(a) s\[

What's the most optimistic mean estimation for arm a?

A~ 2 log(2/6)
Rt(a)+\/ N.(@)




UCB

UCB (Parameter: §)

In the first A rounds, draw each arm once.
For the remaining rounds: in round t, draw

2log(2/6)
N¢(a)

a, = argmax, R,(a)+

N

where R,(a) is the empirical mean of arm a using samples up to time t — 1.
N;(a) Is the number of samples of arm a up to time t — 1.

P Auer, N Cesa-Bianchi, P Fischer. Finite-time analysis of the multiarmed bandit problem, 2002.




Regret Bound of UCB

Theorem. Regret Bound of UCB
With probability at least 1 — AT,

Regret < O (\/ATlog(1/6)) = O(VAT) .
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Exploration Strategies (Review)

R.(a): mean estimation for arm a at time t
N;(a): number of samples for arm a at time t

Explore-then-Exploit

e-Greedy

Boltzmann Exploration

UCB

uniform(A) t<T,
“ =) argmax, Rr(a) t>T,
uniform(A) with prob. €

a; = "
‘ argmax, R;(a) withprob. 1—¢€

pe(a) < exp(2; Ri(a))

21og(2/9)
N¢(a)

a, = argmax, R.(a) + \/



Comparison

Regret Bound

Exploration

Explore-then-Exploit

1/3 72/3 _ i

e-Greedy AY°T Non-adaptive
Boltzmann Exploration Adaptive
ucs VAT Adaptive




Visualizing UCB

True mean: [0.2, 0.4, 0.6, 0.7]



Bayesian Setting for MAB

Assumptions:

e At the beginning, the environment draws a parameter 8* from some prior
distribution 6% ~ Pprjor

e In every round, the reward vector r; = (1:(1), ..., 7:(A)) is generated from
ry ~ Pg-

E.g., Gaussian Case
e At the beginning, 6*(a) ~ N (0,1) foralla € {1, ...,A}.
e In every round, the reward of arm a is generated by r;:(a) ~ N (6*(a), 1).

For the learner, P, IS known; 6% is unknown; Py is known for any 6.



William Thompson. On the likelihood that one unknown

Th om pSO N Sam p | | N g probability exceeds another in view of the evidence of

two samples, 1933.

In words:

Randomly pick an arm according to the probability you believe it is the optimal arm.

At time t, after seeing H; = (a,11(aq),a,, rn(a,), ...,as_1,1:—1(as—1)), the learner

has a posterior distribution for 68”: Sreceof
@

5
P(H,, 0" =0)  Pg(H)Pprior(6) ’

PEO™ =61 =550 P(Hy)

X PH (}[t)Pprior(G)

In math:
Sample a; according to p;(a) = fe P(O|H:) I{a™(0) = a} = Eg-p¢|2pyl{a™(8) = a}]

Implementation: Sample 6; ~ P(- | H;), and choose a; = a*(6,).




Thompson Sampling in the Gaussian Case
o= (6, BA) . He= (Cﬂ/ fifay), -~ Oy, Vé—ll%—c)) Const: Cowst untelted o O

( ’Ht) o< R (6) Fo( H;-()m -~ (9{%) "
— cmst—re 2 ,Cmt ‘6 2

L

= (ot 2 " )
TT 6 L‘SH) ( O(n) - Rt(a)) ik:: - S%, Nas=2) K5(a)
Z Const TT— @ 2 it o
- |
- (

o IT N ((fel Nmﬁ)



TS, UCB, BE, ¢-Greedy

v

1 R\t (a)
M@ \\\

UCB estimators

Q

Mean estimation (R,(a)) + different exploration mechanism



More on Thompson Sampling

For Bernoulli reward, the commonly used prior is the Beta prior.

Regret bound analysis for Thompson sampling
Shipra Agrawal, Navin Goyal. Near-optimal Regret Bounds for Thompson Sampling. 2017.
Daniel Russo and Ben Van Roy. An Information-Theoretic Analysis of Thompson Sampling. 2016.



https://www.columbia.edu/~sa3305/papers/j3-corrected.pdf
https://www.jmlr.org/papers/volume17/14-087/14-087.pdf

Superior Empirical Performance of TS
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Tsuchiya, Ito, Honda. Further Adaptive Best-of-Both-Worlds
Algorithm for Combinatorial Semi-Bandits. 2023

Zimmert, Luo, Wei. Beating Stochastic and Adversarial
Semi-bandits Optimally and Simultaneously. 2019.
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Kaufmann, Korda Munos. Thompson Sampling: An Asymptotically

Optimal Finite Time Analysis. 2012.
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