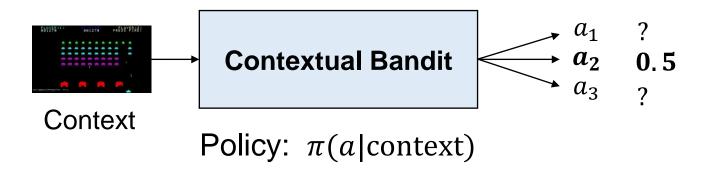
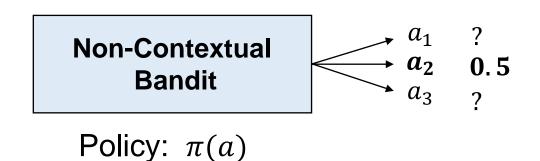
Bandits

Chen-Yu Wei

Contextual Bandits and Non-Contextual Bandits





Multi-Armed Bandits

Multi-Armed Bandits

Given: action set $\mathcal{A} = \{1, ..., A\}$ For time t = 1, 2, ..., T: Learner chooses an arm $a_t \in \mathcal{A}$ Learner observes $r_t = R(a_t) + w_t$

Assumption: R(a) is the (hidden) ground-truth reward function w_t is a zero-mean noise

Goal: maximize the total reward $\sum_{t=1}^{T} R(a_t)$ (or $\sum_{t=1}^{T} r_t$)

How to Evaluate an Algorithm's Performance?

- "My algorithm obtains 0.3T total reward within T rounds"
 Is my algorithm good or bad?
- Benchmarking the problem

Regret :=
$$\max_{\pi} \sum_{t=1}^{T} R(\pi) - \sum_{t=1}^{T} R(a_t) = \max_{a} TR(a) - \sum_{t=1}^{T} R(a_t)$$

The total reward of the best policy In MAB

- "My algorithm ensures Regret $\leq 5T^{\frac{3}{4}}$ "
- Regret = $o(T) \Rightarrow$ the algorithm is as good as the optimal policy asymptotically

The Exploration and Exploitation Trade-off in MAB

- To perform as well as the best policy (i.e., best arm) asymptotically, the learner has to pull the best arm most of the time
 - \Rightarrow need to exploit
- To identify the best arm, the learner has to try every arm sufficiently many times
 - \Rightarrow need to explore

A Simple Strategy: Explore-then-Exploit

Explore-then-exploit (Parameter: *T*₀)

In the first T_0 rounds, sample each arm T_0/A times. (Explore) Compute the empirical mean $\hat{R}(a)$ for each arm aIn the remaining $T - T_0$ rounds, draw $\hat{a} = \operatorname{argmax}_a \hat{R}(a)$ (Exploit)

What is the *right* amount of exploration (T_0) ?

Quantifying the Estimation Error

In the exploration phase, we obtain $N = T_0/A$ i.i.d. samples of each arm.

Key Question:

$$\left| \hat{R}(a) - R(a) \right| \le ? f(N)$$
for some decreasing function of N

Empirical mean of *N* i.i.d. samples

True mean

Explore-then-Exploit Regret Bound Analysis

Assume $|\hat{R}(a) - R(a)| \leq f(N) = f(\frac{T_0}{A})$ $R(\alpha) \in LO, Rmax$ $Regret = \sum_{i=1}^{T_{o}} \left(R(a^{*}) - R(a_{t}) \right) + \sum_{i=1}^{1} \left(R(a^{*}) - R(a_{t}) \right)$ 4=Tot1 $\mathcal{A} \stackrel{<}{=} T_{b} \stackrel{~}{\mathsf{R}}_{\mathsf{max}} + \stackrel{~}{\overset{~}{\overset{~}{\sum}} \stackrel{~}{\underset{~}{\overset{~}{\sum}}} \left(\begin{array}{c} \mathcal{R}(a^{*}) - \mathcal{R}(a^{*}) + \stackrel{~}{\mathcal{R}}(a_{t}) - \stackrel{~}{\mathcal{R}}(a_{t}) \right) \\ \stackrel{~}{\underset{~}{\overset{~}{\sum}}} \stackrel{~}{\underset{~}{\overset{~}{\sum}} \stackrel{~}{\underset{~}{\sum}} \left(\begin{array}{c} \mathcal{R}(a^{*}) - \mathcal{R}(a^{*}) + \stackrel{~}{\mathcal{R}}(a_{t}) - \stackrel{~}{\mathcal{R}}(a_{t}) \right) \\ \stackrel{~}{\underset{~}{\overset{~}{\sum}}} \stackrel{~}{\underset{~}{\overset{~}{\sum}} \left(\begin{array}{c} \mathcal{R}(a^{*}) - \mathcal{R}(a^{*}) + \stackrel{~}{\mathcal{R}}(a_{t}) - \stackrel{~}{\mathcal{R}}(a_{t}) \right) \\ \stackrel{~}{\underset{~}{\overset{~}{\sum}}} \stackrel{~}{\underset{~}{\overset{~}{\sum}} \left(\begin{array}{c} \mathcal{R}(a^{*}) - \stackrel{~}{\mathcal{R}}(a^{*}) + \stackrel{~}{\mathcal{R}}(a_{t}) - \stackrel{~}{\mathcal{R}}(a_{t}) \right) \\ \stackrel{~}{\underset{~}{\overset{~}{\sum}}} \stackrel{~}{\underset{~}{\sum}} \stackrel{~}{\underset{~}{\sum}} \left(\begin{array}{c} \mathcal{R}(a^{*}) - \stackrel{~}{\mathcal{R}}(a^{*}) + \stackrel{~}{\mathcal{R}}(a_{t}) - \stackrel{~}{\mathcal{R}}(a_{t}) \right) \\ \stackrel{~}{\underset{~}{\sum}} \stackrel{~}{\underset{~}{\sum}} \stackrel{~}{\underset{~}{\sum}} \left(\begin{array}{c} \mathcal{R}(a^{*}) - \stackrel{~}{\mathcal{R}}(a^{*}) + \stackrel{~}{\underset{~}{\sum}} \stackrel{~}{\underset{~}{\sum}} \left(\begin{array}{c} \mathcal{R}(a^{*}) - \stackrel{~}{\mathcal{R}}(a^{*}) + \stackrel{~}{\underset{~}{\sum} \left(\begin{array}{c} \mathcal{R}(a^{*}) - \stackrel{~}{\mathcal{R}}(a^{*}) + \stackrel{~}{\underset{~}{\sum} \left(\begin{array}{c} \mathcal{R}(a^{*}) - \stackrel{~}{\mathcal{R}}(a^{*}) + \stackrel{~}{\underset{~}{\sum} \left(\begin{array}{c} \mathcal{R}(a^{*}) - \stackrel{~}{\underset{~}{\sum} \left(\begin{array}{c} \mathcal{R}(a^{$ < To Rmax H2(T-To) f(To/A)

Quantifying the Error: Concentration Inequality

Theorem. Hoeffding's Inequality

Let $X_1, ..., X_N$ be independent σ -sub-Gaussian random variables. Then with probability at least $1 - \delta$,

$$\left|\frac{1}{N}\sum_{i=1}^{N}X_{i} - \frac{1}{N}\sum_{i=1}^{N}\mathbb{E}[X_{i}]\right| \leq \sigma \sqrt{\frac{2\log(2/\delta)}{N}}$$

A random variable is called σ -sub-Gaussian if $\mathbb{E}\left[e^{\lambda(X-\mathbb{E}[X])}\right] \leq e^{\lambda^2 \sigma^2/2} \quad \forall \lambda \in \mathbb{R}$. **Fact 1.** $\mathcal{N}(\mu, \sigma^2)$ is σ -sub-Gaussian.

Fact 2. A random variable $\in [a, b]$ is (b - a)-sub-Gaussian. **Intuition:** tail probability $Pr\{|X - \mathbb{E}[X]| \ge z\}$ bounded by that of Gaussians

Regret Bound of Explore-then-Exploit

 $a \lesssim b$ means $a \lesssim const. \cdot b$ or a = O(b)

Theorem. Regret Bound of Explore-then-Exploit

Suppose that $R(a) \in [0,1]$ and w_t is 1-sub-Gaussian.

Then with probability at least $1 - A\delta$, Explore-then-Exploit ensures

Regret
$$\leq T_0 + 2(T - T_0) \sqrt{\frac{2A \log(2/\delta)}{T_0}}$$

$$\begin{array}{rcl} \operatorname{Reg} \lesssim T_{0} + 2T \sqrt{\frac{A}{T_{0}}} & \operatorname{By} AM - GM : & T_{0} + T \sqrt{\frac{A}{T_{0}}} + T \sqrt{\frac{A}{T_{0}}} & T \sqrt{\frac{A}{T_{0}}}$$

ϵ -Greedy

Mixing exploration and exploitation in time

```
\epsilon-Greedy (Parameter: \epsilon)
```

In the first A rounds, draw each arm once.

```
In the remaining rounds t > A,
```

Draw

$$a_t = \begin{cases} \text{uniform}(\mathcal{A}) & \text{with prob. } \epsilon \\ \operatorname{argmax}_a \hat{R}_t(a) & \text{with prob. } 1 - \epsilon \end{cases}$$

where $\hat{R}_t(a) = \frac{\sum_{s=1}^{t-1} \mathbb{I}\{a_s=a\} r_s}{\sum_{s=1}^{t-1} \mathbb{I}\{a_s=a\}}$ is the empirical mean of arm *a* using samples up to time t - 1.

Regret Bound of ϵ **-Greedy**

Theorem. Regret Bound of ϵ -Greedy

With proper choice of ϵ , the expected regret of ϵ -Greedy is bounded by

 $\mathbb{E}[\operatorname{Regret}] \leq \tilde{O}(A^{1/3} T^{2/3}).$

Can We Do Better?

In explore-then-exploit and ϵ -greedy, every arm receives the same amount of exploration.

... Maybe, for those arms that look worse, the amount of exploration on them can be reduced?

Solution: Refine the amount of exploration for each arm **based on the current mean estimation**.

(Has to do this carefully to avoid **under-exploration**)

Boltzmann Exploration

Boltzmann Exploration (Parameter: λ_t)

In each round, sample a_t according to

 $p_t(a) \propto \exp(\lambda_t \hat{R}_t(a))$

where $\hat{R}_t(a)$ is the empirical mean of arm *a* using samples up to time t - 1.

Cesa-Bianchi, Gentile, Lugosi, Neu. Boltzmann Exploration Done Right, 2017. Bian and Jun. Maillard Sampling: Boltzmann Exploration Done Optimally. 2021.

Another adaptive exploration $p_t(a) = \frac{1}{\gamma - \lambda_t \hat{R}_t(a)}$ will work! (later in the course)

Another Idea: "Optimism in the Face of Uncertainty"

In words:

Act according to the **best plausible world**.

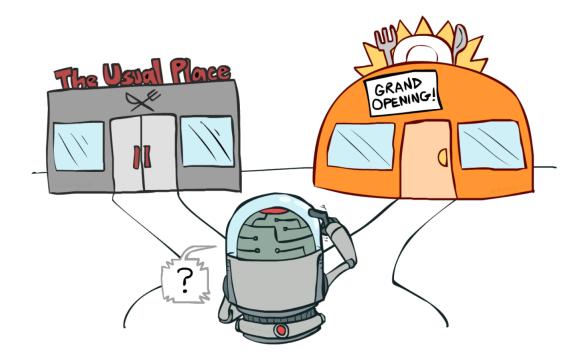


Image source: UC Berkeley AI course slide, lecture 11.

Another Idea: "Optimism in the Face of Uncertainty"

In words:

Act according to the **best plausible world**.

At time t, suppose that arm a has been drawn for $N_t(a)$ times, with empirical mean $\hat{R}_t(a)$.

What can we say about the true mean R(a)?

$$\left| R(a) - \hat{R}_t(a) \right| \le \sqrt{\frac{2\log(2/\delta)}{N_t(a)}} \quad \text{w.p.} \ge 1 - \delta$$

What's the most optimistic mean estimation for arm a?

$$\widehat{R}_t(a) + \sqrt{\frac{2\log(2/\delta)}{N_t(a)}}$$

UCB

UCB (Parameter: δ)

In the first A rounds, draw each arm once.

For the remaining rounds: in round t, draw

$$a_t = \operatorname{argmax}_a \ \widehat{R}_t(a) + \sqrt{\frac{2\log(2/\delta)}{N_t(a)}}$$

where $\hat{R}_t(a)$ is the empirical mean of arm *a* using samples up to time t - 1. $N_t(a)$ is the number of samples of arm *a* up to time t - 1.

PAuer, N Cesa-Bianchi, P Fischer. Finite-time analysis of the multiarmed bandit problem, 2002.

Regret Bound of UCB

Theorem. Regret Bound of UCB

```
With probability at least 1 - AT\delta,
```

Regret
$$\leq O\left(\sqrt{AT\log(1/\delta)}\right) = \tilde{O}(\sqrt{AT})$$
.

UCB Regret Bound Analysis

$$\begin{aligned} \text{UCB Regret Bound Analysis} \\ \text{Regnet } \leq A + \sum_{t=A+1}^{T} \left(R(a^{t}) - R(a_t) \right) \\ \leq A + \sum_{t=A+1}^{T} \left(R(a^{t}) - \overline{R}(a_t) \right) \\ \leq O \\ = \sqrt{\frac{21(975)}{Kt(a_t)}} \\ \leq A + \sum_{t=A+1}^{T} \left(\frac{R(a^{t}) - \overline{R}(a^{t})}{K} + \overline{R}_t(a_t) - R(a_t) \right) \\ \leq O \\ = \sqrt{\frac{21(975)}{Kt(a_t)}} \\ \leq A + \sum_{t=A+1}^{T} 2\sqrt{\frac{21(975)}{Kt(a_t)}} \\ = A + \sum_{t=A+1}^{T} 2\sqrt{\frac{21(975)}{Kt(a_t)}} \\ = A + \sum_{t=A+1}^{T} 2\sqrt{\frac{21(975)}{Kt(a_t)}} \\ = A + \sum_{t=A+1}^{T} 11[a_{t=a}] \cdot 2\sqrt{\frac{21(975)}{Kt(a_t)}} \\ \leq A + \sum_{t=A+1}^{T} \sqrt{N_t(a_t)} \\ \leq A + \sqrt{A} \sum_{t=A+1}^{T} N_t(a_t) \\ \leq A + \sqrt{A} \sum_{t=A+1}^{T} N_$$

Exploration Strategies (Review)

UCB

 $\hat{R}_t(a)$: mean estimation for arm a at time t $N_t(a)$: number of samples for arm a at time t

Explore-then-Exploit
$$a_t = \begin{cases} \text{uniform}(\mathcal{A}) & t \leq T_0 \\ \arg\max_a \hat{R}_{T_0}(a) & t > T_0 \end{cases}$$

$$\epsilon$$
-Greedy $a_t = \begin{cases} \text{uniform}(\mathcal{A}) & \text{with prob. } \epsilon \\ \arg\max_a \hat{R}_t(a) & \text{with prob. } 1 - \epsilon \end{cases}$

Boltzmann Exploration $p_t(a) \propto \exp(\lambda_t \hat{R}_t(a))$

$$a_t = \operatorname{argmax}_a \ \hat{R}_t(a) + \sqrt{\frac{2\log(2/\delta)}{N_t(a)}}$$

Comparison

	Regret Bound	Exploration
Explore-then-Exploit ϵ -Greedy	$A^{1/3} T^{2/3}$	Non-adaptive
Boltzmann Exploration		Adaptive
UCB Thompson Sampling	\sqrt{AT}	Adaptive

Visualizing UCB

True mean: [0.2, 0.4, 0.6, 0.7]

Bayesian Setting for MAB

Assumptions:

- At the beginning, the environment draws a parameter θ^* from some prior distribution $\theta^* \sim P_{\text{prior}}$
- In every round, the reward vector $r_t = (r_t(1), ..., r_t(A))$ is generated from $r_t \sim P_{\theta^*}$

E.g., Gaussian Case

- At the beginning, $\theta^*(a) \sim \mathcal{N}(0, 1)$ for all $a \in \{1, \dots, A\}$.
- In every round, the reward of arm *a* is generated by $r_t(a) \sim \mathcal{N}(\theta^*(a), 1)$.

For the learner, P_{prior} is known; θ^* is unknown; P_{θ} is known for any θ .

Thompson Sampling

William Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples, 1933.

Space of 11

In words:

Randomly pick an arm according to the probability you **believe** it is the optimal arm.

At time *t*, after seeing $\mathcal{H}_t = (a_1, r_1(a_1), a_2, r_2(a_2), \dots, a_{t-1}, r_{t-1}(a_{t-1}))$, the learner has a **posterior distribution** for θ^* :

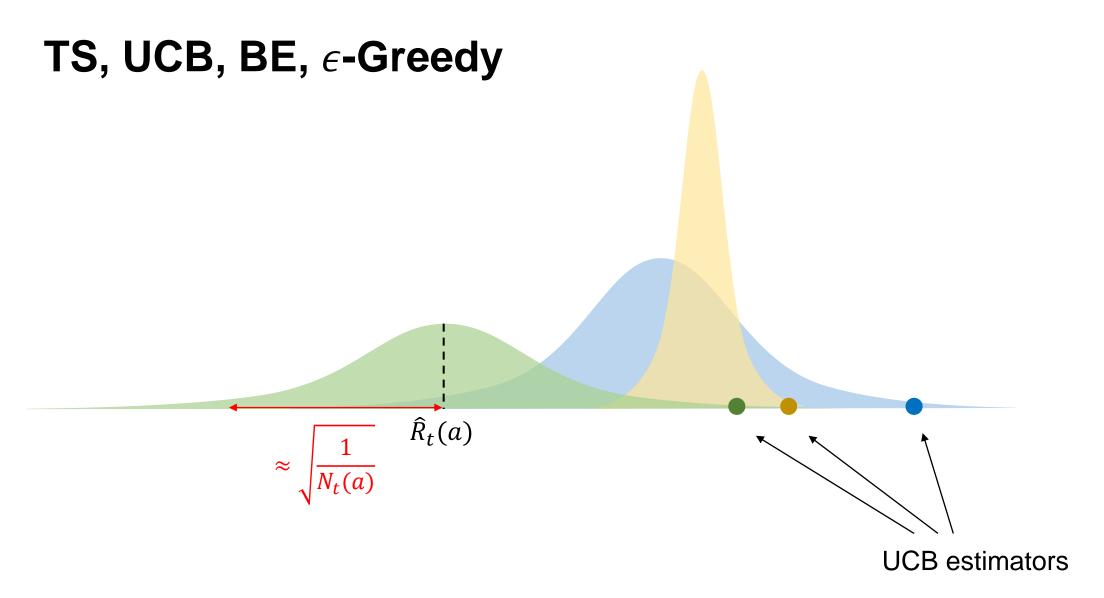
$$P(\theta^{\star} = \theta | \mathcal{H}_{t}) = \frac{P(\mathcal{H}_{t}, \theta^{\star} = \theta)}{P(\mathcal{H}_{t})} = \frac{P_{\theta}(\mathcal{H}_{t})P_{\text{prior}}(\theta)}{P(\mathcal{H}_{t})} \propto P_{\theta}(\mathcal{H}_{t})P_{\text{prior}}(\theta)$$

In math:

Sample a_t according to $p_t(a) = \int_{\theta} P(\theta | \mathcal{H}_t) \mathbb{I}\{a^*(\theta) = a\} = \mathbb{E}_{\theta \sim P(\cdot | \mathcal{H}_t)}[\mathbb{I}\{a^*(\theta) = a\}]$ Implementation: Sample $\theta_t \sim P(\cdot | \mathcal{H}_t)$, and choose $a_t = a^*(\theta_t)$.

Thompson Sampling in the Gaussian Case $g = (0(1), \dots, 0(A))$, $H_{t} = (\alpha_{1}, \Gamma_{1}(\alpha_{1}), \dots, \alpha_{t-1}, V_{t-1}(\alpha_{t-1}))$ const: const unrelated to Q

 $9 \sim TT \mathcal{N}\left(\hat{R}_{t}(a), \frac{1}{N_{t}(a)t_{1}}\right)$



Mean estimation $(\hat{R}_t(a))$ + different exploration mechanism

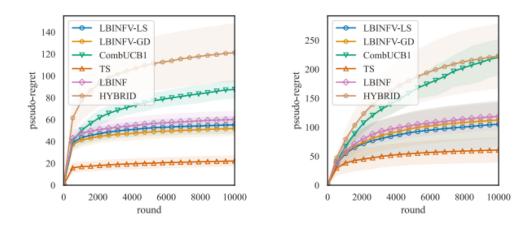
More on Thompson Sampling

For Bernoulli reward, the commonly used prior is the Beta prior.

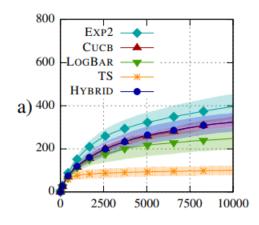
Regret bound analysis for Thompson sampling

Shipra Agrawal, Navin Goyal. <u>Near-optimal Regret Bounds for Thompson Sampling</u>. 2017. Daniel Russo and Ben Van Roy. <u>An Information-Theoretic Analysis of Thompson Sampling</u>. 2016.

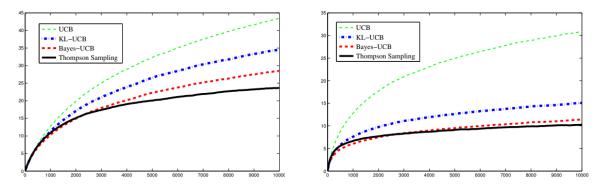
Superior Empirical Performance of TS



Tsuchiya, Ito, Honda. Further Adaptive Best-of-Both-Worlds Algorithm for Combinatorial Semi-Bandits. 2023



Zimmert, Luo, Wei. Beating Stochastic and Adversarial Semi-bandits Optimally and Simultaneously. 2019.



Kaufmann, Korda Munos. Thompson Sampling: An Asymptotically Optimal Finite Time Analysis. 2012.