Markov Decision Processes

Chen-Yu Wei

Sequence of Actions

To win the game, the learner has to take a sequence of actions $a_1 \rightarrow a_2 \rightarrow \cdots \rightarrow a_H$. **One option:** view every sequence as a "meta-action": $\bar{a} = (a_1, a_2, \cdots, a_H)$ **Drawback:**

- The number of actions is exponential in horizon
- In stochastic environments, this does not leverage intermediate observations

Solution idea: dynamic programming

Interaction Protocol: Fixed-Horizon Case

```
For episode t = 1, 2, ..., T:
```

```
For step h = 1, 2, ..., H:
```

Learner observes an observation $x_{t,h}$

Learner chooses an action $a_{t,h}$

Learner receives instantaneous reward $r_{t,h}$

General case:

$$\mathbb{E}[r_{t,h}] = R(x_{t,1}, a_{t,1}, \dots, x_{t,h}, a_{t,h}), \quad x_{t,h+1} \sim P(\cdot \mid x_{t,1}, a_{t,1}, \dots, x_{t,h}, a_{t,h})$$

 \Rightarrow Optimal decisions may depend on the entire history $\mathcal{H}_t = (x_{t,1}, a_{t,1}, \dots, x_{t,h})$

Interaction Protocol: Fixed-Horizon Case

```
For episode t = 1, 2, ..., T:
```

```
For step h = 1, 2, ..., H:
```

Learner observes an observation $x_{t,h}$

Learner chooses an action $a_{t,h}$

Learner receives instantaneous reward $r_{t,h}$

We assume that the history $\mathcal{H}_t = (x_{t,1}, a_{t,1}, \dots, x_{t,h})$ can be summarized as a **horizon-length-independent** representation $s_{t,h} = \Phi(x_{t,1}, a_{t,1}, \dots, x_{t,h}) \in S$ so that

$$\mathbb{E}[r_{t,h}] = R(s_{t,h}, a_{t,h}), \quad x_{t,h+1} \sim P(\cdot \mid s_{t,h}, a_{t,h})$$

 $s_{t,h}$ is called the "state" at the step h of episode t.

From Observations to States

Stacking recent observations

Recurrent neural network

Hidden Markov model

Interaction Protocol: Fixed-Horizon Case

```
For episode t = 1, 2, ..., T:

For step h = 1, 2, ..., H:

Environment reveals state s_{t,h}

Learner chooses an action a_{t,h}

Learner observes instantaneous reward r_{t,h} with \mathbb{E}[r_{t,h}] = R(s_{t,h}, a_{t,h})

Next state is generated as s_{t,h+1} \sim P(\cdot | s_{t,h}, a_{t,h})
```

This is called the Markov decision process.

MDP as Contextual Bandits?

Viewing states as contexts, and viewing the problem as a contextual bandit problem with *TH* rounds (what's wrong?) $(\sqrt{1} + \sqrt{1})$

$$\frac{Regreet (confextual bound : H)}{Regreet (confextual bound : H)} = \sum_{t=1}^{T} \sum_{h=1}^{H} \max R(S_{t,h}, a) - \sum_{t=1}^{T} \sum_{h=1}^{T} R(S_{t,h}, a_{t,h})$$

$$\frac{F}{t=1} \sum_{h=1}^{T} \left(\sum_{h=1}^{H} R(S_{t,h}, a_{t,h}) - \sum_{t=1}^{T} \sum_{h=1}^{H} R(S_{t,h}, a_{t,h}) - \sum_{t=1}^{T} \sum_{h=1}^{H} R(S_{t,h}, a_{t,h}) \right)$$

$$S_{t,1}^{*} = S_{t,1}$$

$$S_{t,h}^{*} \neq S_{t,h} \quad \text{for } h \ge 2$$

てい

Formulations

- Interaction Protocol
 - Fixed-Horizon
 - Variable-Horizon (Goal-Oriented)
 - Infinite-Horizon
- Performance Metric
 - Total Reward
 - Average Reward
 - Discounted Reward
- Policy
 - History-dependent policy
 - Markov policy
 - Stationary policy

Horizon = Length of an episode

Interaction Protocols (1/3): Fixed-Horizon

Horizon length is a fixed number H

 $h \leftarrow 1$ Observe initial state s_1 While $h \leq H$: Choose action a_h Observe reward r_h with $\mathbb{E}[r_h] = R(s_h, a_h)$ Observe next state $s_{h+1} \sim P(\cdot | s_h, a_h)$

Examples: games with a fixed number of time

Interaction Protocols (2/3): Goal-Oriented

The learner interacts with the environment until reaching terminal states $T \subset S$

```
h \leftarrow 1
Observe initial state s_1
While s_h \notin \mathcal{T}:
Choose action a_h
Observe reward r_h with \mathbb{E}[r_h] = R(s_h, a_h)
Observe next state s_{h+1} \sim P(\cdot | s_h, a_h)
h \leftarrow h + 1
```

Examples: video games, robotics tasks, personalized recommendations, etc.

Interaction Protocols (3/3): Infinite-Horizon

The learner continuously interacts with the environment

```
h \leftarrow 1
Observe initial state s_1
Loop forever:
Choose action a_h
Observe reward r_h with \mathbb{E}[r_h] = R(s_h, a_h)
Observe next state s_{h+1} \sim P(\cdot | s_h, a_h)
h \leftarrow h + 1
```

Examples: network management, inventory management

Formulations for Markov Decision Processes

- Interaction Protocol
 - Fixed-Horizon
 - Variable-Horizon (Goal-Oriented)
 - Infinite-Horizon
- Performance Metric
 - Total Reward
 - Average Reward
 - Discounted Reward
- Policy
 - History-dependent policy
 - Markov policy
 - Stationary policy

Performance Metric

Total Reward (for episodic setting): $\sum r_h$ (τ : the step where the episode ends)

Average Reward (for infinite-horizon setting):

$$\lim_{T \to \infty} \frac{1}{T} \sum_{h=1}^{T} r_h$$

T

If $|r_{h}| \leq 1$, Discounted Total Reward (for episodic or infinite-horizon): $\sum_{h=1}^{\tau} \gamma^{h-1} r_{h} \leq \frac{1}{1-\gamma}$

$$\tau$$
: the step where the episode ends, or ∞ in the infinite-horizon case $\gamma \in [0,1)$: discount factor

Interaction Protocols vs. Performance Metrics

Fixed-Horizon	"natural" objective	Total Reward	
Goal-Oriented	>	Total Reward	Could be unbonded
Infinite-horizon	≯	Average Reward	Could have constant change for an infinitesimal change in policy

Discounted Total Reward?

Focusing more on the **recent** reward

There is a potential mismatch between our ultimate goal and what we optimized.

Our Focus

In most of the following lectures, we focus on the **goal-oriented / infinite-horizon** setting with **discount total reward** as the performance metric.

Policy

A mapping from observations/contexts/states to (distribution over) actions

• Contextual bandits

 $a \sim \pi(\cdot \mid x)$ (randomized/stochastic)or $a = \pi(x)$ (deterministic)

• Multi-armed bandits

 $a \sim \pi$ or $a = a^{\star}$

Policy for MDPs

History-dependent Policy

$$a_h \sim \pi(\cdot \mid s_1, a_1, r_1, s_2, a_2, r_2, \dots, s_h)$$

$$a_h = \pi(s_1, a_1, r_1, s_2, a_2, r_2, \dots, s_h)$$

Markov Policy

$$a_h \sim \pi(\cdot | s_h, h)$$

 $a_h = \pi(s_h, h)$ \leftarrow For **fixed-horizon + total reward** setting,
there exists an optimal policy in this class

Stationary Policy

$$a_h \sim \pi(\cdot \mid s_h) \\ a_h = \pi(s_h) \quad \longleftarrow$$

For **infinite-horizon/goal-oriented + discounted total reward** setting, there exists an optimal policy in this class

Fixed-Horizon + Total Reward

Dynamic Programming

Goal: Calculate the expected total reward of a policy

A (Markov) policy is a mapping from (state, step index) to action distribution, written as

 $\pi_h(\cdot | s) \in \Delta(\mathcal{A})$ for $s \in S$ and $h \in \{1, 2, ..., H\}$

Dynamic Programming

$$V_{h}^{\pi}(S) = \mathbb{E}\left[\left.\begin{array}{c}H\\J=h\end{array}\right| R(S_{i},a_{i})\right| S_{h}=S, a_{i} \sim \mathcal{R}_{i}(\cdot|S_{i}) \\ \forall i \geq h\end{array}\right]$$

State transition: P(s'|s, a)Reward: R(s, a) **Key quantity:** $V_h^{\pi}(s)$ = the expected total reward of policy π starting from state *s* at step *h*.

Backward calculation:

$$V_{H}^{\pi}(s) = \sum_{a} \pi_{H}(a|s) R(s,a) \quad \forall s$$

For $h = H - 1, ... 1$: for all s
$$V_{h}^{\pi}(s) = \sum_{a} \pi_{h}(a|s) \left(R(s,a) + \sum_{s'} P(s'|s,a) V_{h+1}^{\pi}(s') \right)$$

Expected total reward from step $h + 1$

Bellman Equation

$$Q_{h}^{\pi}(S,a) = \mathbb{E}\left(\sum_{i=h}^{H} \mathcal{R}(S_{i},4_{i})\right) | S_{h} = S, a_{h} = a, \qquad -a_{i} = h | a_{i} \sim \pi_{i}(\cdot|S_{i}) \forall i \neq h+1$$

 $V_{H+1}^{\pi}(s) = 0$

$$V_{h}^{\pi}(s) = \sum_{a} \pi_{h}(a|s) \left(R(s,a) + \sum_{s'} P(s'|s,a) V_{h+1}^{\pi}(s') \right) \quad \text{for } h = H, \dots, 1$$
$$Q_{h}^{\pi}(s,a)$$

$$V_{h}^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi_{h}(a \mid s) Q_{h}^{\pi}(s, a)$$
$$Q_{h}^{\pi}(s, a) = R(s, a) + \sum_{s'} P(s' \mid s, a) V_{h+1}^{\pi}(s')$$

Occupancy Measures

$$d_{\rho}^{\pi}(s) = E\left[\sum_{h=1}^{H} \mathbb{I}\left\{S_{h}=s\right\}\right] \xrightarrow{S_{1} \sim \rho} a_{i} \sim \tau_{i}(\cdot|s_{i}) \forall i \geq 1$$

 $d_{\rho}^{\pi}(s)$: the expected number of times state *s* is visited, under policy π and initial state distribution ρ $\int_{\rho}^{\pi}(s) = \Pr(s_{h} = s_{h}), \quad \int_{\rho}^{\pi}(s) = \sum_{h=1}^{H} d_{\rho,h}^{\pi}(s)$

Key quantity: $d^{\pi}_{\rho,h}(s)$ = the probability of state *s* being visited **at step** *h*, under policy π and initial state distribution ρ

Forward calculation:

$$d^{\pi}_{\rho,1}(s) = \rho(s) \quad \forall s$$

For h = 2, ... H:

 $d_{\rho,l}^{\pi}$

$$a(s) = \sum_{s'} d^{\pi}_{\rho,h-1}(s') \sum_{a'} \pi_{h-1}(a'|s') P(s|s',a') \quad \forall s$$

Reverse Bellman Equation

$$d^{\pi}_{\rho,1}(s) = \rho(s)$$

$$d_{\rho,h}^{\pi}(s) = \sum_{s',a'} \underbrace{d_{\rho,h-1}^{\pi}(s') \pi_{h-1}(a'|s') P(s|s',a')}_{d_{\rho,h-1}^{\pi}(s',a') = \rho_{r}\left(S_{h-1}=s',a_{h-1}=a' \mid S_{1} \sim \rho, \pi\right)}^{\text{for } h = 2, ..., H$$

$$d^{\pi}_{\rho,h}(s) = \sum_{s',a'} d^{\pi}_{\rho,h-1}(s',a')P(s|s',a')$$
$$d^{\pi}_{\rho,h}(s,a) = d^{\pi}_{\rho,h}(s)\pi_h(a|s)$$

Dynamic Programming

$$V_{h}^{\star}(s) = \max_{\pi} V_{h}^{\pi}(s)$$

Goal: Find the optimal policy

Key quantity: $V_h^{\star}(s)$ = the optimal expected total reward starting from state s at step h. **Backward calculation:** $V_H^{\star}(s) = \max_a R(s, a) \quad \forall s$ For h = H - 1, ... 1: $V_h^{\star}(s) = \max_a \left(R(s, a) + \sum_{s'} P(s'|s, a) V_{h+1}^{\star}(s') \right) \quad \forall s$ Value Iteration

$$\pi_{h}^{\star}(s) = \underset{a}{\operatorname{argmax}} R(s, a) + \sum_{s'} P(s'|s, a) V_{h+1}^{\star}(s')$$

Bellman Optimality Equation

$$V_{H+1}^{\star}(s) = 0$$

$$V_{h}^{\star}(s) = \max_{a} \left(R(s,a) + \sum_{s'} P(s'|s,a) V_{h+1}^{\star}(s') \right) \quad \text{for } h = H, ..., 1$$

$$Q_{h}^{\star}(s,a)$$

$$V_{h}^{\star}(s) = \max_{a} Q_{h}^{\star}(s, a)$$
$$Q_{h}^{\star}(s, a) = R(s, a) + \sum_{s'} P(s'|s, a) V_{h+1}^{\star}(s')$$

$$\pi_h^\star(s) = \operatorname*{argmax}_a Q_h^\star(s, a)$$

Recap

$$V_h^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi_h(a|s) Q_h^{\pi}(s,a)$$
$$Q_h^{\pi}(s,a) = R(s,a) + \sum_{s' \in \mathcal{S}} P(s'|s,a) V_{h+1}^{\pi}(s')$$

Bellman Equation (Value Iteration for V^{π})

$$d^{\pi}_{\rho,h}(s,a) = d^{\pi}_{\rho,h}(s)\pi_{h}(a|s)$$
$$d^{\pi}_{\rho,h}(s) = \sum_{s',a'} d^{\pi}_{\rho,h-1}(s',a')P(s|s',a')$$

Reverse Bellman Equation

$$V_{h}^{\star}(s) = \max_{a} Q_{h}^{\star}(s, a)$$
$$Q_{h}^{\star}(s, a) = R(s, a) + \sum_{s' \in S} P(s'|s, a) V_{h+1}^{\star}(s')$$

Bellman Optimality Equation (Value Iteration)

Infinite-Horizon / Goal-Oriented + Discounted Total Reward

Equivalent Views

→ deterministic and zero-reward

Converting goal-oriented to infinite-horizon

$$\mathbb{E}^{\text{new}}\left[\sum_{h=1}^{\infty} \gamma^{h-1} r_h\right] = \mathbb{E}^{\text{old}}\left[\sum_{h=1}^{\tau} \gamma^{h-1} r_h\right]$$

new
$$p(s'|s,\alpha) = \gamma p(s(s,\alpha), p(z(s,\alpha) = 1-\gamma))$$

Scale down all transitions by a factor of γ and add probability $1 - \gamma$ transitioning to z

Converting discounted total reward to total reward

$$\mathbb{E}^{\text{new}}\left[\sum_{h=1}^{\infty} r_{h}\right] = \mathbb{E}^{\text{old}}\left[\sum_{h=1}^{\infty} \gamma^{h-1} r_{h}\right]$$
Frob of staying in triginal
MOP at step h

Dynamic Programming $V_{(s)}^{z} = \bigoplus_{k=1}^{H} \left(\sum_{k=1}^{H} \gamma^{k-1} R(s_{k}, a_{k}) \right) \left| s_{1} = s, a_{k} \sim \pi(\cdot | s_{k}) \forall h \neq l \right|$

Goal: Calculate the expected discounted total reward of a stationary policy π

 $V^{\pi}(s)$ = the expected discounted total reward starting from state s, follow \mathcal{R}

Key quantity: $V_i^{\pi}(s)$ = the expected discounted total reward starting from $V_{i}^{z}(S) = E\left[\sum_{k=1}^{i} \gamma^{k-i} R(S_{k}, Q_{k})\right] \sim \right]$ state s supposed that i more steps can be executed $V_0^{\pi}(s) = 0 \quad \forall s$ $V_{i}^{\pi}(s) = \sum_{a} \pi(a|s) \left(R(s,a) + \gamma \sum_{s'} P(s'|s,a) V_{i-1}^{\pi}(s') \right) \quad \forall s$ For $i = 1, 2, 3 \dots$

 $V^{\pi}(s) = \lim_{i \to \infty} V_i^{\pi}(s)$ (need to prove that the limit exists)

Value Iteration for V^{π}

$$\lim_{i \to \infty} \sqrt[n]{i}(s) = \sqrt[n]{i}(s)$$

Arbitrary
$$\hat{V}_0(s) \quad \forall s$$

For $i = 1, 2, 3 \dots$
 $\hat{V}_i(s) = \sum_a \pi(a|s) \left(R(s,a) + \gamma \sum_{s'} P(s'|s,a) \hat{V}_{i-1}(s') \right) \quad \forall s$

To show that this algorithm converges, we prove the following statement:

For any $\epsilon > 0$, there exists a large enough *N* such that $|\hat{V}_i(s) - \hat{V}_j(s)| \le \epsilon$ for any $i, j \ge N$.

Proof of Convergence

$$\begin{vmatrix} \hat{y}_{i+1}(s) - \hat{y}_{i}(s) &\leq D(y^{i}) &\forall S \\ |\hat{y}_{i}(s) - \hat{y}_{i}| &\leq \sum_{k=1}^{j-1} O(y^{k}) &\leq O(\frac{y^{i}}{(-y^{k})} \\ |\hat{y}_{i}(s) - \hat{y}_{i}| &\leq \sum_{k=1}^{j-1} O(y^{k}) &\leq O(\frac{y^{i}}{(-y^{k})} \\ |\hat{y}_{i}(s) - \hat{y}_{i}| &\leq \sum_{k=1}^{j} Z(\alpha|s) \left(R(s, \alpha) + y \sum_{s'} P(s'|s, \alpha) \hat{y}_{i-1}(s') \right) &\forall S \\ |\hat{y}_{i+1}(s) - \hat{y}_{i}(s) &\equiv \gamma \sum_{k=1}^{j} Z(\alpha|s) \left(R(s, \alpha) + y \sum_{s'} P(s'|s, \alpha) \hat{y}_{i}(s') - \hat{y}_{i-1}(s') \right) \\ |\hat{y}_{i+1}(s) - \hat{y}_{i}(s) &\equiv \gamma \sum_{k=1}^{j} Z(\alpha|s) \sum_{s'} P(s'|s, \alpha) \left(\hat{y}_{i}(s') - \hat{y}_{i-1}(s') \right) \\ |\hat{y}_{i+1}(s) - \hat{y}_{i}(s) &\leq \gamma \sum_{k=1}^{j} Z(\alpha|s) \sum_{s'} P(s'|s, \alpha) \left(\hat{y}_{i}(s') - \hat{y}_{i-1}(s') \right) \\ |\hat{y}_{i+1}(s) - \hat{y}_{i}(s) &\leq \gamma \sum_{k=1}^{j} Z(\alpha|s) \sum_{s'} P(s'|s, \alpha) \left(\hat{y}_{i}(s') - \hat{y}_{i-1}(s') \right) \\ |\hat{y}_{i}(s') - \hat{y}_{i-1}(s') | \\ |\hat{y}$$

Proof of Convergence

For any $\epsilon > 0$, there exists a large enough N such that

$$\left|\hat{V}_{i}(s) - \hat{V}_{j}(s)\right| \le \epsilon$$

for any $i, j \ge N$.

$$\hat{V}(s) = \lim_{i \to \infty} \inf \left\{ \hat{V}_j(s) : j \ge i \right\}$$

For any $\epsilon > 0$, there exists a large enough N such that

$$\hat{V}_i(s) - \hat{V}(s) \Big| \le \epsilon$$

for any $i \ge N$.

Proof of Uniqueness

No matter what the initial values of $\hat{V}_0(s)$ are, the limit $\lim_{i \to \infty} \hat{V}_i(s)$ is the same. (This value is $V^{\pi}(s)$) Assume V(5) and V(5) are different convergence print. $V^{(1)}_{(5)} = \sum_{a} Z(a(5) (R(5,a) +) \sum_{s'} P(s'(5,a) V^{(1)}_{(s')})$ $('^{(2)}(s'))$ (s) $V_{(s)}^{(s)} - V_{(s)}^{(2)} = \gamma \sum_{\alpha} \pi(a(s) \sum_{s'} p(s(s, \alpha)) \left(V_{(s')}^{(i)} - V_{(s')}^{(2)} \right)$ $\max_{S} |V^{(1)}(S) - V^{(2)}(S)| \leq \gamma \max_{S} |V^{(1)}(S) - V^{(2)}(S)| \longrightarrow |V^{(1)}(S) - V^{(2)}(S)| = 0$

Bellman Equation

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \left(R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^{\pi}(s') \right)$$
$$Q^{\pi}(s,a)$$

$$V^{\pi}(s) = \sum_{a} \pi(a|s)Q^{\pi}(s,a)$$
$$Q^{\pi}(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^{\pi}(s')$$

$$\begin{array}{l} \text{Approximate Bellman Equations} & \left| \begin{array}{c} \mathcal{Y} \leq \pi(a|s) \notin \left[\begin{array}{c} \widehat{V}(s) - \sqrt{\xi}(s) \end{array} \right] \\ \leq \left| \begin{array}{c} \mathcal{Y} \leq \pi(a|s) \notin \left[\begin{array}{c} \widehat{V}(s) - \sqrt{\xi}(s) \end{array} \right] \\ \leq \left| \begin{array}{c} \mathcal{Y} \leq \pi(a|s) \# \left[\begin{array}{c} w_{s}(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[\widehat{V}(s') \right] \end{array} \right] \\ \approx \left| \begin{array}{c} \mathcal{Y} \leq \pi(a|s) \# \left[\begin{array}{c} w_{s}(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[\widehat{V}(s') \right] \end{array} \right] \\ \approx \left| \begin{array}{c} \mathcal{Y} \leq \pi(a|s) \# \left[\begin{array}{c} w_{s}(s) - \sqrt{\xi}(s) \right] \\ \approx \left| \begin{array}{c} \mathcal{Y} \leq \pi(a|s) \# \left[\begin{array}{c} w_{s}(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[\widehat{V}(s') \right] \end{array} \right] \\ \approx \left| \begin{array}{c} \mathcal{Y} = \pi(a|s) \left(\left| \left(S(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[\left[\left(V \times S^{*} \right) \right] \right) \right] \\ \approx \left| \begin{array}{c} \mathcal{Y} = \pi(a|s) \left(\left(S(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[\left(V \times S^{*} \right) \right] \right) \\ \approx \left| \begin{array}{c} \mathcal{Y} = \pi(a|s) \left(\left(S(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[\left(V \times S^{*} \right) \right] \right) \\ \approx \left| \begin{array}{c} \mathcal{Y} = \pi(a|s) \left(\left(R(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[\left(V \times S^{*} \right) \right] \right) \right] \\ \approx \left| \begin{array}{c} \mathcal{Y} = \pi(a|s) \left(R(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[\left(V \times S^{*} \right) \right] \right) \\ \approx \left| \begin{array}{c} \mathcal{Y} = \pi(a|s) \left(R(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[\left(V \times S^{*} \right) \right] \right) \\ \approx \left| \begin{array}{c} \mathcal{Y} = \pi(a|s) \left(R(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[\left(V \times S^{*} \right) \right] \right) \right| \\ \approx \left| \begin{array}{c} \mathcal{Y} = \pi(a|s) \left(R(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[\left(V \times S^{*} \right) \right] \right) \\ \approx \left| \begin{array}{c} \mathcal{Y} = \pi(a|s) \left(R(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[\left(V \times S^{*} \right) \right] \right) \right| \\ \approx \left| \begin{array}{c} \mathcal{Y} = \pi(a|s) \left(R(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[\left(V \times S^{*} \right) \right] \right) \right| \\ \approx \left| \begin{array}{c} \mathcal{Y} = \pi(a|s) \left(R(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[\left(V \times S^{*} \right) \right] \right) \right| \\ \approx \left| \begin{array}{c} \mathcal{Y} = \pi(a|s) \left(R(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a|)} \left[\left(V \times S^{*} \right) \right] \right) \right| \\ \approx \left| \begin{array}{c} \mathcal{Y} = \pi(a|s) \left(R(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a|)} \left[\left(V \times S^{*} \right) \right] \right) \right| \\ \approx \left| \begin{array}{c} \mathcal{Y} = \pi(a|s) \left(R(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a|)} \left[\left(V \times S^{*} \right) \right] \right) \right| \\ \approx \left| \begin{array}{c} \mathcal{Y} = \pi(a|s) \left(R(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a|)} \left[\left(V \times S^{*} \right) \right] \right) \right| \\ \approx \left| \begin{array}{c} \mathcal{Y} = \pi(a|s) \left(R(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a|)} \left[\left(V \times S^{*} \right) \right] \right) \right| \\ \approx \left| \begin{array}{c} \mathcal{Y} = \pi(a|s) \left(R(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a|)} \left[\left(R(s, a) + \gamma \mathbb{E}$$

Occupancy Measures $d_{\rho}^{z}(S) = \mathbb{E}\left[\sum_{h=1}^{\infty} \gamma^{h-1} \mathbb{I}\left\{S_{h}=S\right\}\right] \leq \rho, a_{h} \sim \mathcal{I}\left(\cdot|S_{h}\right) \neq h \geq 1$

 $d_{\rho}^{\pi}(s)$: the expected discounted number of times state s is visited, under policy π $\mathcal{J}_{P,h}^{\mathcal{Z}}(s) = \mathbb{E}\left[\mathcal{Y}^{h-1}\mathbb{I}\left\{S_{h}=S^{h}\right\}\right]$ and initial state distribution ρ

 $d_{p_{h-1}}^{\lambda}(s') \bigcirc s'$

Key quantity: $d^{\pi}_{\rho,h}(s)$ = the discounted probability of state *s* being visited at step h, under policy π and initial state distribution ρ $d_p(s) = \sum d_{p,h}(s)$

Forward calculation:

$$d^{\pi}_{\rho,1}(s) = \rho(s) \quad \forall s$$

For h = 2, 3, ...

$$d^{\pi}_{\rho,h}(s) = \gamma \sum_{s'} d^{\pi}_{\rho,h-1}(s') \sum_{a'} \pi(a'|s') P(s|s',a') \quad \forall s$$

 $d_{P,h}(s) = \gamma \sum_{s'} d_{P,h-1}(s') \sum_{a'} \chi(a'|s') P(s|s,a')$ $= \sum_{h=2}^{\infty} d_{p,h}^{z}(s) = \sum_{\substack{s'=2 \\ h=2}}^{\infty} d_{p,h-1}^{z}(s') \sum_{\substack{a' \\ a'}} \chi(a'|s') p(s|s,a')$ $= \int_{0}^{z} d_{p}(s) - d_{p,1}(s) = \int_{0}^{z} d_{p}(s') \sum_{\substack{a' \\ s'}} \chi(a'|s') p(s|s,a')$ P(5)

Reverse Bellman Equation

$$d_p(s,u) = \bigoplus \left[\sum_{h=1}^{\infty} \gamma^{h} \prod_{i=1}^{n} S_{i} - S_{i} a_{i} - S_$$

Another (more common) version makes $d^{\pi}_{\rho}(s)$ a distribution over *s*

→ Just change the $\rho(s)$ in the first equation by $(1 - \gamma)\rho(s)$

Dynamic Programming

$$\frac{*}{\sqrt{(s)}} = \max_{\mathcal{R}} \sqrt{\frac{z}{(s)}}$$

Goal: find optimal policy

Key quantity: $V_i^{\star}(s)$ = the optimal discounted total reward starting from state s supposed that i more steps can be executed $V_0^\star(s) = 0 \quad \forall s$ For i = 1, 2, 3 ... $V_{i}^{\star}(s) = \max_{a} \left(R(s,a) + \gamma \sum_{s'} P(s'|s,a) V_{i-1}^{\star}(s') \right) \quad \forall s$ Value Iteration $V^{\star}(s) = \lim_{i \to \infty} V_i^{\star}(s) \qquad \pi^{\star}(s) = \underset{a}{\operatorname{argmax}} R(s, a) + \gamma \sum_{r} P(s'|s, a) V^{\star}(s')$

Bellman Optimality Equation

$$V^{\star}(s) = \max_{a} \left(R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^{\star}(s') \right)$$
$$Q^{\star}(s,a)$$

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = R(s, a) + \sum_{s'} P(s'|s, a) V^{*}(s')$$

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} \ Q^*(s, a)$$

Approximate Bellman Optimality Equations

Suppose that
$$\left| \hat{V}(s) - \max_{a} \left(R(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} [\hat{V}(s')] \right) \right| \le \epsilon \quad \forall s$$

Then
(1) $\left| \hat{V}(s) - V^{*}(s) \right| \le \frac{\epsilon}{1 - \gamma} \quad \forall s$
(2) $V^{*}(s) - V^{\hat{\pi}}(s) \le \frac{2\epsilon}{1 - \gamma} \quad \forall s$
where $\hat{\pi}(s) = \operatorname*{argmax}_{a} \left(R(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} [\hat{V}(s')] \right)$

Summary

Guarantees for approximate solutions

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) Q^{\pi}(s, a)$$

$$Q^{\pi}(s, a) = R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s' \mid s, a) V^{\pi}(s')$$

$$\downarrow \hat{V}(s) - \sum_{a \in \mathcal{A}} \pi(a \mid s) \left(R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s' \mid s, a) \hat{V}(s') \right) \mid \leq \epsilon \quad \forall s$$

$$\Rightarrow \quad |\hat{V}(s) - V^{\pi}(s)| \leq \frac{\epsilon}{1 - \gamma} \quad \forall s$$

$$d^{\pi}_{\rho}(s, a) = d^{\pi}_{\rho}(s)\pi(a \mid s)$$

$$d^{\pi}_{\rho}(s) = (1 - \gamma)\rho(s) + \gamma \sum_{s',a'} d^{\pi}_{\rho}(s', a')P(s \mid s', a')$$

$$P^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s' \mid s, a) V^{*}(s')$$

$$\downarrow \hat{V}(s) - \max_{a} \left(R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s' \mid s, a) \hat{V}(s') \right) \leq \epsilon \quad \forall s$$

$$\Rightarrow \quad |\hat{V}(s) - V^{*}(s)| \leq \frac{\epsilon}{1 - \gamma} \quad \text{and} \quad V^{*}(s) - V^{\pi}(s) \leq \frac{2\epsilon}{1 - \gamma} \quad \forall s$$

Policy Iteration

Theorem (monotonic improvement). Policy Iteration ensures

$$\forall s, \qquad V^{\pi^{(k+1)}}(s) \ge V^{\pi^{(k)}}(s)$$

Below, we will establish a more general lemma (not only show monotonic improvement, but also quantify *how much* the improvement is).

Single-Step Policy Modification under Fixed Horizon

Assume $\pi'_h(\cdot | s) = \pi_h(\cdot | s)$ for all $h \neq h^*$ $\mathbb{E}_{s\sim\rho}\left|V_1^{\pi'}(s)\right| - \mathbb{E}_{s\sim\rho}[V_1^{\pi}(s)] = ?$ $= \mathbb{E} \left| \sum_{h=1}^{H} R(s_h, a_h) \right| s_1 \sim \rho, \pi' \left| -\mathbb{E} \left| \sum_{h=1}^{H} R(s_h, a_h) \right| s_1 \sim \rho, \pi \right|$ $= \mathbb{E}\left[\sum_{h=1}^{H} R(s_h, a_h) \mid s_1 \sim \rho, \pi'\right] - \mathbb{E}\left[\sum_{h=1}^{H} R(s_h, a_h) \mid s_1 \sim \rho, \pi\right]$: ÷ 2 $= \mathbb{E}\left[\sum_{h=1}^{H} R(s_h, a_h) \mid s_{h^{\star}} \sim d_{\rho, h^{\star}}^{\pi_{\text{in}}}, \pi'\right] - \mathbb{E}\left[\sum_{h=1}^{H} R(s_h, a_h) \mid s_h \sim d_{\rho, h^{\star}}^{\pi_{\text{in}}}, \pi\right]$ $= \mathbb{E}_{s_{h^{\star}} \sim d_{\rho,h^{\star}}^{\pi_{\text{in}}}} \mathbb{E}_{a_{h^{\star}} \sim \pi_{h^{\star}}^{\prime}(\cdot|s_{h^{\star}})} \left| Q_{h^{\star}}^{\pi_{\text{out}}}(s_{h^{\star}}, a_{h^{\star}}) \right| - \mathbb{E}_{s_{h^{\star}} \sim d_{\rho,h^{\star}}^{\pi_{\text{in}}}} \mathbb{E}_{a_{h^{\star}} \sim \pi_{h^{\star}}(\cdot|s_{h^{\star}})} \left| Q_{h^{\star}}^{\pi_{\text{out}}}(s_{h^{\star}}, a_{h^{\star}}) \right|$ Η h^{\star} 1 $=\sum_{\rho,h^{\star}} d^{\pi_{\text{in}}}_{\rho,h^{\star}}(s) \pi'_{h^{\star}}(a|s) Q^{\pi_{\text{out}}}_{h^{\star}}(s,a) - \sum_{\rho,h^{\star}} d^{\pi_{\text{in}}}_{\rho,h^{\star}}(s) \pi_{h^{\star}}(a|s) Q^{\pi_{\text{out}}}_{h^{\star}}(s,a)$ $\pi'_{h}(\cdot | s) = \pi_{h}(\cdot | s) = \pi_{in}(\cdot | s)$ for $h < h^{\star}$ $\pi'_{h}(\cdot | s) = \pi_{h}(\cdot | s) = \pi_{out}(\cdot | s)$ for $h > h^{\star}$ $= \sum d_{\rho,h^{\star}}^{\pi_{\text{in}}}(s) \left(\pi_{h^{\star}}'(a|s) - \pi_{h^{\star}}(a|s)\right) Q_{h^{\star}}^{\pi_{\text{out}}}(s,a)$

All-Step Policy Modification under Fixed Horizon

 $\pi^{(1)}$

R⁽²⁾

z¹³¹.

Г(H).

۲^(H+I)

for arbitrag

Η

Æ

5~10

1

 h^{\star}

Let $\pi^{(h)}$ be a Markov policy such that it is

r

Z

2'

ス

≓Æ

same as π' in steps 1 to h - 1same as π in steps h to $H = \mathcal{F} \left(\bigvee (s) - \bigcup (s) \right)$

 $\pi' = \pi^{(H+1)}$ and $\pi = \pi^{(1)}$

2'

Discounted Total Reward Setting

Define Markov policy $\pi^{(h)} = \begin{cases} \pi' & \text{in step} \mid \sim \gg h - 1 \\ \pi & \text{in step} \mid h - s \infty \end{cases}$ $\mathcal{T}^{(1)} = \mathcal{T}, \quad \mathcal{T}^{(\infty)} = \mathcal{T}'$ $\mathbb{E}\left[V^{\mathcal{T}}(s) - V^{\mathcal{T}}(s)\right] = \mathbb{E}\left[\sum_{s \neq 0}^{\infty} V^{\mathcal{T}}(s) - V^{\mathcal{T}}(s)\right]$ $= \sum_{h=1}^{\infty} \sum_{a, h=1}^{\pi} \frac{\pi'(s)}{\pi'(s)} \left(\frac{\pi'(a(s) - \pi(a(s)))}{\pi'(s)} \right)^{\pi} \frac{\pi'(s)}{\pi'(s)}$ $= \sum_{s,n} dp^{2'}(s) \left(2'(a|s) - 2(a|s) \right) (2'(s,a))$

Performance / Value Difference Lemma

For any two stationary policies π' and π in the discounted total reward setting,

$$E_{s \sim \rho} \left[V^{\pi'}(s) \right] - E_{s \sim \rho} \left[V^{\pi}(s) \right] = \sum_{s,a} d_{\rho}^{\pi'}(s) \left(\pi'(a|s) - \pi(a|s) \right) Q^{\pi}(s,a)$$

$$z'(s) = \arg \max \left(Q^{\pi}(s,a) \right) = \sum_{s,a} d_{\rho}^{\pi'}(s) \left(\pi'(a|s) - \pi(a|s) \right) Q^{\pi}(s,a) - \sum_{s,a} d_{\rho}^{\pi'}(s) \sqrt{s} \right)$$

$$= \sum_{s,a} d_{\rho}^{\pi'}(s,a) \left(Q^{\pi}(s,a) - V^{\pi}(s) \right) \sum_{s,a} d_{\rho}^{\pi'}(s) \pi'(a|s) \sqrt{s} \right)$$

$$= \sum_{s,a} d_{\rho}^{\pi'}(s) \pi'(a|s) - \pi(a|s) Q^{\pi'}(s) = \sum_{s,a} d_{\rho}^{\pi'}(s) \pi'(a|s) \sqrt{s} \right)$$

$$= \sum_{s,a} d_{\rho}^{\pi'}(s) \pi'(a|s) - \pi(a|s) Q^{\pi'}(s) = \sum_{s,a} d_{\rho}^{\pi'}(s) \pi'(a|s) \sqrt{s} \right)$$

$$= \sum_{s,a} d_{\rho}^{\pi'}(s) \pi'(a|s) - \pi(a|s) Q^{\pi'}(s) = \sum_{s,a} d_{\rho}^{\pi'}(s) \pi'(s) = \sum_{s,a} d_{\rho}^{\pi'}(s) = \sum_{s,a} d_{\rho}^{\pi'}(s) \pi'(s) = \sum_{s,a} d_{\rho}^{\pi'}(s) = \sum_{s,a} d_{\rho}^{\pi'}(s) \pi'(s) = \sum_{s,a} d_{\rho}^{\pi'}(s) \pi'(s) = \sum_{s,a} d_$$

Modified Policy Iteration
$$\bigvee \rightarrow \underbrace{T^{*}}_{V}$$

$$\int_{a}^{x} = \underbrace{T}_{v} \bigvee (Be|_{a=n} e_{g})$$

$$\int_{a}^{x} = \underbrace{T}_{v} \bigvee (Be|_{a=n} e_{g})$$

$$\int_{a}^{x} \underbrace{T^{*}}_{v} \bigvee (Be|_{a=n} e_{g})$$

$$\int_{a}^{x} \underbrace{T^{*}}_{v} \bigvee (Be|_{a=n} e_{g})$$

$$\int_{a}^{y} \underbrace{T^{*}}_{v} \underbrace{T^{*}}_{v} \bigvee (Be|_{a=n} e_{g})$$

$$\int_{a}^{y} \underbrace{T^{*}}_{v} \underbrace{T^{*}}_{v} \bigvee (Be|_{a=n} e_{g}$$

Summary for the Basics of MDPs

- MDPs model decision-making problems where the return depends on sequences of actions.
- "State" summarizes all the information needed to make decisions (in the fixed-horizon setting, the step index is also important).
- Interaction Protocols: fixed-horizon, goal-oriented, infinite-horizon
- Performance Metrics: total reward, average reward, discounted total reward
- Policies: history-dependent, Markov, stationary
- While the **number of action sequence is exponential** in the horizon length, the optimal policy can be computed in **poly(#state, #actions, horizon length)** time using dynamic programming techniques (Value Iteration).
- The dynamic programing here is slightly more complicated since it involves infinite horizon and recursive states.
- Bellman equation, Reverse Bellman equation, Bellman optimality equation
- Approximate Bellman optimality \rightarrow Approximate optimal policy
- Policy Iteration and Performance Difference Lemma
- Unifying Value Iteration and Policy Iteration

Summary for the Basics of MDPs

- MDPs model decision-making problems where the return depends on sequences of actions.
- "State" summarizes all the information needed to make decisions (in the fixed-horizon setting, the step index is also important).
- Interaction Protocols: fixed-horizon, goal-oriented, infinite-horizon
- Performance Metrics: total reward, average reward, discounted total reward
- Policies: history-dependent, Markov, stationary
- While the **number of action sequence is exponential** in the horizon length, the optimal policy can be computed in **poly(#state, #actions, horizon length)** time using dynamic programming techniques (Value Iteration).
- The dynamic programing here is slightly more complicated since it involves infinite horizon and recursive states.
- Bellman equation, Reverse Bellman equation, Bellman optimality equation
- Approximate Bellman optimality \rightarrow Approximate optimal policy
- Policy Iteration and Performance Difference Lemma
- Unifying Value Iteration and Policy Iteration