
Markov Decision Processes
Chen-Yu Wei

Sequence of Actions

To win the game, the learner has to take a sequence of actions 𝑎1 → 𝑎2 → ⋯ → 𝑎𝐻.

One option: view every sequence as a “meta-action”: ത𝑎 = 𝑎1, 𝑎2, ⋯ , 𝑎𝐻

Drawback:

● The number of actions is exponential in horizon

● In stochastic environments, this does not leverage intermediate observations

Solution idea: dynamic programming

Interaction Protocol: Fixed-Horizon Case

For episode 𝑡 = 1, 2, … , 𝑇:

 For step ℎ = 1, 2, … , 𝐻:

 Learner observes an observation 𝑥𝑡,ℎ

 Learner chooses an action 𝑎𝑡,ℎ

 Learner receives instantaneous reward 𝑟𝑡,ℎ

General case:

𝔼 𝑟𝑡,ℎ = 𝑅 𝑥𝑡,1, 𝑎𝑡,1, … , 𝑥𝑡,ℎ , 𝑎𝑡,ℎ , 𝑥𝑡,ℎ+1 ∼ 𝑃 ⋅ 𝑥𝑡,1, 𝑎𝑡,1, … , 𝑥𝑡,ℎ , 𝑎𝑡,ℎ)

⇒ Optimal decisions may depend on the entire history ℋ𝑡 = (𝑥𝑡,1, 𝑎𝑡,1, … , 𝑥𝑡,ℎ)

Interaction Protocol: Fixed-Horizon Case

We assume that the history ℋ𝑡 = (𝑥𝑡,1, 𝑎𝑡,1, … , 𝑥𝑡,ℎ) can be summarized as a

horizon-length-independent representation 𝑠𝑡,ℎ = Φ 𝑥𝑡,1, 𝑎𝑡,1, … , 𝑥𝑡,ℎ ∈ 𝒮 so that

𝔼 𝑟𝑡,ℎ = 𝑅 𝑠𝑡,ℎ , 𝑎𝑡,ℎ , 𝑥𝑡,ℎ+1 ∼ 𝑃 ⋅ 𝑠𝑡,ℎ , 𝑎𝑡,ℎ)

𝑠𝑡,ℎ is called the “state” at the step ℎ of episode 𝑡.

For episode 𝑡 = 1, 2, … , 𝑇:

 For step ℎ = 1, 2, … , 𝐻:

 Learner observes an observation 𝑥𝑡,ℎ

 Learner chooses an action 𝑎𝑡,ℎ

 Learner receives instantaneous reward 𝑟𝑡,ℎ

From Observations to States

Stacking recent observations Hidden Markov modelRecurrent neural network

Interaction Protocol: Fixed-Horizon Case

For episode 𝑡 = 1, 2, … , 𝑇:

 For step ℎ = 1, 2, … , 𝐻:

 Environment reveals state 𝑠𝑡,ℎ

 Learner chooses an action 𝑎𝑡,ℎ

 Learner observes instantaneous reward 𝑟𝑡,ℎ with 𝔼 𝑟𝑡,ℎ = 𝑅(𝑠𝑡,ℎ, 𝑎𝑡,ℎ)

 Next state is generated as 𝑠𝑡,ℎ+1 ∼ 𝑃 ⋅ 𝑠𝑡,ℎ , 𝑎𝑡,ℎ)

This is called the Markov decision process.

MDP as Contextual Bandits?

Viewing states as contexts, and viewing the problem as a contextual bandit

problem with 𝑇𝐻 rounds (what’s wrong?)

Formulations

● Interaction Protocol

● Fixed-Horizon

● Variable-Horizon (Goal-Oriented)

● Infinite-Horizon

● Performance Metric

● Total Reward

● Average Reward

● Discounted Reward

● Policy

● History-dependent policy

● Markov policy

● Stationary policy

Horizon = Length of an episode

Interaction Protocols (1/3): Fixed-Horizon

ℎ ← 1

Observe initial state 𝑠1

While 𝒉 ≤ 𝑯:

 Choose action 𝑎ℎ

 Observe reward 𝑟ℎ with 𝔼 𝑟ℎ = 𝑅(𝑠ℎ, 𝑎ℎ)

 Observe next state 𝑠ℎ+1 ∼ 𝑃(⋅ |𝑠ℎ, 𝑎ℎ)

Horizon length is a fixed number 𝐻

Examples: games with a fixed number of time

Interaction Protocols (2/3): Goal-Oriented

The learner interacts with the environment until reaching terminal states 𝒯 ⊂ 𝒮

ℎ ← 1

Observe initial state 𝑠1

While 𝑠ℎ ∉ 𝒯:

 Choose action 𝑎ℎ

 Observe reward 𝑟ℎ with 𝔼 𝑟ℎ = 𝑅(𝑠ℎ, 𝑎ℎ)

 Observe next state 𝑠ℎ+1 ∼ 𝑃(⋅ |𝑠ℎ, 𝑎ℎ)

 ℎ ← ℎ + 1

Examples: video games, robotics tasks, personalized recommendations, etc.

Interaction Protocols (3/3): Infinite-Horizon

The learner continuously interacts with the environment

Examples: network management, inventory management

ℎ ← 1

Observe initial state 𝑠1

Loop forever:

 Choose action 𝑎ℎ

 Observe reward 𝑟ℎ with 𝔼 𝑟ℎ = 𝑅(𝑠ℎ, 𝑎ℎ)

 Observe next state 𝑠ℎ+1 ∼ 𝑃(⋅ |𝑠ℎ, 𝑎ℎ)

 ℎ ← ℎ + 1

Formulations for Markov Decision Processes

● Interaction Protocol

● Fixed-Horizon

● Variable-Horizon (Goal-Oriented)

● Infinite-Horizon

● Performance Metric

● Total Reward

● Average Reward

● Discounted Reward

● Policy

● History-dependent policy

● Markov policy

● Stationary policy

Episodic setting

Performance Metric

Total Reward (for episodic setting): ෍

ℎ=1

𝜏

𝑟ℎ (𝜏: the step where the episode ends)

Average Reward (for infinite-horizon setting): lim
𝑇→∞

1

𝑇
 ෍

ℎ=1

𝑇

𝑟ℎ

Discounted Total Reward (for episodic or infinite-horizon): ෍

ℎ=1

𝜏

𝛾ℎ−1𝑟ℎ

𝜏: the step where the episode ends, or ∞ in the infinite-horizon case

𝛾 ∈ [0,1): discount factor

Interaction Protocols vs. Performance Metrics

Goal-Oriented

Infinite-horizon

Total Reward

Average Reward

Discounted Total Reward?
Focusing more on the recent reward

Fixed-Horizon Total Reward

“natural” objective

Could be unbonded

Could have constant change for an
infinitesimal change in policy

There is a potential mismatch between our ultimate goal and what we optimized.

Our Focus

In most of the following lectures, we focus on the goal-oriented / infinite-horizon

setting with discount total reward as the performance metric.

Policy

A mapping from observations/contexts/states to (distribution over) actions

● Contextual bandits

𝑎 ∼ 𝜋 ⋅ | 𝑥

or 𝑎 = 𝜋 𝑥

● Multi-armed bandits

𝑎 ∼ 𝜋

or 𝑎 = 𝑎⋆

(randomized/stochastic)

(deterministic)

Policy for MDPs

History-dependent Policy

Markov Policy

Stationary Policy

𝑎ℎ ∼ 𝜋 ⋅ | 𝑠1, 𝑎1, 𝑟1, 𝑠2, 𝑎2, 𝑟2, … , 𝑠ℎ

𝑎ℎ = 𝜋 𝑠1, 𝑎1, 𝑟1, 𝑠2, 𝑎2, 𝑟2, … , 𝑠ℎ

𝑎ℎ ∼ 𝜋 ⋅ | 𝑠ℎ , ℎ
𝑎ℎ = 𝜋 𝑠ℎ, ℎ

𝑎ℎ ∼ 𝜋 ⋅ | 𝑠ℎ

𝑎ℎ = 𝜋 𝑠ℎ

For fixed-horizon + total reward setting,
there exists an optimal policy in this class

For infinite-horizon/goal-oriented + discounted total reward
setting, there exists an optimal policy in this class

Fixed-Horizon + Total Reward

Dynamic Programming

Goal: Calculate the expected total reward of a policy

A (Markov) policy is a mapping from (state, step index) to action distribution,
written as

𝜋ℎ ⋅ 𝑠) ∈ Δ(𝒜) for 𝑠 ∈ 𝒮 and ℎ ∈ 1, 2, … , 𝐻

Dynamic Programming

State transition: 𝑃(𝑠′|𝑠, 𝑎)

Reward: 𝑅(𝑠, 𝑎)

Key quantity: 𝑉ℎ
𝜋 𝑠 = the expected total reward

of policy 𝜋 starting from state 𝑠 at step ℎ.

Backward calculation:

𝑉𝐻
𝜋 𝑠 = ෍

𝑎

𝜋𝐻 𝑎 𝑠 𝑅 𝑠, 𝑎 ∀𝑠

𝑉ℎ
𝜋(𝑠) = ෍

𝑎

𝜋ℎ 𝑎 𝑠 𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉ℎ+1
𝜋 (𝑠′)

Expected total reward
from step ℎ + 1

… … …

ℎ = 1 ℎ = 2 ℎ = 𝐻

states

𝑠

…

ℎ = 3

…

…

For ℎ = 𝐻 − 1, … 1: for all 𝑠

Bellman Equation

𝑉ℎ
𝜋(𝑠) = ෍

𝑎

𝜋ℎ 𝑎 𝑠 𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉ℎ+1
𝜋 (𝑠′)

𝑄ℎ
𝜋(𝑠, 𝑎)

𝑉𝐻+1
𝜋 (𝑠) = 0

for ℎ = 𝐻, … , 1

𝑄ℎ
𝜋 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉ℎ+1
𝜋 (𝑠′)

𝑉ℎ
𝜋 𝑠 = ෍

𝑎∈𝒜

𝜋ℎ 𝑎 𝑠)𝑄ℎ
𝜋(𝑠, 𝑎)

Occupancy Measures

𝑑𝜌
𝜋(𝑠): the expected number of times state 𝑠 is visited, under policy 𝜋 and initial

state distribution 𝜌

Key quantity: 𝑑𝜌,ℎ
𝜋 𝑠 = the probability of state 𝑠 being visited at step 𝒉,

under policy 𝜋 and initial state distribution 𝜌

Forward calculation:

𝑑𝜌,1
𝜋 𝑠 = 𝜌 𝑠 ∀𝑠

𝑑𝜌,ℎ
𝜋 𝑠 = ෍

𝑠′

𝑑𝜌,ℎ−1
𝜋 𝑠′ ෍

𝑎′

𝜋ℎ−1 𝑎′ 𝑠′ 𝑃 𝑠 𝑠′, 𝑎′ ∀𝑠

For ℎ = 2, … 𝐻:

Reverse Bellman Equation

𝑑𝜌,ℎ
𝜋 (𝑠) = ෍

𝑠′,𝑎′

𝑑𝜌,ℎ−1
𝜋 𝑠′ 𝜋ℎ−1 𝑎′ 𝑠′ 𝑃(𝑠|𝑠′, 𝑎′)

𝑑𝜌,ℎ−1
𝜋 (𝑠′, 𝑎′)

𝑑𝜌,1
𝜋 (𝑠) = 𝜌(𝑠)

for ℎ = 2, … , 𝐻

𝑑𝜌,ℎ
𝜋 (𝑠, 𝑎) = 𝑑𝜌,ℎ

𝜋 𝑠 𝜋ℎ(𝑎|𝑠)

𝑑𝜌,ℎ
𝜋 𝑠 = ෍

𝑠′,𝑎′

𝑑𝜌,ℎ−1
𝜋 𝑠′, 𝑎′ 𝑃(𝑠|𝑠′, 𝑎′)

Dynamic Programming

Goal: Find the optimal policy

Key quantity: 𝑉ℎ
⋆ 𝑠 = the optimal expected total reward starting from

state 𝑠 at step ℎ.

Backward calculation:

𝑉𝐻
⋆ 𝑠 = max

𝑎
 𝑅 𝑠, 𝑎 ∀𝑠

𝑉ℎ
⋆ 𝑠 = max

𝑎
𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉ℎ+1
⋆ 𝑠′ ∀𝑠

For ℎ = 𝐻 − 1, … 1:
Value Iteration

𝜋ℎ
⋆ 𝑠 = argmax

𝑎
 𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉ℎ+1
⋆ (𝑠′)

Bellman Optimality Equation

𝑉ℎ
⋆ (𝑠) = max

𝑎
𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉ℎ+1
⋆ (𝑠′)

𝑄ℎ
⋆(𝑠, 𝑎)

𝑉𝐻+1
⋆ (𝑠) = 0

for ℎ = 𝐻, … , 1

𝑄ℎ
⋆ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉ℎ+1
⋆ (𝑠′)

𝑉ℎ
⋆ 𝑠 = max

𝑎
 𝑄ℎ

⋆(𝑠, 𝑎)

𝜋ℎ
⋆ 𝑠 = argmax

𝑎
 𝑄ℎ

⋆(𝑠, 𝑎)

Recap

𝑄ℎ
𝜋 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + ෍

𝑠′∈𝒮

𝑃(𝑠′|𝑠, 𝑎) 𝑉ℎ+1
𝜋 (𝑠′)

𝑉ℎ
𝜋 𝑠 = ෍

𝑎∈𝒜

𝜋ℎ 𝑎 𝑠)𝑄ℎ
𝜋(𝑠, 𝑎)

𝑄ℎ
⋆ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + ෍

𝑠′∈𝒮

𝑃(𝑠′|𝑠, 𝑎) 𝑉ℎ+1
⋆ (𝑠′)

𝑉ℎ
⋆ 𝑠 = max

𝑎
 𝑄ℎ

⋆(𝑠, 𝑎)

𝑑𝜌,ℎ
𝜋 𝑠 = ෍

𝑠′,𝑎′

𝑑𝜌,ℎ−1
𝜋 𝑠′, 𝑎′ 𝑃(𝑠|𝑠′, 𝑎′)

𝑑𝜌,ℎ
𝜋 (𝑠, 𝑎) = 𝑑𝜌,ℎ

𝜋 𝑠 𝜋ℎ(𝑎|𝑠)

Bellman Equation

Reverse Bellman Equation

Bellman Optimality Equation

(Value Iteration)

(Value Iteration for 𝑉𝜋)

Infinite-Horizon / Goal-Oriented +
Discounted Total Reward

Equivalent Views

𝒯

deterministic and zero-reward

Converting goal-oriented to

infinite-horizon

Scale down all transitions by a factor of 𝛾
and add probability 1 − 𝛾 transitioning to 𝑧

𝑧

Converting discounted total

reward to total reward

𝔼new ෍

ℎ=1

∞

𝛾ℎ−1𝑟ℎ = 𝔼old ෍

ℎ=1

𝜏

𝛾ℎ−1𝑟ℎ 𝔼new ෍

ℎ=1

∞

𝑟ℎ = 𝔼old ෍

ℎ=1

∞

𝛾ℎ−1𝑟ℎ

Dynamic Programming

Goal: Calculate the expected discounted total reward of a stationary policy 𝜋

Key quantity: 𝑉𝑖
𝜋 𝑠 = the expected discounted total reward starting from

state 𝑠 supposed that 𝑖 more steps can be executed

𝑉0
𝜋 𝑠 = 0 ∀𝑠

𝑉𝑖
𝜋 𝑠 = ෍

𝑎

𝜋 𝑎 𝑠 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉𝑖−1
𝜋 𝑠′ ∀𝑠

For 𝑖 = 1, 2, 3 …

𝑉𝜋 𝑠 = the expected discounted total reward starting from state 𝑠

𝑉𝜋 𝑠 = lim
𝑖→∞

 𝑉𝑖
𝜋(𝑠) (need to prove that the limit exists)

Value Iteration for 𝑽𝝅

To show that this algorithm converges, we prove the following statement:

For any 𝜖 > 0, there exists a large enough 𝑁 such that

෠𝑉𝑖 𝑠 − ෠𝑉𝑗(𝑠) ≤ 𝜖

for any 𝑖, 𝑗 ≥ 𝑁.

෠𝑉𝑖 𝑠 = ෍

𝑎

𝜋 𝑎 𝑠 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 ෠𝑉𝑖−1 𝑠′ ∀𝑠

For 𝑖 = 1, 2, 3 …

Arbitrary ෠𝑉0 𝑠 ∀𝑠

Proof of Convergence

Proof of Convergence

For any 𝜖 > 0, there exists a large enough 𝑁 such that

෠𝑉𝑖 𝑠 − ෠𝑉𝑗(𝑠) ≤ 𝜖

for any 𝑖, 𝑗 ≥ 𝑁.

For any 𝜖 > 0, there exists a large enough 𝑁 such that

෠𝑉𝑖(𝑠) − ෠𝑉 𝑠 ≤ 𝜖

for any 𝑖 ≥ 𝑁.

෠𝑉 𝑠 = lim
𝑖→∞

 inf ෠𝑉𝑗 𝑠 : 𝑗 ≥ 𝑖

Proof of Uniqueness

No matter what the initial values of ෠𝑉0(𝑠) are, the limit lim
𝑖→∞

 ෠𝑉𝑖(𝑠) is the same.

(This value is 𝑉𝜋(𝑠))

Bellman Equation

𝑉𝜋(𝑠) = ෍

𝑎

𝜋 𝑎 𝑠 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉𝜋(𝑠′)

𝑄𝜋(𝑠, 𝑎)

𝑄𝜋 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉𝜋(𝑠′)

𝑉𝜋 𝑠 = ෍

𝑎

𝜋(𝑎|𝑠)𝑄𝜋 (𝑠, 𝑎)

Approximate Bellman Equations

If ෠𝑉 𝑠 − ෍

𝑎

𝜋(𝑎|𝑠) 𝑅 𝑠, 𝑎 + 𝛾𝔼𝑠′∼𝑃(⋅|𝑠,𝑎)
෠𝑉 𝑠′ ≤ 𝜖 ∀𝑠

then ෠𝑉 𝑠 − 𝑉𝜋(𝑠) ≤
𝜖

1 − 𝛾
 ∀𝑠

Occupancy Measures

𝑑𝜌
𝜋(𝑠): the expected discounted number of times state 𝑠 is visited, under policy 𝜋

and initial state distribution 𝜌

Key quantity: 𝑑𝜌,ℎ
𝜋 𝑠 = the discounted probability of state 𝑠 being visited

at step ℎ, under policy 𝜋 and initial state distribution 𝜌

Forward calculation:

𝑑𝜌,1
𝜋 𝑠 = 𝜌 𝑠 ∀𝑠

𝑑𝜌,ℎ
𝜋 𝑠 = 𝛾 ෍

𝑠′

𝑑𝜌,ℎ−1
𝜋 𝑠′ ෍

𝑎′

𝜋 𝑎′ 𝑠′ 𝑃(𝑠|𝑠′, 𝑎′) ∀𝑠

For ℎ = 2, 3, …

Reverse Bellman Equation

𝑑𝜌
𝜋 𝑠 = 𝜌 𝑠 + 𝛾 ෍

𝑠′,𝑎′

𝑑𝜌
𝜋 𝑠′ 𝜋 𝑎′ 𝑠′ 𝑃(𝑠|𝑠′, 𝑎′)

𝑑𝜌
𝜋(𝑠′, 𝑎′)

𝑑𝜌
𝜋(𝑠, 𝑎) = 𝑑𝜌

𝜋 𝑠 𝜋(𝑎|𝑠)

𝑑𝜌
𝜋 𝑠 = 𝜌 𝑠 + 𝛾 ෍

𝑠′,𝑎′

𝑑𝜌
𝜋 𝑠′, 𝑎′ 𝑃(𝑠|𝑠′, 𝑎′)

Another (more common) version makes 𝑑𝜌
𝜋 𝑠 a distribution over 𝑠

→ Just change the 𝜌 𝑠 in the first equation by (1 − 𝛾)𝜌 𝑠

Dynamic Programming

Goal: find optimal policy

Key quantity: 𝑉𝑖
⋆ 𝑠 = the optimal discounted total reward starting from

state 𝑠 supposed that 𝑖 more steps can be executed

𝑉0
⋆ 𝑠 = 0 ∀𝑠

𝑉𝑖
⋆ 𝑠 = max

𝑎
 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉𝑖−1
⋆ 𝑠′ ∀𝑠

For 𝑖 = 1, 2, 3 …

𝑉⋆ 𝑠 = lim
𝑖→∞

 𝑉𝑖
⋆(𝑠)

Value Iteration

𝜋⋆ 𝑠 = argmax
𝑎

 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉⋆(𝑠′)

Bellman Optimality Equation

𝑉⋆(𝑠) = max
𝑎

𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉⋆(𝑠′)

𝑄⋆(𝑠, 𝑎)

𝑄⋆ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉⋆(𝑠′)

𝑉⋆ 𝑠 = max
𝑎

 𝑄⋆(𝑠, 𝑎)

𝜋⋆ 𝑠 = argmax
𝑎

 𝑄⋆(𝑠, 𝑎)

Approximate Bellman Optimality Equations

෠𝑉 𝑠 − max
𝑎

𝑅 𝑠, 𝑎 + 𝛾𝔼𝑠′∼𝑃(⋅|𝑠,𝑎)
෠𝑉 𝑠′ ≤ 𝜖 ∀𝑠

෠𝑉 𝑠 − 𝑉⋆(𝑠) ≤
𝜖

1 − 𝛾
 ∀𝑠(1)

where ො𝜋 𝑠 = argmax
𝑎

𝑅 𝑠, 𝑎 + 𝛾𝔼𝑠′∼𝑃(⋅|𝑠,𝑎)
෠𝑉 𝑠′

𝑉⋆ 𝑠 − 𝑉ෝ𝜋 𝑠 ≤
2𝜖

1 − 𝛾
 ∀𝑠(2)

Then

Suppose that

Summary

𝑄𝜋 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′∈𝒮

𝑃(𝑠′|𝑠, 𝑎) 𝑉𝜋(𝑠′)

𝑉𝜋 𝑠 = ෍

𝑎∈𝒜

𝜋 𝑎 𝑠)𝑄𝜋(𝑠, 𝑎)

𝑄⋆ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′∈𝒮

𝑃(𝑠′|𝑠, 𝑎) 𝑉⋆(𝑠′)

𝑉⋆ 𝑠 = max
𝑎

 𝑄⋆(𝑠, 𝑎)

𝑑𝜌
𝜋 𝑠 = 1 − 𝛾 𝜌 𝑠 + 𝛾 ෍

𝑠′,𝑎′

𝑑𝜌
𝜋 𝑠′, 𝑎′ 𝑃(𝑠|𝑠′, 𝑎′)

𝑑𝜌
𝜋(𝑠, 𝑎) = 𝑑𝜌

𝜋 𝑠 𝜋(𝑎|𝑠)

෠𝑉 𝑠 − ෍

𝑎∈𝒜

𝜋 𝑎 𝑠) 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′∈𝒮

𝑃(𝑠′|𝑠, 𝑎) ෠𝑉 𝑠′ ≤ 𝜖 ∀𝑠

⇒ ෠𝑉 𝑠 − 𝑉𝜋 𝑠 ≤
𝜖

1 − 𝛾
 ∀𝑠

෠𝑉 𝑠 − max
𝑎

𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′∈𝒮

𝑃(𝑠′|𝑠, 𝑎) ෠𝑉 𝑠′ ≤ 𝜖 ∀𝑠

⇒ ෠𝑉 𝑠 − 𝑉⋆ 𝑠 ≤
𝜖

1−𝛾
 and 𝑉⋆ 𝑠 − 𝑉 ෝ𝜋 𝑠 ≤

2𝜖

1−𝛾
 ∀𝑠

Guarantees for approximate solutions

https://www.youtube.com/watch?v=XVuRQWXtxLA

https://www.youtube.com/watch?v=XVuRQWXtxLA

Policy Iteration

Policy Iteration

Policy Iteration

For 𝑘 = 1, 2, …

∀𝑠, 𝜋(𝑘+1) 𝑠 ← argmax
𝑎

 𝑄𝜋(𝑘)
(𝑠, 𝑎)

Theorem (monotonic improvement). Policy Iteration ensures

∀𝑠, 𝑉𝜋 𝑘+1
𝑠 ≥ 𝑉𝜋 𝑘

𝑠

Below, we will establish a more general lemma (not only show monotonic
improvement, but also quantify how much the improvement is).

Single-Step Policy Modification under Fixed Horizon

… …

1 𝐻

…

…

…

ℎ⋆

…

…

𝜋ℎ
′ ⋅ |𝑠 = 𝜋ℎ ⋅ 𝑠) for all ℎ ≠ ℎ⋆ Assume

𝔼𝑠∼𝜌 𝑉1
𝜋′

𝑠 − 𝔼𝑠∼𝜌 𝑉1
𝜋 𝑠 = ?

𝜋ℎ
′ ⋅ |𝑠 = 𝜋ℎ ⋅ 𝑠) = 𝜋in(⋅ |𝑠) for ℎ < ℎ⋆

𝜋ℎ
′ ⋅ |𝑠 = 𝜋ℎ ⋅ 𝑠) = 𝜋out(⋅ |𝑠) for ℎ > ℎ⋆

All-Step Policy Modification under Fixed Horizon

Let 𝜋(ℎ) be a Markov policy such that it is

same as 𝜋′ in steps 1 to ℎ − 1

same as 𝜋 in steps ℎ to 𝐻

𝜋′ = 𝜋(𝐻+1) and 𝜋 = 𝜋(1)

… …

1 𝐻

…

…

…

ℎ⋆

…

…

Discounted Total Reward Setting

… … …

1 2 ∞

…

…

…

ℎ

…

…

1 − 𝛾

Performance / Value Difference Lemma

For any two stationary policies 𝜋′ and 𝜋 in the discounted total reward setting,

𝔼𝑠∼𝜌 𝑉𝜋′
𝑠 − 𝔼𝑠∼𝜌 𝑉𝜋 𝑠 = ෍

𝑠,𝑎

𝑑𝜌
𝜋′

𝑠 𝜋′ 𝑎 𝑠 − 𝜋 𝑎 𝑠 𝑄𝜋(𝑠, 𝑎)

= ෍

𝑠,𝑎

𝑑𝜌
𝜋′

𝑠, 𝑎 𝑄𝜋(𝑠, 𝑎) − 𝑉𝜋(𝑠)

Modified Policy Iteration

Bellman Operator 𝒯𝜋

𝒯𝜋𝑉 𝑠 = ෍

𝑎

𝜋 𝑎 𝑠 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉(𝑠′)

Greedy Policy Operator 𝒢

𝒢𝑉 𝑠 = argmax
𝑎

 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉(𝑠′)

Value Iteration:

𝜋𝑘+1 = 𝒢𝑉𝑘

𝑉𝑘+1 = 𝒯𝜋𝑘+1𝑉𝑘

Policy Iteration:

𝜋𝑘+1 = 𝒢𝑉𝑘

𝑉𝑘+1 = 𝒯𝜋𝑘+1 ∞𝑉𝑘

MPI:

𝜋𝑘+1 = 𝒢𝑉𝑘

𝑉𝑘+1 = 𝒯𝜋𝑘+1 𝑚𝑉𝑘

Policy update

Value update

Difference:

Relative speed

between policy and

value updates

Summary for the Basics of MDPs
● MDPs model decision-making problems where the return depends on sequences of actions.

● “State” summarizes all the information needed to make decisions (in the fixed-horizon setting, the
step index is also important).

● Interaction Protocols: fixed-horizon, goal-oriented, infinite-horizon

● Performance Metrics: total reward, average reward, discounted total reward

● Policies: history-dependent, Markov, stationary

● While the number of action sequence is exponential in the horizon length, the optimal policy
can be computed in poly(#state, #actions, horizon length) time using dynamic programming
techniques (Value Iteration).

● The dynamic programing here is slightly more complicated since it involves infinite horizon and
recursive states.

● Bellman equation, Reverse Bellman equation, Bellman optimality equation

● Approximate Bellman optimality → Approximate optimal policy

● Policy Iteration and Performance Difference Lemma

● Unifying Value Iteration and Policy Iteration

Summary for the Basics of MDPs
● MDPs model decision-making problems where the return depends on sequences of actions.

● “State” summarizes all the information needed to make decisions (in the fixed-horizon setting, the
step index is also important).

● Interaction Protocols: fixed-horizon, goal-oriented, infinite-horizon

● Performance Metrics: total reward, average reward, discounted total reward

● Policies: history-dependent, Markov, stationary

● While the number of action sequence is exponential in the horizon length, the optimal policy
can be computed in poly(#state, #actions, horizon length) time using dynamic programming
techniques (Value Iteration).

● The dynamic programing here is slightly more complicated since it involves infinite horizon and
recursive states.

● Bellman equation, Reverse Bellman equation, Bellman optimality equation

● Approximate Bellman optimality → Approximate optimal policy

● Policy Iteration and Performance Difference Lemma

● Unifying Value Iteration and Policy Iteration

	Slide 1: Markov Decision Processes
	Slide 2: Sequence of Actions
	Slide 3: Interaction Protocol: Fixed-Horizon Case
	Slide 4: Interaction Protocol: Fixed-Horizon Case
	Slide 5: From Observations to States
	Slide 6: Interaction Protocol: Fixed-Horizon Case
	Slide 7: MDP as Contextual Bandits?
	Slide 8: Formulations
	Slide 9: Interaction Protocols (1/3): Fixed-Horizon
	Slide 10: Interaction Protocols (2/3): Goal-Oriented
	Slide 11: Interaction Protocols (3/3): Infinite-Horizon
	Slide 12: Formulations for Markov Decision Processes
	Slide 13: Performance Metric
	Slide 14: Interaction Protocols vs. Performance Metrics
	Slide 15: Our Focus
	Slide 16: Policy
	Slide 17: Policy for MDPs
	Slide 18: Fixed-Horizon + Total Reward
	Slide 19: Dynamic Programming
	Slide 20: Dynamic Programming
	Slide 21: Bellman Equation
	Slide 22: Occupancy Measures
	Slide 23: Reverse Bellman Equation
	Slide 24: Dynamic Programming
	Slide 25: Bellman Optimality Equation
	Slide 26: Recap
	Slide 27: Infinite-Horizon / Goal-Oriented + Discounted Total Reward
	Slide 28: Equivalent Views
	Slide 29: Dynamic Programming
	Slide 30: Value Iteration for bold italic cap V to the bold italic pi
	Slide 31: Proof of Convergence
	Slide 32: Proof of Convergence
	Slide 33: Proof of Uniqueness
	Slide 34: Bellman Equation
	Slide 35: Approximate Bellman Equations
	Slide 36: Occupancy Measures
	Slide 37
	Slide 38: Reverse Bellman Equation
	Slide 39: Dynamic Programming
	Slide 40: Bellman Optimality Equation
	Slide 41: Approximate Bellman Optimality Equations
	Slide 42: Summary
	Slide 43: Policy Iteration
	Slide 44: Policy Iteration
	Slide 45: Single-Step Policy Modification under Fixed Horizon
	Slide 46: All-Step Policy Modification under Fixed Horizon
	Slide 47: Discounted Total Reward Setting
	Slide 48: Performance / Value Difference Lemma
	Slide 49: Modified Policy Iteration
	Slide 50: Summary for the Basics of MDPs
	Slide 51: Summary for the Basics of MDPs

