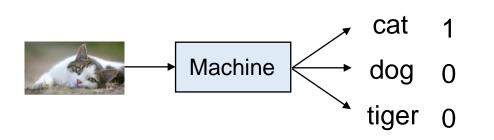
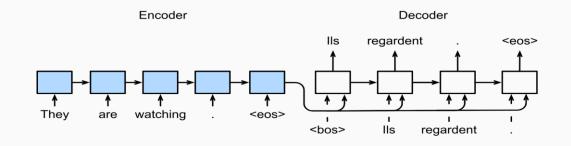
Summary

Chen-Yu Wei

Scenarios we focused on in this course





Learning from reward

Learning to make sequential decisions

Scenarios we focused on in this course

Learning from reward ... with bandit feedback

Learning to make sequential decisions ... with delayed and aggregated feedback

Exploration

Credit Assignment

Challenges in RL

- Generalization
- Exploration-exploitation tradeoff
- Credit assignment
- Distribution mismatch
- .. and more

Course Content

(Focusing on exploration-exploitation tradeoff)

Part I. Learning in Bandits

- Multi-armed bandits
- Linear bandits
- Contextual bandits
- Adversarial multi-armed bandits
- Adversarial linear bandits

Part II. Basics of MDPs

- Bellman (optimality) equations
- Value iteration
- Policy iteration

(Focusing on credit assignment and distribution mismatch)

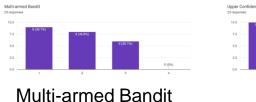
Part III. Learning in MDPs

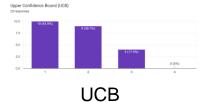
- Approximate value iteration and variants
 - Least-square value iteration
 - Q-Learning
 - DQN
- Policy evaluation
 - Temporal difference
 - Monte Carlo
- Approximate policy iteration and variants
 - Least-square policy iteration
 - (Natural) policy gradient and actor-critic
 - REINFORCE, A2C, PPO, SAC
 - DDPG

Part IV. Offline RL

Student Project Presentation

Prior Knowledge Before the Course

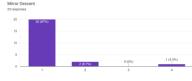




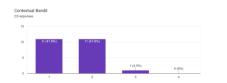


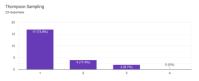
Proximal Policy Optimization (PPC

Target Network



Mirror Descent





Contextual Bandit

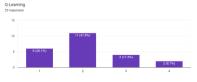
Markov Decision Process (MDP)

23 response

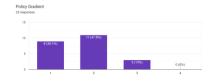
MDP

Thompson Sampling

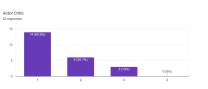
 ϵ -greedy

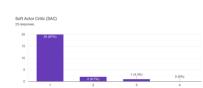


Q-Learning



Policy Gradient





SAC

PPO

d KL Divergend	æ				
7 (30.4%)		5 (21.7%)	7 (30.4%)	4 (17.4%)	
1		2	3	4	

Entropy & KL Divergence

Linear Regression

Entropy an

23 response

6

23 responses	
20	
15 17 (73.9%)	
10	
5 5 (21.7%) 0 (0%)	1 (4,3%)
0 1 2 3	4

Concentration Inequality

Actor Critic

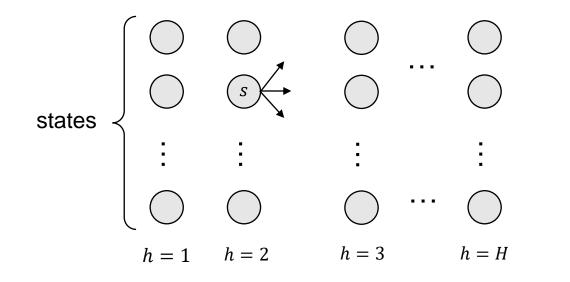
Exploration in Bandits

- Approaches
 - Exploration bonus or perturbation on **values** + greedy, e.g., UCB, Thompson sampling
 - Policies randomization, e.g., ϵ -greedy, Boltzmann exploration
 - Baseline, e.g., $\frac{r_t(a)-1}{p_t(a)} \mathbb{I}\{a_t = a\}$ in EXP3
- The degree of exploration may be
 - Agnostic about uncertainty, e.g., $p(a) \propto \exp(\lambda \hat{R}_t(a))$
 - Uncertainty-aware, e.g., $\operatorname{argmax}_{a} \left(\widehat{R}_{t}(a) + \frac{c}{\sqrt{N_{t}(a)}} \right)$

Credit Assignment

Model the problem as Markov decision process, and try to find the optimal action on every state

Markov Decision Processes



Bellman Optimality Equation

$$Q^{\star}(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q^{\star}(s',a')$$

Related algorithms: (approximate) value iteration

Bellman Equation

 $Q^{\pi}(s,a) = R(s,a) + \gamma \sum_{s',a'} P(s'|s,a) \pi(a'|s')Q^{\pi}(s',a')$ Related algorithms: (approximate) policy evaluation

Performance Difference Lemma

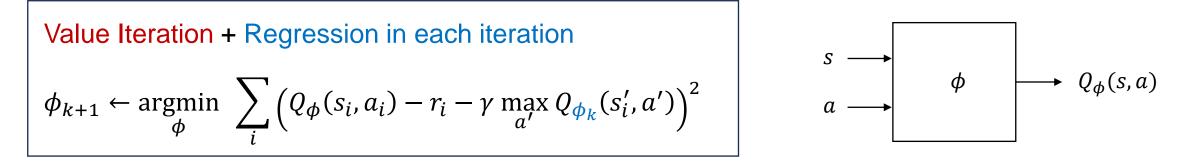
$$V^{\pi'}(\rho) - V^{\pi}(\rho) = \sum_{s,a} d_{\rho}^{\pi'}(s) \left(\pi'(a|s) - \pi(a|s)\right) Q^{\pi}(s,a)$$

Related algorithms: (approximate) policy iteration, policy gradient

Value-Based Approach (for Q^*)

Try to make

$$Q_{\phi}(s,a) \approx R(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \left[\max_{a'} Q_{\phi}(s',a') \right]$$



Source of instability: function approximation error, insufficient samples, non-i.i.d., max operator Accompanied techniques: replay buffer, target network, double network

LSVI, DQN, DDQN

Policy Evaluation (for V^{π} , Q^{π})

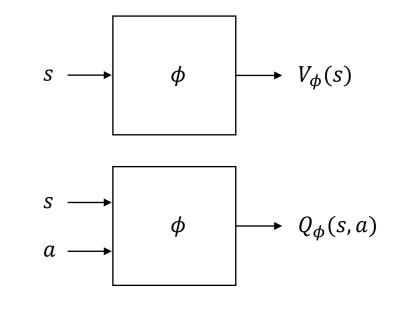
Try to make

$$\begin{split} V_{\phi}(s) &\approx \mathbb{E}_{a \sim \pi(\cdot|s)} \left[R(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \left[V_{\phi}(s') \right] \right] \\ Q_{\phi}(s,a) &\approx R(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \mathbb{E}_{a' \sim \pi(\cdot|s')} \left[Q_{\phi}(s',a') \right] \end{split}$$

Temporal difference learning (with on-policy samples)

$$\phi_{k+1} \leftarrow \phi_k - \alpha \sum_i \nabla_{\phi} \left(V_{\phi}(s_i) - r_i - \gamma V_{\phi_k}(s'_i) \right)^2$$

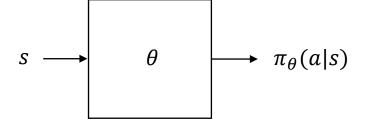
$$\phi_{k+1} \leftarrow \phi_k - \alpha \sum_i \nabla_{\phi} \left(Q_{\phi}(s_i, a_i) - r_i - \gamma Q_{\phi_k}(s'_i, a'_i) \right)^2$$



Can combine with Monte Carlo estimation to balance bias and variance

TD(0), TD(λ), Monte Carlo Estimation

Policy-Based Approach



Natural Policy Gradient or Policy Gradient

$$\theta_{k+1} \leftarrow \underset{\theta}{\operatorname{argmax}} \left(V^{\pi_{\theta}} - V^{\pi_{\theta_k}} - \frac{1}{\eta} D(\theta, \theta_k) \right)$$

or $\theta_{k+1} \leftarrow \theta_k + \eta \nabla_{\theta} V^{\pi_{\theta_k}}$

Estimate from samples using Monte Carlo estimators

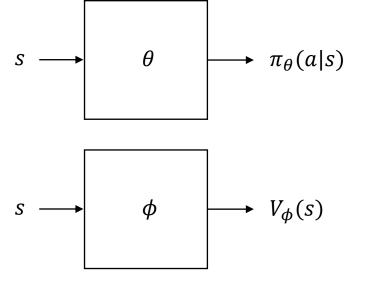
$$\theta_{k+1} \leftarrow \operatorname{argmax}_{\theta} \sum_{i} \left(\frac{\pi_{\theta}(a_{i}|s_{i})}{\pi_{\theta_{k}}(a_{i}|s_{i})} \mathbf{R}_{i} - \frac{1}{\eta} D(\pi_{\theta}(\cdot|s_{i}), \pi_{\theta_{k}}(\cdot|s_{i})) \right)$$
$$\theta_{k+1} \leftarrow \theta_{k} + \eta \sum_{i} \nabla_{\theta} \log \pi_{\theta_{k}}(a_{i}|s_{i}) \mathbf{R}_{i}$$

$$\theta_{k+1} \leftarrow \theta_k + \eta \sum_i \nabla_\theta \log \pi_{\theta_k}(a_i|s_i) \mathbf{R}_i$$

 $R_i \coloneqq$ sum of trajectory reward from (s_i, a_i)

NPG, PG

Actor-Critic Approach



A2C, PPO

Natural Policy Gradient or Policy Gradient

$$\theta_{k+1} \leftarrow \underset{\theta}{\operatorname{argmax}} \left(V^{\pi_{\theta}} - V^{\pi_{\theta_{k}}} - \frac{1}{\eta} D(\theta, \theta_{k}) \right)$$

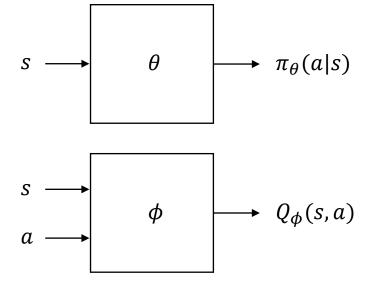
or $\theta_{k+1} \leftarrow \theta_{k} + \eta \nabla_{\theta} V^{\pi_{\theta_{k}}}$

Estimate from samples using **On-Policy Policy Evaluation**

$$\theta_{k+1} \leftarrow \operatorname{argmax}_{\theta} \sum_{i} \left(\frac{\pi_{\theta}(a_{i}|s_{i})}{\pi_{\theta_{k}}(a_{i}|s_{i})} A_{i} - \frac{1}{\eta} D(\pi_{\theta}(\cdot|s_{i}), \pi_{\theta_{k}}(\cdot|s_{i})) \right)$$
$$\theta_{k+1} \leftarrow \theta_{k} + \eta \sum_{i} \nabla_{\theta} \log \pi_{\theta_{k}}(a_{i}|s_{i}) A_{i}$$

 $A_i \coloneqq \text{advantage estimator, e.g., } r_i + \gamma V_{\phi}(s'_i) - V_{\phi}(s_i)$

Actor-Critic Approach



+ target network, replay buffer, double Q-network

DDPG, TD3, SAC

Natural Policy Gradient or Policy Gradient

$$\theta_{k+1} \leftarrow \underset{\theta}{\operatorname{argmax}} \left(V^{\pi_{\theta}} - V^{\pi_{\theta_{k}}} - \frac{1}{\eta} D(\theta, \theta_{k}) \right)$$

or $\theta_{k+1} \leftarrow \theta_{k} + \eta \nabla_{\theta} V^{\pi_{\theta_{k}}}$

Estimate from samples using Off-Policy Policy Evaluation

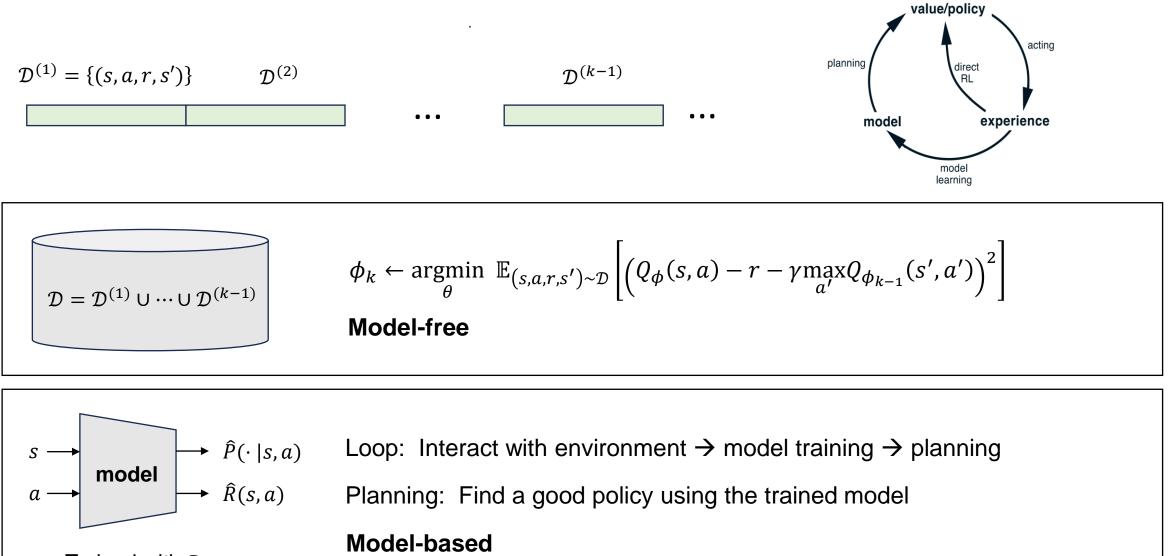
$$\theta_{k+1} \leftarrow \operatorname{argmax}_{\theta} \sum_{i} \left(\frac{\pi_{\theta}(a_{i}|s_{i})}{\pi_{\theta_{k}}(a_{i}|s_{i})} \boldsymbol{Q}_{i} - \frac{1}{\eta} D(\pi_{\theta}(\cdot|s_{i}), \pi_{\theta_{k}}(\cdot|s_{i})) \right)$$
$$\theta_{k+1} \leftarrow \theta_{k} + \eta \sum_{i} \nabla_{\theta} \log \pi_{\theta_{k}}(a_{i}|s_{i}) \boldsymbol{Q}_{i}$$
$$\boldsymbol{Q}_{i} \coloneqq Q_{\phi}(s_{i}, a_{i})$$

Some Topics Not Covered

Topics Not Covered

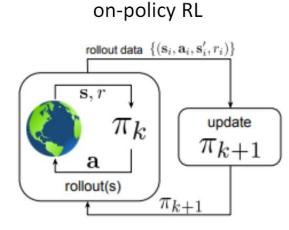
- Model-Based Approach
- Offline RL
- Imitation Learning
- Inverse RL
- Distributional RL
- Hierarchical RL

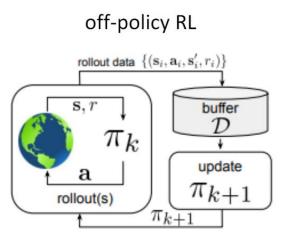
Model-Based Reinforcement Learning



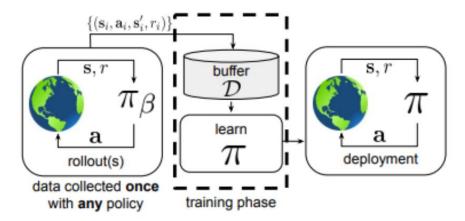
Trained with \mathcal{D}

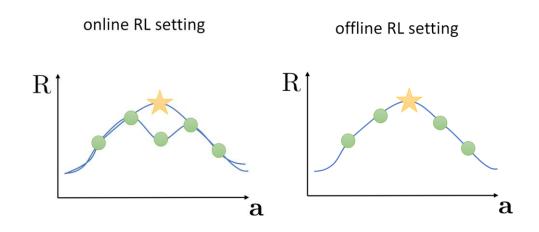
Offline Reinforcement Learning





offline reinforcement learning





Additional challenge compared to online RL: errors are not corrected

CS 285 Berkeley Lecture 15

Offline RL: Be Conservative and Pessimistic

Conservative Q-learning:

For k = 1, 2, ...

Obtain ϕ_k by minimizing $L(\phi_k)$ Let π = Greedy(Q_{ϕ_k})

$$L(\phi) = \sum_{i} \left(Q_{\phi}(s,a) - r - \mathbb{E}_{a' \sim \pi(\cdot|s')} \left[Q_{\phi_{k-1}}(s',a') \right] \right)^2 + \alpha \left(\max_{\mu} \mathbb{E}_{\tilde{a} \sim \mu(\cdot|s)} \left[Q_{\phi}(s,\tilde{a}) \right] - Q_{\phi}(s,a) \right)$$

Kumar, Zhou, Tucker, Levine. Conservative Q-Learning for Offline Reinforcement Learning. 2020.

Goal of This Course (from the first lecture)

We will

- Provide a systematic overview of basic techniques in RL
- Provide **reasonings** for the design of RL algorithms
- Provide mathematical tools to analyze RL algorithms

After taking this course, you should be able to

- Feel grounded when reading other RL materials
- Implement basic RL algorithms
- Know **design principles** of RL algorithms

Final Remark: RL with reward has sparse signal

SL feedback: "what to do in each step" RL feedback: "how you're doing overall"

"Pure" Reinforcement Learning (cherry)

- The machine predicts a scalar reward given once in a while.
- A few bits for some samples

Supervised Learning (icing)

- The machine predicts a category or a few numbers for each input
- Predicting human-supplied data
- ▶ 10→10,000 bits per sample

Unsupervised/Predictive Learning (cake)

- The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
- Millions of bits per sample

SL and RL differ because the supervision signals are different.

Our goal is to learn decision-making. There can be many **supervision signals**:

- Demonstration
- Language
- Preference feedback

There is also **offline data** not directly related to the task, but useful in building a world model.

Try to combine RL with other ML techniques to accomplish your task.

(Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)