Approximate Value Iteration and Variants

Chen-Yu Wei

Value Iteration

$$V_{(s)}^{(k)} \leftarrow \max_{a} \left\{ \underbrace{R(s_{(a)} + \gamma \sum_{s'} P(s'|s, a) V_{(s',a')}^{(k-1)}}_{\mathbb{Q}^{(k)}(s, a)} \right\}$$
For $k = 1, 2, ...$
 $\forall s, a, \qquad Q^{(k)}(s, a) \leftarrow \underbrace{R(s, a)}_{\text{unknown}} + \gamma \sum_{s'} \underbrace{P(s'|s, a)}_{\text{unknown}} \max_{a'} Q^{(k-1)}(s', a')$

Idea: In each iteration, use multiple samples to estimate the right-hand side.

Least-Square Value Iteration (LSVI)

For
$$k = 1, 2, ...$$

Obtain n samples $\mathcal{D}^{(k)} = \{(s_i, a_i, r_i, s'_i)\}_{i=1}^n$ where $\mathbb{E}[r_i] = R(s_i, a_i), s'_i \sim P(\cdot | s_i, a_i)$
Perform regression on $\mathcal{D}^{(k)}$ to find $Q^{(k)}$ such that
 $Q^{(k)}(s, a) \approx R(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} \left[\max_{a'} Q^{(k-1)}(s', a') \right]$
Tabular $\forall s, a, \quad Q^{(k)}(s, a) = \frac{\sum_{i=1}^n \mathbb{I}\{(s_i, a_i) = (s, a)\}}{\sum_{i=1}^n \mathbb{I}\{(s_i, a_i) = (s, a)\}} \left(r_i + \gamma \max_{a'} Q^{(k-1)}(s'_i, a) \right)^{\mathcal{E}} \frac{f(s_i) + y' \mathcal{E}}{s' \sim \mathcal{E}(s_i)} \left[\frac{f(s_i) + y' \mathcal{E}}{s' \sim \mathcal{E}(s_i)} \left[\frac{f(s_i) + y' \mathcal{E}}{s' \sim \mathcal{E}(s_i)} \right] \right]$
General function approximation $\theta_k = \operatorname{argmin}_{\theta} \sum_{i=1}^n \left(Q_{\theta}(s_i, a_i) - r_i - \gamma \max_{a'} Q_{\theta_{k-1}}(s'_i, a') \right)^2$
Linear function approximation $\theta_k = \left(\lambda I + \sum_{i=1}^{(n^{k)}} \phi(s_i, a_i) \phi(s_i, a_i)^{\mathsf{T}} \right)^{-1} \left(\sum_{i=1}^{(n^{k)}} \phi(s_i, a_i) \left(r_i + \gamma \max_{a'} \phi(s'_i, a')^{\mathsf{T}} \theta_{k-1} \right)$

Comparison with Contextual Bandits

Env

 x_t

 a_t

 r_t

Exploration

$$p_t(a) \propto e^{\lambda \hat{R}(x_t,a)}$$

 $a_t = \operatorname*{argmax}_a \left(\hat{R}(x_t,a) + b_t(a) \right)$
...

Regression Fit $\hat{R}(x_i, a_i) \approx r_i$

Value Iteration + Regression For k = 1, 2, ...Fit $Q^{(k)}(s_i, a_i) \approx r_i + \gamma \max_{a'} Q^{(k-1)}(s'_i, a')$

It is Valid to Reuse Samples

LSVI that Reuses All Previous Samples

For
$$k = 1, 2, ...$$

Obtain n samples $\mathcal{D}^{(k)} = \{(s_i, a_i, r_i, s'_i)\}_{i=1}^n$ where $\mathbb{E}[r_i] = R(s_i, a_i), s'_i \sim P(\cdot | s_i, a_i)$
Perform **regression** on $\mathcal{D}^{(1)} \cup \mathcal{D}^{(2)} \cup \cdots \cup \mathcal{D}^{(k)}$ to find $Q^{(k)}$ such that
 $Q^{(k)}(s, a) \approx R(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} \left[\max_{a'} Q^{(k-1)}(s', a') \right]$

In practice, we reuse "recent" data but not all previous data (discussed later).

Analysis of LSVI under Certain Assumptions

To theoretically show that LSVI converges to the optimal value function, we will make some assumptions to ensure the following holds for all iteration k:

$$Q^{(k)}(s,a) \approx R(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \left[\max_{a'} Q^{(k-1)}(s',a') \right]$$

Linear case:

$$\phi(s,a)^{\mathsf{T}}\theta_k \approx R(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \left[\max_{a'} \phi(s',a')^{\mathsf{T}}\theta_{k-1} \right]$$

Analysis of LSVI under Certain Assumptions $\varphi(x, a) = \int \int \frac{1}{2} dx dx$

1. Bellman Completeness Assumption: For any $\theta \in \mathbb{R}^d$, there exists a $\theta' \in$ \mathbb{R}^d such that

$$b(s,a)^{\mathsf{T}}\theta' = R(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \left[\max_{a'} \phi(s',a')^{\mathsf{T}}\theta \right] \qquad \forall s, \alpha$$

This ensures that no matter what
$$\theta_{k-1}$$
 is, there always exists a θ_k^* such that
 $\theta_{k,s,h} \leftarrow R(S,h) \leftarrow R(S,h) \leftarrow \Phi_k^* = R(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \left[\max_{a'} \phi(s',a')^{\mathsf{T}} \theta_{k-1} \right]$

This is similar to the linear assumption $\phi(s, a)^{\top} \theta^{\star} = R(s, a)$ in contextual bandits, but is qualitatively stronger because the assumption require "for any θ ".

 $d = S \cdot A$

Analysis of LSVI under Certain Assumptions

2. Coverage Assumption: The dataset $\mathcal{D}^{(k)}$ collected up to *k*-th iteration allows us to find θ_k so that for any *s*, *a*,

$$\left|\phi(s,a)^{\mathsf{T}}\theta_{k}-\phi(s,a)^{\mathsf{T}}\theta_{k}^{\star}\right|\leq\epsilon_{\mathrm{stat}}$$

(Similar to linear contextual bandits analysis) With

$$\theta_{k} = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{n} \left(\phi_{i}^{\mathsf{T}} \theta - \left(r_{i} + \gamma \max_{a'} \phi(s_{i}', a')^{\mathsf{T}} \theta_{k-1} \right) \right)^{2} + \lambda \|\theta\|^{2}$$

Expectation = $\phi_{i}^{\mathsf{T}} \theta_{k}^{\star}$

we have $|\phi(s,a)^{\top}(\theta_k - \theta_k^{\star})| \leq \sqrt{\beta} \|\phi(s,a)\|_{\Lambda^{-1}}$ where $\Lambda = \lambda I + \sum_{i=1}^n \phi_i \phi_i^{\top}$

In linear CB, we did not make such an assumption. What we did there is adding $\sqrt{\beta} \|\phi(s,a)\|_{\Lambda^{-1}}$ as **exploration bonus**, which encourages exploration and aims to make $\sqrt{\beta} \|\phi(s,a)\|_{\Lambda^{-1}}$ small for all *s*, *a*.

Analysis of LSVI under Certain Assumptions (Recap)

1. Bellman Completeness (i.e., function approximation is sufficiently expressive)

$$\forall \theta_{k-1}, \exists \theta_k^{\star} \qquad \phi(s, a)^{\mathsf{T}} \theta_k^{\star} = R(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[\max_{a'} \phi(s', a')^{\mathsf{T}} \theta_{k-1} \right] \quad \forall s, a$$

$$\left[\forall \theta_{k-1}, \exists \theta_k^{\star} \qquad Q_{\theta_k^{\star}}(s, a) = R(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[\max_{a'} Q_{\theta_{k-1}}(s', a') \right] \quad \forall s, a \right]$$

2. Coverage Assumption (i.e., the collected data is sufficient and explores the stateaction space) Regression over $\mathcal{D}^{(k)}$ allows us to find θ_k such that

$$\left| \phi(s,a)^{\mathsf{T}} \theta_k - \phi(s,a)^{\mathsf{T}} \theta_k^{\star} \right| \le \epsilon_{\text{stat}} \quad \forall s,a$$
$$\left(\left| Q_{\theta_k}(s,a) - Q_{\theta_k^{\star}}(s,a) \right| \le \epsilon_{\text{stat}} \quad \forall s,a \right)$$

The two assumptions jointly imply $Q_{\theta_k}(s, a) \approx R(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[\max_{a'} Q_{\theta_{k-1}}(s, a) \right]$

Analysis of LSVI under Certain Assumptions

Under Bellman completeness and coverage assumptions, LSVI ensures

$$\left\| Q^{(k)} - Q^{\star} \right\|_{\infty} \le O\left(\gamma^{k} \left\| Q^{(0)} - Q^{\star} \right\|_{\infty} + \frac{\epsilon_{\text{stat}}}{1 - \gamma} \right)$$

where
$$||Q^{(k)} - Q^{\star}||_{\infty} \coloneqq \max_{s,a} |Q^{(k)}(s,a) - Q^{\star}(s,a)|$$

Also, the greedy policy $\pi^{(k)}(s) = \operatorname{argmax} Q^{(k)}(s, a)$ satisfies for all s,

$$V^{\star}(s) - V^{\pi^{(k)}}(s) \le O\left(\gamma^{k} \left\| Q^{(0)} - Q^{\star} \right\|_{\infty} + \frac{\epsilon_{\text{stat}}}{1 - \gamma}\right)$$

$$\begin{array}{c|c} (u) & (u)$$

Notes on Exploration in MDPs

The Coverage Assumption

$$|\phi(s,a)^{\top}\theta_k - \phi(s,a)^{\top}\theta_k^{\star}| \le \epsilon_{\text{stat}} \quad \forall s,a$$

 $\theta_k: \text{ our regression solution}$
 $\theta_k^{\star}: \text{ ground truth}$

- Requires the state-action space to be explored
 - Tabular case: every state-action pair needs to be visited many times
 - Linear case: the feature space $\{\phi(s, a)\}_{s,a}$ needs to be explored in all directions

P+ (4) x exp () R (4)

- In bandits, we focus on "action-space" exploration
 - Exploration bonus (UCB, Thompson Sampling) $a_t = argmax \left\{ \frac{R}{R}(a) + b_t(a) \right\}$
 - Randomization (ϵ -greedy, Boltzmann exploration, inverse-gap weighting)
- In MDPs, we further need "state-space" exploration

Removing the Coverage Assumption

Use exploration bonus in LSVI: **Tabular Case:** $\tilde{R}(s,a) = \hat{R}(s,a) + \frac{\text{const}}{\sqrt{n(s,a)}}$ **Linear MDP** (a class of MDPs that satisfies linear Bellman completeness): $\tilde{R}(s,a) = \phi(s,a)^{\mathsf{T}}\hat{\theta} + \text{const} \|\phi(s,a)\|_{\Lambda^{-1}}$ where $\Lambda = I + \sum_{i=1}^{t-1} \phi(s_i,a_i) \phi(s_i,a_i)^{\mathsf{T}}$

UCB in tabular MDP: Minimax regret bounds for reinforcement learning. 2017.

UCB in linear MDP: Provably efficient reinforcement learning with linear function approximation. 2019.

TS in tabular MDP: Near-optimal randomized exploration for tabular Markov decision processes. 2021.

TS in linear MDP: Frequentist regret bounds for randomized least-squares value iteration. 2020.

Exploration bonus for general function approximation (deep learning):

Unifying Count-Based Exploration and Intrinsic Motivation

Curiosity-driven Exploration by Self-supervised Prediction

Exploration by Random Network Distillation

Summary for LSVI

Value Iteration + Regression

Summary for LSVI

Value Iteration + Regression

Bellman completeness assumption $\Rightarrow \exists \theta_k^{\star}, \forall s, a, Q_{\theta_k^{\star}}(s, a) = R(s, a) + \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[\max_{a'} Q_{\theta_{k-1}}(s', a') \right]$ (function expressiveness assumption)

Coverage assumption $\Rightarrow \forall s, a, |Q_{\theta_k}(s, a) - Q_{\theta_k^{\star}}(s, a)| \le \epsilon_{\text{stat}}$ (exploration assumption)

Summary for LSVI

Exploration Mechanism

- 1. Randomized policies (ϵ -Greedy, Boltzmann exploration, inverse-gap weighting)
 - perform local exploration
- 2. Exploration bonus (UCB) / Randomized values (TS)
 - can give rigorous regret bounds for tabular MDPs and MDPs with linear Bellman completeness
 - perform wider state space exploration

Other names for LSVI: Fitted Q Iteration, Least-square Q Iteration

Q-Learning

Q-Learning (Watkins, 1992) $\widehat{R}^{(i)}(\alpha) = (1-\alpha) \widehat{R}^{(i-1)}(\alpha) + \alpha Y_{i}(\alpha)$ $\Rightarrow \widehat{R}^{(i)}(\alpha) = \sum_{j=1}^{i} \alpha (1-\alpha)^{i-j} Y_{j}(\alpha)$ $\xrightarrow{(1-\alpha)} (1-\alpha) \widehat{R}^{(i-2)}(\alpha) + \alpha Y_{i-1}(\alpha)$ $\xrightarrow{(1-\alpha)} (1-\alpha) \widehat{R}^{(i-2)}(\alpha) + \alpha Y_{i-1}(\alpha)$

For i = 1, 2, ...

Obtain sample
$$(s_i, a_i, r_i, s'_i)$$

$$Q^{(i)}(s_i, a_i) \leftarrow (1 - \alpha_i)Q^{(i-1)}(s_i, a_i) + \alpha_i \left(r_i + \gamma \max_a Q^{(i-1)}(s'_i, a)\right)$$

$$Q^{(i)}(s, a) \leftarrow Q^{(i-1)}(s, a) \quad \forall (s, a) \neq (s_i, a_i)$$

cf. LSVI:

$$\forall s, a, \qquad Q^{(k)}(s, a) \leftarrow \frac{\sum_{i=1}^{n_k} \mathbb{I}\{(s_i, a_i) = (s, a)\} \left(r_i + \gamma \max_{a'} Q^{(k-1)}(s'_i, a')\right)}{\sum_{i=1}^{n_k} \mathbb{I}\{(s_i, a_i) = (s, a)\}}$$

Q-Learning (Watkins, 1992)

Fixed an (s,a). Let's see what Q (s,a)

Assume that before iteration K. (Sia) has been visited in iteration &1, Jz, ..., Jz < K

$$Q^{(\kappa)}(s_{i\alpha}) = \sum_{j=1}^{T} \alpha (l-\alpha)^{T-i} \left(\begin{array}{c} Y_{j+1} + Y_{j} \\ Y_{j+1} + Y_{j} \\ \eta \\ \eta \\ R(s_{i\alpha}) \end{array} \right)$$

Q-Learning (Watkins, 1992)

Suppose that $\alpha_i = \frac{1}{i^{\beta}}$ for some $\frac{1}{2} < \beta \le 1$, and every state-action pair is visited infinitely often. Then

 $Q^{(i)}(s,a) \to Q^{\star}(s,a) \quad \forall s,a.$

Gen Li, Yuting Wei, Yuejie Chi, Yuantao Gu, Yuxin Chen. <u>Sample Complexity of Asynchronous Q-</u> <u>Learning: Sharper Analysis and Variance Reduction</u>. 2020.

Watkins's Q-Learning + Linear Function Approximation

For
$$i = 1, 2, ...$$

Obtain sample (s_i, a_i, r_i, s'_i)
 $\theta_i \leftarrow \theta_{i-1} - \alpha \nabla_{\theta} \left(\phi(s_i, a_i)^{\top} \theta - r_i - \gamma \max_a \phi(s'_i, a)^{\top} \theta_{i-1} \right)^2 \Big|_{\theta = \theta_{i-1}}$
 $= \theta_{i-1} - 2\alpha \left(\phi(s_i, a_i)^{\top} \theta_{i-1} - r_i - \gamma \max_a \phi(s'_i, a)^{\top} \theta_{i-1} \right) \phi(s_i, a_i)$

c.f. LSVI:
$$\theta_k = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{n_k} \left(\underbrace{\phi(s_i, a_i)^{\top} \theta}_{Q_{\theta}(s_i, a_i)} - r_i - \gamma \underset{a'}{\operatorname{max}} \phi(s_i', a')^{\top} \theta_{k-1} \right)^2$$

Watkins's Q-Learning + LFA Does Not Converge

Even when Bellman completeness and coverage assumptions hold

Kn = 100000

2

The Effect of Fixing the Target

For
$$k = 1, 2, ..., K$$

$$\begin{array}{c} \theta_{k-1} \leftarrow \theta \\ \hline \\ \text{For } i = 1, ..., n: \\ \text{Sample } (s, a, r, s') \sim \text{Uniform } \{(s_1, a, 1, s_2), (s_2, a, 0, s_2)\} \\ \theta \leftarrow \theta - \alpha \left(\phi(s, a)^\top \theta - r - \gamma \phi(s', a)^\top \theta_{k-1}\right) \phi(s, a) \\ \hline \\ \theta_k \leftarrow \theta \end{array}$$

The Effect of Fixing the Target

ハニし

n=150

n=210Evolution of $\theta(0)$ and $\theta(1)$ over time $\theta(1)$ over time $\theta_{tar}(1)$ over time $\theta_{tar}(1)$ over time

40000

Iteration

-2 -

-4

ò

20000

60000

80000

100000

n=190

Watkins's Q-Learning vs. LSVI

Under coverage assumption

(i.e., the data { (s_i, a_i, r_i, s_i') } sufficiently cover every state-action pair / feature space)

	LSVI	Watkins's Q-Learning
Convergence in the tabular case	$Q^{(k)} \to Q^{\star}$	$Q^{(k)} \to Q^{\star}$
Convergence under function approximation	$Q^{(k)} \rightarrow Q^*$ under BC	Diverges even with BC
Update style	Two time-scale	Single time-scale

Techniques for Function Approximation (Deep Q-Learning)

Use LSVI Updates

For k = 1, 2, ...Collect samples $\mathcal{D}^{(k)}$ (consisting of (s, a, r, s') tuples) using exploratory policy Perform regression over dataset $\mathcal{D}^{(1)} \cup \mathcal{D}^{(2)} \cup \cdots \cup \mathcal{D}^{(k)}$: $\theta_k = \operatorname{argmin}_{\theta} \sum_{(s, a, r, s') \in \mathcal{D}} \left(Q_{\theta}(s, a) - r - \gamma \max_{a'} Q_{\theta_{k-1}}(s', a') \right)^2$ Regression

Implement Regression with SGD

For k = 1, 2, ...Collect samples $\mathcal{D}^{(k)}$ (consisting of (s, a, r, s') tuples) using exploratory policy $\theta_{k-1} \leftarrow \theta$ For i = 1, 2, ..., n: Randomly draw a minibatch $\{(s_i, a_i, r_i, s'_i)\}_{i=1}^b$ from $\mathcal{D}^{(1)} \cup \mathcal{D}^{(2)} \cup \cdots \cup \mathcal{D}^{(k)}$ $\theta \leftarrow \theta - \alpha \sum_{i=1}^b \nabla_{\theta} \left(Q_{\theta}(s_i, a_i) - r_i - \gamma \max_{a'} Q_{\theta_{k-1}}(s'_i, a') \right)^2$

Typical Implementation of Deep Q-Learning

Interleaving data collection and SGD

For i = 1, 2, ...

Obtain a new sample (s, a, r, s') and insert it to a **replay buffer** \mathcal{B} Randomly draw a minibatch $\{(s_i, a_i, r_i, s'_i)\}_{i=1}^b$ from \mathcal{B} and perform

$$\theta \leftarrow \theta - \alpha \sum_{i=1}^{b} \nabla_{\theta} \left(Q_{\theta}(s_i, a_i) - r_i - \gamma \max_{a'} Q_{\theta_{\text{tar}}}(s'_i, a') \right)^2$$

// Option 1
If $i \mod n = 0$: $\theta_{tar} \leftarrow \theta$ // Option 2 $\tau = 0.999$

 $\theta_{tar} \leftarrow \tau \theta_{tar} + (1 - \tau) \theta$

The following update converges but to the wrong solution when the transition is non-deterministic:

$$\theta \leftarrow \theta - \alpha \sum_{i=1}^{b} \nabla_{\theta} \left(Q_{\theta}(s_i, a_i) - r_i - \gamma \max_{a'} Q_{\theta}(s'_i, a') \right)^2$$

See <u>Sutton & Barto</u> Section 11.5 or <u>Nan Jiang's</u> <u>lecture note</u> (P.17 bellman error minimization)

Target Network and Replay Buffer

Q-Network Design

(v, c) = (v, a)

Deep Q-Network

Deep Deterministic Policy Gradient

(covered later in the semester)

Replay Buffer and Sampling

Standard implementation: First-in-first-out queue + Uniform sampling

- The data collected from π_{θ} is not i.i.d.
- Uniform sampling from a large pool makes the data more similar to i.i.d. the convergence of SGD requires samples to be i.i.d.

Prioritized replay: priority queue + prioritized sampling + importance weight

- Priority queue with priority proportional to $|\delta_i|$, where $\delta_i = Q_\theta(s_i, a_i) r_i \gamma \max_{a'} Q_{\theta_{tar}}(s'_i, a')$
- Sample from the buffer with probability $P_i \propto |\delta_i|^{\alpha}$
- Perform SGD with importance weight $w_i = \left(\frac{P_i}{\max_j P_j}\right)^{-\beta}$, i.e.,

$$\theta \leftarrow \theta - \alpha \, w_i \nabla_\theta \left(Q_\theta(s_i, a_i) - r_i - \gamma \max_{a'} Q_{\theta_{\text{tar}}}(s'_i, a') \right)^2$$

Schaul, Quan, Antonoglou, Silver. Prioritized Experience Replay. 2015.

More on DQN

Recall Our Theoretical Analysis for LSVI

We made two assumptions:

- Bellman completeness (the expressiveness of function approximation)
- State-action space / feature space is sufficiently explored

Then we argued that with these assumptions, we can ensure

$$\underbrace{Q_{\theta_k}(s,a) \approx R(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \left[\max_{a'} Q_{\theta_{k-1}}(s',a') \right]}_{q'} \quad \forall s. a$$

However, these strong assumptions rarely hold.

What happens if they do not hold?

Mitigating the over-estimation bias of DQN

Mitigating the over-estimation bias of DQN

A More Practical Solution

Double Deep Q-Network (DDQN)

DDQN mitigates over-estimation

Hado van Hasselt, Arthur Guez, David Silver. Deep Reinforcement Learning with Double Q-learning. 2015.

DDQN mitigates over-estimation

Hado van Hasselt, Arthur Guez, David Silver. Deep Reinforcement Learning with Double Q-learning. 2015.

Summary for Deep Q-Learning (1/3)

- Deep Q-learning is performing approximate value iteration
- Ideally, it would like generate $\theta_1, \theta_2, \dots$ that approximates

$$Q_{\theta_k}(s,a) \approx R(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \left[\max_{a'} Q_{\theta_{k-1}}(s',a') \right] \quad \forall s,a$$

- To successfully achieve this, we need
 - Sufficiently expressive function approximation (Bellman completeness)
 - Sufficient exploration over state-actions

Summary for Deep Q-Learning (2/3)

• There are two candidate updates

$$\theta_{k} = \underset{\theta}{\operatorname{argmin}} \sum_{(s,a,r,s')} \left(Q_{\theta}(s,a) - r - \gamma \max_{a'} Q_{\theta_{k-1}}(s',a') \right)^{2}$$
Least-Square Value iteration
$$\theta_{k} = \theta_{k} - \alpha \nabla_{\theta} \left(Q_{\theta}(s,a) - r - \gamma \max_{a'} Q_{\theta_{k-1}}(s',a') \right)^{2}$$
Watkins's Q-Learning

Only LSVI is stable under function approximation

- In order to implement LSVI, we use double-loop (double-time-scale) updates, where the target network is updated in a slow rate.
- When target network is fixed, the main network uses SGD to perform regression. We use **replay buffer + sampling** to **reuse data** and **decorrelate samples**.

Summary for Deep Q-Learning (3/3)

• When the idealized update

$$Q_{\theta_k}(s,a) \approx R(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \left[\max_{a'} Q_{\theta_{k-1}}(s',a') \right] \quad \forall s,a$$

is not perfect, there is over-estimation bias. We can use **double DQN** to mitigate the bias.

Combining More Techniques in DQN

Rainbow: Combining Improvements in Deep Reinforcement Learning. 2018.

A Remark on (Deep) Q-Learning in Episodic Settings

A Remark on Model-Free vs. Model-Based Approaches

