
Approximate Value Iteration and Variants
Chen-Yu Wei

Value Iteration

For 𝑘 = 1, 2, …

∀𝑠, 𝑎, 𝑄 𝑘 𝑠, 𝑎 ← 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

 𝑄(𝑘−1)(𝑠′, 𝑎′)

unknown unknown

Idea: In each iteration, use multiple samples to estimate the right-hand side.

Least-Square Value Iteration (LSVI)

For 𝑘 = 1, 2, …

Perform regression on 𝒟
(𝑘)

 to find 𝑄(𝑘) such that

𝑄(𝑘) 𝑠, 𝑎 ≈ 𝑅(𝑠, 𝑎) + 𝛾𝔼𝑠′∼𝑃(⋅|𝑠,𝑎) max
𝑎′

 𝑄 𝑘−1 (𝑠′, 𝑎′)

Obtain 𝑛 samples 𝒟
(𝑘)

= 𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖
′

𝑖=1
𝑛 where 𝔼 𝑟𝑖 = 𝑅 𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖

′ ∼ 𝑃(⋅ |𝑠𝑖 , 𝑎𝑖)

∀𝑠, 𝑎, 𝑄(𝑘) 𝑠, 𝑎 =

σ𝑖=1
𝑛 𝕀 𝑠𝑖 , 𝑎𝑖 = 𝑠, 𝑎 𝑟𝑖 + 𝛾 max

𝑎′
 𝑄(𝑘−1) 𝑠𝑖

′, 𝑎′

σ𝑖=1
𝑛 𝕀 𝑠𝑖 , 𝑎𝑖 = 𝑠, 𝑎

 Tabular

𝜃𝑘 = 𝜆𝐼 + ෍

𝑖=1

𝑛

𝜙 𝑠𝑖 , 𝑎𝑖 𝜙 𝑠𝑖 , 𝑎𝑖
⊤

−1

෍

𝑖=1

𝑛

𝜙 𝑠𝑖 , 𝑎𝑖 𝑟𝑖 + 𝛾 max
𝑎′

 𝜙 𝑠𝑖
′, 𝑎′ ⊤𝜃𝑘−1Linear function approximation

𝜃𝑘 = argmin
𝜃

 ෍

𝑖=1

𝑛

𝑄𝜃 𝑠𝑖 , 𝑎𝑖 − 𝑟𝑖 − 𝛾max
𝑎′

 𝑄𝜃𝑘−1
𝑠𝑖

′, 𝑎′ 2
General function approximation

We want these samples to be “exploratory”

Comparison with Contextual Bandits

Regression

𝑥𝑡

𝑎𝑡

𝑟𝑡

Exploration

Env
Fit ෠𝑅 𝑥𝑖 , 𝑎𝑖 ≈ 𝑟𝑖

𝑝𝑡 𝑎 ∝ 𝑒𝜆 ෠𝑅(𝑥𝑡,𝑎)

𝑎𝑡 = argmax
𝑎

෠𝑅 𝑥𝑡, 𝑎 + 𝑏𝑡(𝑎)

…

Value Iteration + Regression 𝑠𝑡

𝑎𝑡

𝑟𝑡

Exploration

Env For 𝑘 = 1, 2, …
𝑝𝑡 𝑎 ∝ 𝑒𝜆 𝑄(𝑘)(𝑠𝑡,𝑎)

𝑎𝑡 = argmax
𝑎

𝑄(𝑘) 𝑠𝑡 , 𝑎 + 𝑏𝑡(𝑎)

…
Fit 𝑄 𝑘 𝑠𝑖 , 𝑎𝑖 ≈ 𝑟𝑖 + 𝛾 max

𝑎′
𝑄 𝑘−1 (𝑠𝑖

′, 𝑎′)

It is Valid to Reuse Samples

... ...

𝑄(2) 𝑄(3) 𝑄(𝑘)𝑄(1)

𝒟(1) = (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖′) 𝒟(2) 𝒟(𝑘−1)

(e.g., using 𝜖-greedy)

𝑄(𝑘−1)

LSVI that Reuses All Previous Samples

In practice, we reuse “recent” data but not all previous data (discussed later).

For 𝑘 = 1, 2, …

Perform regression on 𝒟
(1)

⋃ 𝒟
2

⋃⋯ ⋃ 𝒟
(𝑘)

 to find 𝑄(𝑘) such that

𝑄(𝑘) 𝑠, 𝑎 ≈ 𝑅(𝑠, 𝑎) + 𝛾𝔼𝑠′∼𝑃(⋅|𝑠,𝑎) max
𝑎′

 𝑄 𝑘−1 (𝑠′, 𝑎′)

Obtain 𝑛 samples 𝒟
(𝑘)

= 𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖
′

𝑖=1
𝑛 where 𝔼 𝑟𝑖 = 𝑅 𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖

′ ∼ 𝑃(⋅ |𝑠𝑖 , 𝑎𝑖)

Analysis of LSVI under Certain Assumptions

To theoretically show that LSVI converges to the optimal value function, we will

make some assumptions to ensure the following holds for all iteration 𝑘:

𝑄 𝑘 𝑠, 𝑎 ≈ 𝑅(𝑠, 𝑎) + 𝛾 𝔼𝑠′∼𝑃(⋅|𝑠,𝑎) max
𝑎′

 𝑄 𝑘−1 (𝑠′, 𝑎′)

𝜙 𝑠, 𝑎 ⊤𝜃𝑘 ≈ 𝑅(𝑠, 𝑎) + 𝛾 𝔼𝑠′∼𝑃(⋅|𝑠,𝑎) max
𝑎′

 𝜙 𝑠′, 𝑎′ ⊤𝜃𝑘−1

Linear case:

Analysis of LSVI under Certain Assumptions

1. Bellman Completeness Assumption: For any 𝜃 ∈ ℝ𝑑, there exists a 𝜃′ ∈
ℝ𝑑 such that

𝜙 𝑠, 𝑎 ⊤𝜃′ = 𝑅(𝑠, 𝑎) + 𝛾 𝔼𝑠′∼𝑃(⋅|𝑠,𝑎) max
𝑎′

 𝜙 𝑠′, 𝑎′ ⊤𝜃

This ensures that no matter what 𝜃𝑘−1 is, there always exists a 𝜃𝑘
⋆ such that

𝜙 𝑠, 𝑎 ⊤𝜃𝑘
⋆ = 𝑅(𝑠, 𝑎) + 𝛾 𝔼𝑠′∼𝑃(⋅|𝑠,𝑎) max

𝑎′
 𝜙 𝑠′, 𝑎′ ⊤𝜃𝑘−1

This is similar to the linear assumption 𝜙 𝑠, 𝑎 ⊤𝜃⋆ = 𝑅(𝑠, 𝑎) in contextual bandits, but is

qualitatively stronger because the assumption require “for any 𝜃”.

Analysis of LSVI under Certain Assumptions

2. Coverage Assumption: The dataset 𝒟(𝑘) collected up to 𝑘-th iteration

allows us to find 𝜃𝑘 so that for any 𝑠, 𝑎,

𝜙 𝑠, 𝑎 ⊤𝜃𝑘 − 𝜙 𝑠, 𝑎 ⊤𝜃𝑘
⋆ ≤ 𝜖stat

(Similar to linear contextual bandits analysis) With

𝜃𝑘 = argmin
𝜃

 ෍

𝑖=1

𝑛

𝜙𝑖
⊤𝜃 − 𝑟𝑖 + 𝛾 max

𝑎′
 𝜙 𝑠𝑖

′, 𝑎′ ⊤𝜃𝑘−1

2

+ 𝜆 𝜃 2

Expectation = 𝜙𝑖
⊤𝜃𝑘

⋆

𝜙 𝑠, 𝑎 ⊤ 𝜃𝑘 − 𝜃𝑘
⋆ ≲ 𝛽 𝜙 𝑠, 𝑎 Λ−1we have where Λ = 𝜆𝐼 + σ𝑖=1

𝑛 𝜙𝑖𝜙𝑖
⊤

In linear CB, we did not make such an assumption. What we did there is adding 𝛽 𝜙 𝑠, 𝑎 Λ−1 as

exploration bonus, which encourages exploration and aims to make 𝛽 𝜙 𝑠, 𝑎 Λ−1 small for all 𝑠, 𝑎.

Analysis of LSVI under Certain Assumptions (Recap)

1. Bellman Completeness (i.e., function approximation is sufficiently expressive)

∀𝜃𝑘−1, ∃𝜃𝑘
⋆ 𝜙 𝑠, 𝑎 ⊤𝜃𝑘

⋆ = 𝑅 𝑠, 𝑎 + 𝛾 𝔼𝑠′∼𝑃(⋅|𝑠,𝑎) max
𝑎′

 𝜙 𝑠′, 𝑎′ ⊤𝜃𝑘−1 ∀𝑠, 𝑎

𝑄𝜃𝑘
⋆ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 𝔼𝑠′∼𝑃(⋅|𝑠,𝑎) max

𝑎′
 𝑄𝜃𝑘−1

𝑠′, 𝑎′ ∀𝑠, 𝑎∀𝜃𝑘−1, ∃𝜃𝑘
⋆

2. Coverage Assumption (i.e., the collected data is sufficient and explores the state-

action space)

𝜙 𝑠, 𝑎 ⊤𝜃𝑘 − 𝜙 𝑠, 𝑎 ⊤𝜃𝑘
⋆ ≤ 𝜖stat ∀𝑠, 𝑎

𝑄𝜃𝑘
(𝑠, 𝑎) − 𝑄𝜃𝑘

⋆(𝑠, 𝑎) ≤ 𝜖stat ∀𝑠, 𝑎

Regression over 𝒟(𝑘) allows us to find 𝜃𝑘 such that

The two assumptions jointly imply 𝑄𝜃𝑘
(𝑠, 𝑎) ≈ 𝑅(𝑠, 𝑎) + 𝛾 𝔼𝑠′∼𝑃(⋅|𝑠,𝑎) max

𝑎′
 𝑄𝜃𝑘−1

(𝑠, 𝑎)

Analysis of LSVI under Certain Assumptions

Under Bellman completeness and coverage assumptions, LSVI ensures

𝑄 𝑘 − 𝑄⋆
∞

≤ 𝑂 𝛾𝑘 𝑄 0 − 𝑄⋆
∞

+
𝜖stat

1 − 𝛾

Also, the greedy policy 𝜋 𝑘 𝑠 = argmax
𝑎

 𝑄 𝑘 (𝑠, 𝑎) satisfies for all 𝑠,

where 𝑄 𝑘 − 𝑄⋆
∞

≔ max
𝑠,𝑎

𝑄 𝑘 𝑠, 𝑎 − 𝑄⋆(𝑠, 𝑎)

𝑉⋆ 𝑠 − 𝑉𝜋 𝑘
(𝑠) ≤ 𝑂 𝛾𝑘 𝑄 0 − 𝑄⋆

∞
+

𝜖stat

1 − 𝛾

Notes on Exploration in MDPs

The Coverage Assumption

● Requires the state-action space to be explored

● Tabular case: every state-action pair needs to be visited many times

● Linear case: the feature space 𝜙 𝑠, 𝑎 𝑠,𝑎 needs to be explored in all directions

● In bandits, we focus on “action-space” exploration

● Exploration bonus (UCB, Thompson Sampling)

● Randomization (𝜖-greedy, Boltzmann exploration, inverse-gap weighting)

● In MDPs, we further need “state-space” exploration

𝜙 𝑠, 𝑎 ⊤𝜃𝑘 − 𝜙 𝑠, 𝑎 ⊤𝜃𝑘
⋆ ≤ 𝜖stat ∀𝑠, 𝑎

𝜃𝑘: our regression solution

𝜃𝑘
⋆: ground truth

𝐻

r=1r=0

Removing the Coverage Assumption

UCB in tabular MDP: Minimax regret bounds for reinforcement learning. 2017.

UCB in linear MDP: Provably efficient reinforcement learning with linear function approximation. 2019.

TS in tabular MDP: Near-optimal randomized exploration for tabular Markov decision processes. 2021.

TS in linear MDP: Frequentist regret bounds for randomized least-squares value iteration. 2020.

Use exploration bonus in LSVI:

Tabular Case: ෨𝑅 𝑠, 𝑎 = ෠𝑅 𝑠, 𝑎 +
const

𝑛(𝑠,𝑎)

Linear MDP (a class of MDPs that satisfies linear Bellman completeness):
෨𝑅 𝑠, 𝑎 = 𝜙 𝑠, 𝑎 ⊤ ෠𝜃 + const 𝜙 𝑠, 𝑎 Λ−1 where Λ = 𝐼 + σ𝑖=1

𝑡−1 𝜙 𝑠𝑖 , 𝑎𝑖 𝜙 𝑠𝑖 , 𝑎𝑖
⊤

Exploration bonus for general function approximation (deep learning):

Unifying Count-Based Exploration and Intrinsic Motivation

Curiosity-driven Exploration by Self-supervised Prediction

Exploration by Random Network Distillation

https://arxiv.org/pdf/1703.05449.pdf
https://arxiv.org/pdf/1907.05388.pdf
https://arxiv.org/pdf/2102.09703.pdf
https://arxiv.org/pdf/1911.00567.pdf
https://arxiv.org/pdf/1606.01868.pdf
https://arxiv.org/pdf/1705.05363.pdf
https://arxiv.org/pdf/1810.12894.pdf

Summary for LSVI

Value Iteration + Regression

𝑠

𝑎

𝑟

Exploration

Mechanism
Env

Value Iteration + Regression

......

𝑄(2) 𝑄(3) 𝑄(𝑘)𝑄(1)

𝒟(1) = (𝑠, 𝑎, 𝑟, 𝑠′) 𝒟(2) 𝒟(𝑘−1)

𝑄(𝑘−1)

𝜃𝑘 = argmin
𝜃

 ෍

(𝑠𝑖,𝑎𝑖,𝑟𝑖,𝑠𝑖
′)

𝑄𝜃 𝑠𝑖 , 𝑎𝑖 − 𝑟𝑖 − 𝛾max
𝑎′

 𝑄𝜃𝑘−1
𝑠𝑖

′, 𝑎′ 2

not reuse sample (use 𝒟(𝑘−1)) or

reuse sample (use 𝒟(1) ∪ ⋯ ∪ 𝒟(𝑘−1))

𝜃𝑘 = argmin
𝜃

 ෍

(𝑥𝑖,𝑎𝑖,𝑟𝑖)

𝑅𝜃 𝑥𝑖 , 𝑎𝑖 − 𝑟𝑖
2

cf. Contextual bandits (only regression)

Summary for LSVI

Value Iteration + Regression

𝑠

𝑎

𝑟

Exploration

Mechanism
Env

Value Iteration + Regression

......

𝑄(2) 𝑄(3) 𝑄(𝑘)𝑄(1)

𝒟(1) = (𝑠, 𝑎, 𝑟, 𝑠′) 𝒟(2) 𝒟(𝑘−1)

𝑄(𝑘−1)

Bellman completeness assumption ⇒ ∃𝜃𝑘
⋆, ∀𝑠, 𝑎, 𝑄𝜃𝑘

⋆ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝔼𝑠′∼𝑃(⋅|𝑠,𝑎) max
𝑎′

 𝑄𝜃𝑘−1
(𝑠′, 𝑎′)

Coverage assumption ⇒ ∀𝑠, 𝑎, 𝑄𝜃𝑘
𝑠, 𝑎 − 𝑄𝜃𝑘

⋆ 𝑠, 𝑎 ≤ 𝜖stat

(function expressiveness assumption)

(exploration assumption)

Summary for LSVI

Value Iteration + Regression

𝑠

𝑎

𝑟

Exploration

Mechanism
Env

Exploration Mechanism

1. Randomized policies (𝜖-Greedy, Boltzmann exploration, inverse-gap weighting)

 – perform local exploration

2. Exploration bonus (UCB) / Randomized values (TS)

 – can give rigorous regret bounds for tabular MDPs and MDPs with linear Bellman completeness

 – perform wider state space exploration

Other names for LSVI: Fitted Q Iteration, Least-square Q Iteration

Q-Learning

Q-Learning (Watkins, 1992)

For 𝑖 = 1, 2, …

 Obtain sample (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖
′)

 𝑄(𝑖) 𝑠𝑖 , 𝑎𝑖 ← 1 − 𝛼𝑖 𝑄(𝑖−1) 𝑠𝑖 , 𝑎𝑖 + 𝛼𝑖 𝑟𝑖 + 𝛾max
𝑎

 𝑄(𝑖−1)(𝑠𝑖
′, 𝑎)

𝑄(𝑖) 𝑠, 𝑎 ← 𝑄(𝑖−1) 𝑠, 𝑎 ∀ 𝑠, 𝑎 ≠ 𝑠𝑖 , 𝑎𝑖

cf. LSVI:

∀𝑠, 𝑎, 𝑄(𝑘) 𝑠, 𝑎 ←

σ
𝑖=1
𝑛𝑘 𝕀 𝑠𝑖 , 𝑎𝑖 = 𝑠, 𝑎 𝑟𝑖 + 𝛾 max

𝑎′
 𝑄(𝑘−1) 𝑠𝑖

′, 𝑎′

σ
𝑖=1
𝑛𝑘 𝕀 𝑠𝑖 , 𝑎𝑖 = 𝑠, 𝑎

Q-Learning (Watkins, 1992)

Q-Learning (Watkins, 1992)

Suppose that 𝛼𝑖 =
1

𝑖𝛽 for some
1

2
< 𝛽 ≤ 1, and every state-action pair is visited

infinitely often. Then

𝑄 𝑖 𝑠, 𝑎 → 𝑄⋆ 𝑠, 𝑎 ∀𝑠, 𝑎.

Gen Li, Yuting Wei, Yuejie Chi, Yuantao Gu, Yuxin Chen. Sample Complexity of Asynchronous Q-

Learning: Sharper Analysis and Variance Reduction. 2020.

https://arxiv.org/pdf/2006.03041.pdf
https://arxiv.org/pdf/2006.03041.pdf

Watkins’s Q-Learning + Linear Function Approximation

For 𝑖 = 1, 2, …

 Obtain sample (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖
′)

𝜃𝑖 ← 𝜃𝑖−1 − 𝛼∇𝜃 ቤ𝜙 𝑠𝑖 , 𝑎𝑖
⊤𝜃 − 𝑟𝑖 − 𝛾max

𝑎
 𝜙 𝑠𝑖

′, 𝑎 ⊤𝜃𝑖−1

2

𝜃=𝜃𝑖−1

𝜃𝑘 = argmin
𝜃

 ෍

𝑖=1

𝑛𝑘

𝜙 𝑠𝑖 , 𝑎𝑖
⊤𝜃 − 𝑟𝑖 − 𝛾max

𝑎′
 𝜙 𝑠𝑖

′, 𝑎′ ⊤𝜃𝑘−1

2

c.f. LSVI:

= 𝜃𝑖−1 − 2𝛼 𝜙 𝑠𝑖 , 𝑎𝑖
⊤𝜃𝑖−1 − 𝑟𝑖 − 𝛾max

𝑎
 𝜙 𝑠𝑖

′, 𝑎 ⊤𝜃𝑖−1 𝜙(𝑠𝑖 , 𝑎𝑖)

Watkins’s Q-Learning + LFA Does Not Converge

Even when Bellman completeness and coverage assumptions hold

𝜙 𝑠1, 𝑎 = (1,0) 𝜙 𝑠2, 𝑎 = (2,1)

𝑠1 𝑠2

Simplified from the “Baird’s counterexample”

(see Sutton and Barto Section 11.2)

The Effect of Fixing the Target

𝜃 ← 𝜃 − 𝛼 𝜙 𝑠, 𝑎 ⊤𝜃 − 𝑟 − 𝛾𝜙 𝑠′, 𝑎
⊤

𝜃𝑘−1 𝜙(𝑠, 𝑎)

For 𝑘 = 1, 2, …

For 𝑖 = 1, … , 𝑛:

𝜃𝑘−1 ← 𝜃

𝜃𝑘 ← 𝜃

Sample 𝑠, 𝑎, 𝑟, 𝑠′ ∼ Uniform 𝑠1, 𝑎, 1, 𝑠2 , (𝑠2, 𝑎, 0, 𝑠2)

The Effect of Fixing the Target

n=250

n=230

n=210

n=190

n=170

n=150

n=5000

n=2000

n=1000

n=800

n=500

n=300

Watkins’s Q-Learning vs. LSVI

LSVI Watkins’s Q-Learning

Convergence in the

tabular case
𝑄(𝑘) → 𝑄⋆ 𝑄(𝑘) → 𝑄⋆

Convergence under

function approximation
𝑄(𝑘) → 𝑄⋆ under BC Diverges even with BC

Update style Two time-scale Single time-scale

Under coverage assumption

(i.e., the data (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖′) sufficiently cover every state-action pair / feature space)

Techniques for Function Approximation
(Deep Q-Learning)

Use LSVI Updates

For 𝑘 = 1, 2, …

Perform regression over dataset 𝒟
(1)

⋃ 𝒟
2

⋃⋯ ⋃ 𝒟
(𝑘)

:

𝜃𝑘 = argmin
𝜃

 ෍

𝑠,𝑎,𝑟,𝑠′ ∈𝒟

𝑄𝜃 𝑠, 𝑎 − 𝑟 − 𝛾max
𝑎′

 𝑄𝜃𝑘−1
𝑠′, 𝑎′ 2

Collect samples 𝒟
(𝑘)

 (consisting of (𝑠, 𝑎, 𝑟, 𝑠′) tuples) using exploratory policy

Regression

Implement Regression with SGD

For 𝑘 = 1, 2, …

𝜃𝑘−1 ← 𝜃

𝜃 ← 𝜃 − 𝛼 ෍

𝑖=1

𝑏

∇𝜃 𝑄𝜃 𝑠𝑖 , 𝑎𝑖 − 𝑟𝑖 − 𝛾max
𝑎′

 𝑄𝜃𝑘−1
𝑠𝑖

′, 𝑎′ 2

Collect samples 𝒟
(𝑘)

 (consisting of (𝑠, 𝑎, 𝑟, 𝑠′) tuples) using exploratory policy

For 𝑖 = 1, 2, … , 𝑛:

Randomly draw a minibatch 𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖
′

𝑖=1
𝑏 from 𝒟

(1)
⋃ 𝒟

2
⋃⋯ ⋃ 𝒟

(𝑘)

Typical Implementation of Deep Q-Learning

𝜃tar ← 𝜃

𝜃 ← 𝜃 − 𝛼 ෍

𝑖=1

𝑏

∇𝜃 𝑄𝜃 𝑠𝑖 , 𝑎𝑖 − 𝑟𝑖 − 𝛾max
𝑎′

 𝑄𝜃tar
𝑠𝑖

′, 𝑎′ 2

For 𝑖 = 1, 2, …

Randomly draw a minibatch 𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖
′

𝑖=1
𝑏 from ℬ and perform

Obtain a new sample 𝑠, 𝑎, 𝑟, 𝑠′ and insert it to a replay buffer ℬ

Interleaving data collection and SGD

If 𝑖 mod 𝑛 = 0:

𝜃tar ← 𝜏𝜃tar + 1 − 𝜏 𝜃

// Option 1

// Option 2

𝜃 ← 𝜃 − 𝛼 ෍

𝑖=1

𝑏

∇𝜃 𝑄𝜃 𝑠𝑖 , 𝑎𝑖 − 𝑟𝑖 − 𝛾max
𝑎′

 𝑄𝜃 𝑠𝑖
′, 𝑎′ 2

The following update converges but to the wrong

solution when the transition is non-deterministic:

See Sutton & Barto Section 11.5 or Nan Jiang’s

lecture note (P.17 bellman error minimization)

http://incompleteideas.net/book/RLbook2020.pdf
https://nanjiang.cs.illinois.edu/files/cs542f22/slides_fqi.pdf
https://nanjiang.cs.illinois.edu/files/cs542f22/slides_fqi.pdf

Target Network and Replay Buffer

𝑄𝜃(𝑠, 𝑎) 𝑄𝜃tar
(𝑠, 𝑎)

relay
buffer

𝜋𝜃

𝑠

𝑎

𝑟

①

②

②

③

① collect new samples

② perform SGD with fixed 𝜃tar

③ update 𝜃tar

Key: ③ is much slower or much

more sporadically than ②

① can be decoupled from ② and ③

Q-Network Design

𝑠

𝑄𝜃(𝑠, 1)

𝑄𝜃(𝑠, 2)

𝑄𝜃(𝑠, 𝐴)

𝑠
𝑄𝜃(𝑠, 𝑎)

𝑎
𝜃 𝜃

max
𝑎

 𝑄𝜃(𝑠, 𝑎) is straightforward

only handles discrete action case

max
𝑎

 𝑄𝜃(𝑠, 𝑎) requires run 𝑎 ← 𝑎 + 𝜂
𝜕 𝑄𝜃(𝑠,𝑎)

𝜕𝑎
 iteratively

can handle continuous action case

Deep Q-Network Deep Deterministic Policy Gradient

(covered later in the semester)

Replay Buffer and Sampling

Standard implementation: First-in-first-out queue + Uniform sampling

● The data collected from 𝜋𝜃 is not i.i.d.

● Uniform sampling from a large pool makes the data more similar to i.i.d. – the convergence of
SGD requires samples to be i.i.d.

Prioritized replay: priority queue + prioritized sampling + importance weight
● Priority queue with priority proportional to 𝛿𝑖 , where 𝛿𝑖 = 𝑄𝜃 𝑠𝑖 , 𝑎𝑖 − 𝑟𝑖 − 𝛾 max

𝑎′
 𝑄𝜃tar

(𝑠𝑖
′, 𝑎′)

● Sample from the buffer with probability 𝑃𝑖 ∝ 𝛿𝑖
𝛼

● Perform SGD with importance weight 𝑤𝑖 =
𝑃𝑖

max𝑗 𝑃𝑗

−𝛽

, i.e.,

𝜃 ← 𝜃 − 𝛼 𝑤𝑖∇𝜃 𝑄𝜃 𝑠𝑖 , 𝑎𝑖 − 𝑟𝑖 − 𝛾max
𝑎′

 𝑄𝜃tar
𝑠𝑖

′, 𝑎′ 2

Schaul, Quan, Antonoglou, Silver. Prioritized Experience Replay. 2015.

https://arxiv.org/pdf/1511.05952.pdf

More on DQN

Recall Our Theoretical Analysis for LSVI

We made two assumptions:

● Bellman completeness (the expressiveness of function approximation)

● State-action space / feature space is sufficiently explored

Then we argued that with these assumptions, we can ensure

𝑄𝜃𝑘
𝑠, 𝑎 ≈ 𝑅(𝑠, 𝑎) + 𝛾 𝔼𝑠′∼𝑃(⋅|𝑠,𝑎) max

𝑎′
 𝑄𝜃𝑘−1

(𝑠′, 𝑎′)

However, these strong assumptions rarely hold.

What happens if they do not hold?

Over-estimation Bias

Mitigating the over-estimation bias of DQN

loss = 𝑄𝜃1
𝑠, 𝑎 − 𝑟 − 𝛾 𝑄𝜃tar1

𝑠′, 𝑎′
2

𝜃1 𝜃tar1

loss = 𝑄𝜃2
𝑠, 𝑎 − 𝑟 − 𝛾 𝑄𝜃tar2

𝑠′, 𝑎′
2

𝜃2 𝜃tar2

max
𝑎′

max
𝑎′

Mitigating the over-estimation bias of DQN

loss = 𝑄𝜃1
𝑠, 𝑎 − 𝑟 − 𝛾 𝑄𝜃tar1

𝑠′, 𝑎′
2

𝜃1 𝜃tar1

loss = 𝑄𝜃2
𝑠, 𝑎 − 𝑟 − 𝛾 𝑄𝜃tar2

𝑠′, 𝑎′
2

𝜃2 𝜃tar2

argmax
𝑎′

𝑄𝜃tar2
𝑠′, 𝑎′ argmax

𝑎′
𝑄𝜃tar1

𝑠′, 𝑎′

A More Practical Solution

loss = 𝑄𝜃 𝑠, 𝑎 − 𝑟 − 𝛾 𝑄𝜃tar
𝑠′, 𝑎′

2

𝜃 𝜃tar

argmax
𝑎′

𝑄𝜃 𝑠′, 𝑎′

Double Deep Q-Network (DDQN)

DDQN mitigates over-estimation

Hado van Hasselt, Arthur Guez, David Silver. Deep Reinforcement Learning with Double Q-learning. 2015.

https://arxiv.org/abs/1509.06461

DDQN mitigates over-estimation

Hado van Hasselt, Arthur Guez, David Silver. Deep Reinforcement Learning with Double Q-learning. 2015.

https://arxiv.org/abs/1509.06461

Summary for Deep Q-Learning (1/3)

● Deep Q-learning is performing approximate value iteration

● Ideally, it would like generate 𝜃1, 𝜃2, … that approximates

● To successfully achieve this, we need

● Sufficiently expressive function approximation (Bellman completeness)

● Sufficient exploration over state-actions

𝑄𝜃𝑘
𝑠, 𝑎 ≈ 𝑅 𝑠, 𝑎 + 𝛾 𝔼𝑠′∼𝑃(⋅|𝑠,𝑎) max

𝑎′
 𝑄𝜃𝑘−1

𝑠′, 𝑎′ ∀𝑠, 𝑎

Summary for Deep Q-Learning (2/3)

● There are two candidate updates

 Only LSVI is stable under function approximation

● In order to implement LSVI, we use double-loop (double-time-scale) updates,

where the target network is updated in a slow rate.

● When target network is fixed, the main network uses SGD to perform regression.

We use replay buffer + sampling to reuse data and decorrelate samples.

𝜃𝑘 = argmin
𝜃

 ෍

𝑠,𝑎,𝑟,𝑠′

𝑄𝜃 𝑠, 𝑎 − 𝑟 − 𝛾 max
𝑎′

𝑄𝜃𝑘−1
𝑠′, 𝑎′ 2

𝜃𝑘 = 𝜃𝑘 − 𝛼∇𝜃 𝑄𝜃 𝑠, 𝑎 − 𝑟 − 𝛾 max
𝑎′

𝑄𝜃𝑘−1
𝑠′, 𝑎′ 2

Least-Square Value iteration

Watkins’s Q-Learning

Summary for Deep Q-Learning (3/3)

● When the idealized update

 is not perfect, there is over-estimation bias. We can use double DQN

 to mitigate the bias.

𝑄𝜃𝑘
𝑠, 𝑎 ≈ 𝑅 𝑠, 𝑎 + 𝛾 𝔼𝑠′∼𝑃 ⋅ 𝑠, 𝑎 max

𝑎′
 𝑄𝜃𝑘−1

𝑠′, 𝑎′ ∀𝑠, 𝑎

Combining More Techniques in DQN

Rainbow: Combining Improvements in Deep

Reinforcement Learning. 2018.

https://arxiv.org/pdf/1710.02298.pdf
https://arxiv.org/pdf/1710.02298.pdf

A Remark on (Deep) Q-Learning in Episodic Settings

A Remark on Model-Free vs. Model-Based Approaches

......

𝑄(2) 𝑄(3) 𝑄(𝑘)𝑄(1)

𝒟(1) = (𝑠, 𝑎, 𝑟, 𝑠′) 𝒟(2) 𝒟(𝑘−1)

𝑄(𝑘−1)

𝒟 = 𝒟(1) ∪ ⋯ ∪ 𝒟(𝑘−1)

𝜃𝑘 ← argmin
𝜃

 𝔼 𝑠,𝑎,𝑟,𝑠′ ∼𝒟 𝑄𝜃 𝑠, 𝑎 − 𝑟 − 𝛾max
𝑎′

𝑄𝜃𝑘−1
𝑠′, 𝑎′ 2

𝑠

𝑎

෠𝑃(⋅ |𝑠, 𝑎)

෠𝑅(𝑠, 𝑎)

Trained with 𝒟

𝜃𝑘 ← argmin
𝜃

 𝔼 𝑠,𝑎 ∼𝒟, 𝑟∼ ෠𝑅 𝑠,𝑎 , 𝑠′∼ ෠𝑃(⋅|𝑠,𝑎) 𝑄𝜃 𝑠, 𝑎 − 𝑟 − 𝛾max
𝑎′

𝑄𝜃𝑘−1
𝑠′, 𝑎′ 2

or any other ways to find the optimal policy under ෠𝑅 and ෠𝑃

Model-free

Model-based (Sutton & Barto Section 8)

http://incompleteideas.net/book/RLbook2020.pdf

	Slide 1: Approximate Value Iteration and Variants
	Slide 2: Value Iteration
	Slide 3: Least-Square Value Iteration (LSVI)
	Slide 4: Comparison with Contextual Bandits
	Slide 5: It is Valid to Reuse Samples
	Slide 6: LSVI that Reuses All Previous Samples
	Slide 7: Analysis of LSVI under Certain Assumptions
	Slide 8: Analysis of LSVI under Certain Assumptions
	Slide 9: Analysis of LSVI under Certain Assumptions
	Slide 10: Analysis of LSVI under Certain Assumptions (Recap)
	Slide 11: Analysis of LSVI under Certain Assumptions
	Slide 12
	Slide 13: Notes on Exploration in MDPs
	Slide 14: The Coverage Assumption
	Slide 15
	Slide 16: Removing the Coverage Assumption
	Slide 17: Summary for LSVI
	Slide 18: Summary for LSVI
	Slide 19: Summary for LSVI
	Slide 20: Q-Learning
	Slide 21: Q-Learning (Watkins, 1992)
	Slide 22: Q-Learning (Watkins, 1992)
	Slide 23: Q-Learning (Watkins, 1992)
	Slide 24: Watkins’s Q-Learning + Linear Function Approximation
	Slide 25: Watkins’s Q-Learning + LFA Does Not Converge
	Slide 26: The Effect of Fixing the Target
	Slide 27: The Effect of Fixing the Target
	Slide 28
	Slide 29
	Slide 30: Watkins’s Q-Learning vs. LSVI
	Slide 31: Techniques for Function Approximation (Deep Q-Learning)
	Slide 32: Use LSVI Updates
	Slide 33: Implement Regression with SGD
	Slide 34: Typical Implementation of Deep Q-Learning
	Slide 35: Target Network and Replay Buffer
	Slide 36: Q-Network Design
	Slide 37: Replay Buffer and Sampling
	Slide 38: More on DQN
	Slide 39: Recall Our Theoretical Analysis for LSVI
	Slide 40: Over-estimation Bias
	Slide 41: Mitigating the over-estimation bias of DQN
	Slide 42: Mitigating the over-estimation bias of DQN
	Slide 43: A More Practical Solution
	Slide 44: DDQN mitigates over-estimation
	Slide 45: DDQN mitigates over-estimation
	Slide 46: Summary for Deep Q-Learning (1/3)
	Slide 47: Summary for Deep Q-Learning (2/3)
	Slide 48: Summary for Deep Q-Learning (3/3)
	Slide 49: Combining More Techniques in DQN
	Slide 50: A Remark on (Deep) Q-Learning in Episodic Settings
	Slide 51: A Remark on Model-Free vs. Model-Based Approaches

