
Homework 3

6771 Reinforcement Learning (Fall 2025)

Submission deadline: 11:59pm, Nov 16

The latex template can be found here.

1 Performance Difference Lemma

In the discounted setting, the Performance Difference Lemma states that for any two stationary policies π′ and π and any
initial distribution ρ, it holds that

Es∼ρ[V
π′
(s)]− Es∼ρ[V

π(s)] =
∑
s,a

dπ
′

ρ (s) (π′(a|s)− π(a|s))Qπ(s, a).

Here,

V π(s) = E

[∞∑
h=1

γh−1R(sh, ah)

∣∣∣∣ s1 = s and ah ∼ π(·|sh) for all h ≥ 1

]

Qπ(s, a) = E

[∞∑
h=1

γh−1R(sh, ah)

∣∣∣∣ (s1, a1) = (s, a) and ah ∼ π(·|sh) for all h ≥ 2

]

dπρ (s) = E

[∞∑
h=1

γh−1I{sh = s}
∣∣∣∣ s1 ∼ ρ and ah ∼ π(·|sh) for all h ≥ 1

]
Below, we prove this lemma. Define a sequence of Markov policies:

π0 = (π, π, π, π . . .),

π1 = (π′, π, π, π . . .),

π2 = (π′, π′, π, π . . .),

and so on. In words, πh is a policy that executes π′ in steps 1 through h, and executes π thereafter.

(a) (5%) Fix any integer k ≥ 1. Show that

Es∼ρ [V
πk(s)]− Es∼ρ [V

πk−1(s)]

= E

[∞∑
h=k

γh−1R(sh, ah)

∣∣∣∣ s1 ∼ ρ and ah ∼ π′(·|sh) for all 1 ≤ h ≤ k and ah ∼ π(·|sh) for all h ≥ k + 1

]

− E

[∞∑
h=k

γh−1R(sh, ah)

∣∣∣∣ s1 ∼ ρ and ah ∼ π′(·|sh) for all 1 ≤ h ≤ k − 1 and ah ∼ π(·|sh) for all h ≥ k

]

(b) (5%) Show that the above difference can be expressed as

Es∼ρ [V
πk(s)]− Es∼ρ [V

πk−1(s)]

=
∑
s

γk−1 Pr
{
sk = s

∣∣∣ s1 ∼ ρ and ah ∼ π′(·|sh) for all 1 ≤ h ≤ k − 1
}∑

a

(π′(a|s)− π(a|s))Qπ(s, a).

1

https://www.overleaf.com/read/hrqyzqtsgyrb#d6398f

(c) (5%) Conclude that

Es∼ρ[V
π′
(s)]− Es∼ρ[V

π(s)] =
∑
s

dπ
′

ρ (s)
∑
a

(π′(a|s)− π(a|s))Qπ(s, a).

2 RL in CartPole

In this problem, we will implement DQN and PPO to solve the classic CartPole environment. Download the starter code
here. Like in HW1/HW2, we make value-based and policy-based algorithms share a Python class due to the structural
similarity between a Q-network and a policy network. You’re welcome to modify the code structure if you find a better
design.

You can definitely find many good implementations of DQN and PPO online, but we encourage you to first complete
your own implementation (you may seek help from LLMs). Afterwards, you’re encouraged to compare your work with
open-source implementations—for example, stable-baseline3. These reference codes often include useful tricks and
engineering details that are not often discussed explicitly in textbooks or lectures.

Environment We focus on the CartPole environment, which is a game provided by the OpenAI Gym library. Specif-
ically, we focus on the version of CartPole-v1. A brief introduction is given below, and more information about
the environment can be found in https://www.gymlibrary.dev/environments/classic_control/
cart_pole/.

Figure 1: CartPole

To get familiar with the environment, you can run the function generate_videos() provided in the starter code,
which generates a video of the game being played by a random policy. You may adapt this code to generate videos of
your trained policy instead.

Starter Code The default command-line usage in the starter code is:

RL.py --seed [seed] --algorithm [algorithm] --figure [figure]

where [seed] specifies the random seed used to control both the algorithm’s and the environment’s randomness. This
allows you to debug and compare different algorithms under the same initial conditions. [algorithm] indicates
the algorithm to use—one of DQN, DDQN, PPO, or RAND. [figure] is the filename for saving the output plot (e.g.,
output.png). The starter code automatically saves the figure every 100 episodes.

You will be asked to include this output figure in your homework submission for several questions below.

We have already implemented a random policy that selects actions uniformly at random. To get started, try running:

RL.py --seed 0 --algorithm RAND --figure output_RAND.png

2

https://bahh723.github.io/rl2025fa_files/RL.py
https://github.com/DLR-RM/stable-baselines3
https://www.gymlibrary.dev/environments/classic_control/cart_pole/
https://www.gymlibrary.dev/environments/classic_control/cart_pole/

2.1 DQN

We will begin by using the standard DQN algorithm to play CartPole. The algorithm is shown in Algorithm 1.

It is common to set N = M = 1 in Algorithm 1, since DQN reuses past data via experience replay and does not need to
wait until a large batch of new data is collected before performing an update. The parameters N and M are explicitly
included to make the structure more comparable to that of PPO.

In the starter code, the exploration rate ϵ is time-varying and gradually decays to zero. Its scheduling is controlled by the
parameters EPS_START, EPS_END, and EPS_DECAY in the starter code. Recommended hyperparameter values are
provided in the starter code.

To reduce your workload, we have implemented the ϵ-greedy action selection rule and the replay buffer.

(a) (10%) Implement Algorithm 1 to play CartPole. Paste the output plot here, which should show both the return per
episode and its running average over a window of 100 episodes.

Your score for this part will be computed as:

min

{
maximum running average within 2000 episodes

475
, 1

}
× 100%. (1)

That is, if within the first 2000 episodes there exists a window of 100 episodes where the running average return
exceeds 475, you will receive full credit. If you do not reach this threshold within 2000 episodes, you may also
increase the total number of episodes in your plot, but your score will be scaled by a factor of 2000

total number of episodes used .

There is no need to average results over multiple random seeds—just choose a seed that yields good performance.

You may try some of the tips listed below, as some people have found them useful. This will make your implementa-
tion deviate from the original algorithm outlined in Algorithm 1.

– Gradient clipping: Clip the gradient if its magnitude exceeds a threshold (e.g., 0.5).

– Using Huber loss: Replace the squared loss in Eq. (2) with Huber loss (see this blog for a brief explanation).

(b) (5%) List the hyperparameters you use in (a):

Hyperparameter Value
MINIBATCH_SIZE (B in Algorithm 1)

LR (α in Algorithm 1)
EPS_START
EPS_END
EPS_DECAY

TAU (τ in Algorithm 1)

If you use any trick beyond what is described in Algorithm 1, please briefly describe it here. Also, list any additional
hyperparameters you introduced in the table above.

3

https://abhishm.github.io/DQN/

Algorithm 1 DQN (with ϵ-greedy exploration)
1 Parameters: N,M,B, α (learning rate), τ (target network update rate), ϵ (exploration probability).

2 Initialize the replay buffer D = {}.
3 Initialize the online network Qθ with weights θ
4 Initialize the target network Qθ with weights θ = θ

5 Sample stmp ∼ ρ, where ρ is the initial state distribution.
6 for k = 1, . . . do
7 s1 ← stmp
8 for i = 1, 2, . . . , N do

9 Select action ai =

{
argmaxa Qθ(si, a) with probability 1− ϵ

random action with probability ϵ

10 Observe reward ri and the next state s′i.
11 D ← D ∪ {(si, ai, ri, s′i)}.
12 If s′i is a terminal state, sample si+1 ∼ ρ; otherwise, set si+1 = s′i.

13 stmp ← sN+1

14 for j = 1, . . . ,M do
15 Randomly sample a minibatch B ⊂ D with size |B| = B.
16 Update the online network:

θ ← θ − α∇θ
1

B

∑
(s,a,r,s′)∈B

(
Qθ(s, a)− r − γmax

a′
Qθ(s

′, a′)
)2

(2)

17 where maxa′ Qθ(s
′, a′) ≜ 0 if s′ is a terminal state.

18 Update the target network:

θ ← τθ + (1− τ)θ.

2.2 Double DQN

Now change Eq. (2) in Algorithm 1 to the following:

θ ← θ − α∇θ
1

B

B∑
i=1

(
Qθ(si, ai)− ri − γQθ(s

′
i, a

′
i)
)2

with a′i ≜ argmax
a

Qθ(s
′
i, a),

which yields Double DQN.

(c) (10%) Implement Double DQN to play CartPole. Use the same random seed and the same choices of hyperparameters
as in (a). Paste the output plot here. The score for this part will be calculated using the same formula as in Eq. (1).

4

2.3 Proximal Policy Optimization

Next, we will use PPO to play CartPole. The PPO algorithm is shown in Algorithm 2.

(d) (20%) Implement PPO to play CartPole, and paste the output plot here. Your score for this part will be computed as:

min

{
maximum running average within 6000 episodes

475
, 1

}
× 100%.

Note that the allowed number of episodes to reach the desired performance is increased to 6000. As in part (a), you
may go beyond 6000 episodes, but your score will be scaled by 6000

number of episodes you use . Recommended choices of the
hyperparameters are provided in the starter code.

As in DQN, there are some practical tips that go beyond Algorithm 2, which many people find useful:

– Normalizing the advantage: Instead of directly using the advantage estimates Â(si, ai) returned by GAE,
normalize them as follows:

A′(si, ai) =
Â(si, ai)− µ

σ + 10−8

where µ = 1
N

∑N
i=1 Â(si, ai) and σ =

√
1
N

∑N
i=1(Â(si, ai)− µ)2. The 10−8 could be replaced by other

small number.

– Gradient clipping.

We highlight the first tip, as we’ve also observed improvement in performance when using it.

(e) (5%) List the hyperparameters you use in (d):

Hyperparameter Value
N (N in Algorithm 2)
M (M in Algorithm 2)

MINIBATCH_SIZE (B in Algorithm 2)
LR (α and α′ in Algorithm 2) List both if you use α ̸= α′

LAMBDA (λ in Algorithm 2)
BETA (β in Algorithm 2)
EPS (ϵ in Algorithm 2)

If you use any trick beyond what is described in Algorithm 2, please briefly describe it here. Also, list any additional
hyperparameters you introduced in the table above.

Remark Line 13 in Algorithm 2 reuses the advantage estimate Â(si, ai) to construct V̂ (si), which is then used to
train the value function in Line 20. This effectively makes Line 20 a TD(λ) update, using the same λ as in the advantage
estimation for policy learning.

However, as we’ve mentioned in the class, these two λ values used in policy learning and value learning need not be the
same. You may also explore the case where they differ. To do so, just compute a separate advantage estimate Ã(si, ai)

with Algorithm 3 using a different λ′, and define V̂ (si) = Ã(si, ai) + Vϕ(si). This results in a TD(λ′) update for the
value function.

For example, the paper that proposed GAE for policy learning actually uses TD(λ′) = TD(1) for value learning (see their
Section 5).

5

https://arxiv.org/pdf/1506.02438

Algorithm 2 PPO
1 Parameters: N,M,B, α (policy learning rate), α′ (value learning rate), λ (GAE parameter), β (KL penalty coefficient),
ϵ (clipping parameter).

2 Initialize the policy network πθ with weights θ
3 Initialize the value network Vϕ with weights ϕ.

4 Sample stmp ∼ ρ, where ρ is the initial state distribution.
5 for k = 1, . . . do
6 s1 ← stmp
7 for i = 1, 2, . . . , N do
8 Select action ai ∼ πθ(·|si).
9 Observe reward ri and the next state s′i.

10 If s′i is a terminal state, sample si+1 ∼ ρ; otherwise, set si+1 = s′i.

11 stmp ← sN+1

12 Compute Â(si, ai) for all i = 1, . . . , N by calling GAEλ({si, ai, ri, s′i}Ni=1, Vϕ) (Algorithm 3).
13 Define V̂ (si) = Â(si, ai) + Vϕ(si) for all i = 1, . . . , N .
14 Define π̂(ai|si) = πθ(ai|si) for all i = 1, . . . , N .
15 Â(si, ai), V̂ (si), π̂(ai|si) should all be viewed as constant below—call tensor.detach() for them.

16 for j = 1, . . . ,M do
17 Randomly sample a minibatch B ⊂ {(si, ai, ri, s′i)}Ni=1 with size |B| = B.
18 Update the policy network:

θ ← θ + α∇θ
1

B

∑
(s,a,r,s′)∈B

(
min

{
ϱθ(s, a)Â(s, a), ϱclip

θ (s, a)Â(s, a)
}
− β

(
ϱθ(s, a)− 1− log ϱθ(s, a)

))
,

19 where ϱθ(s, a) ≜
πθ(a|s)
π̂(a|s) and ϱclip

θ (s, a) ≜ max{1− ϵ,min{1 + ϵ, ϱθ(s, a)}}.
20 Update the value network:

ϕ← ϕ− α′∇ϕ
1

B

∑
(s,a,r,s′)∈B

(
Vϕ(s)− V̂ (s)

)2

.

Algorithm 3 GAEλ

Parameter: λ
Input: {(si, ai, ri, s′i)}Ni=1 and Vϕ.
Define Â(sN+1, aN+1) ≜ 0.
for i = N,N − 1, . . . , 1 do

if s′i is a terminal state then
δi ← ri − Vϕ(si)

Â(si, ai)← δi

else
δi ← ri + γVϕ(si+1)− Vϕ(si)

Â(si, ai)← δi + λγÂ(si+1, ai+1)

return {Â(si, ai)}Ni=1.

6

3 Survey

(5%) Leave any feedback for the course.

7

	Performance Difference Lemma
	RL in CartPole
	DQN
	Double DQN
	Proximal Policy Optimization

	Survey

