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Contextual Bandits and Non-Contextual Bandits
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Multi-Armed Bandits

Non-Contextual Bandits with Discrete Actions



Multi-Armed Bandits

A slot machine A row of slot machines

One-armed bandit Multi-armed bandit



Multi-Armed Bandits

Given: armset A = {1, ..., A}
Fortmet=1,2,..,T:
Learner chooses an arm a; € A
Learner observes r, = R(a;) + w;

Arm = Action

Assumption: R(a) is the (hidden) ground-truth reward function

w; is (zero-mean) noise

Goal: maximize the total reward Y.7_, R(a,) (or Xi_i1¢)




How to Evaluate an Algorithm’s Performance?

T T T
Regret := mgxz R(m) — Z R(a)) = maxTR(a) - Z R(a:)
. t=1 L t=1 ! t=1
Y
The total reward of the best policy In MAB

e “My algorithm obtains 0.3T total reward within T rounds” — Is my algorithm good?
e “My algorithm ensures Regret < 5T3/4 ”
e Regret = 0o(T) = the algorithm is as good as the optimal policy asymptotically

e Remark: the learner doesn’t need to know or track the regret when running the
algorithm. Regret is just an analytical tool to analyze the algorithm in hindsight.



Multi-Armed Bandits (MAB)

e Key challenge in MAB: Exploration

e The other challenges of RL are not presented in MAB:
e Generalization
e Credit assignments

e We will discuss about two categories of exploration strategies
e Based on mean estimation
e Based on mean and uncertainty estimation



Multi-Armed Bandits

Based on mean estimation



The Exploration and Exploitation Trade-off in MAB

e To perform as well as the best policy (i.e., best arm) asymptotically, the
learner has to pull the best arm most of the time

= need to exploit

e To identify the best arm, the learner has to try every arm sufficiently many
times

= need to explore



A Simple Strategy: Explore-then-Commit

Explore-then-commit (Parameter: T,)

In the first T, rounds, sample each arm T, /A times. (Explore)
Compute the empirical mean R(a) for each arm a
In the remaining T — T, rounds, draw @ = argmax, R(a) (Exploit)

What is the right amount of exploration (T,)??




Another Simple Strategy: e-Greedy

Mixing exploration and exploitation in time

e-Greedy (Parameter: €)

Take action
_ [ uniform(A) with prob. € (Explore)
e = argmax, R,(a) withprob. 1 —¢€ (Exploit)

Zl{ag=a} rg
g;i [{as=a}

where R,(a) = IS the empirical mean of arm a using samples
t

up totime t — 1.

What is the right amount of exploration (€)?




Comparison

e c-Greedy is more robust to non-stationarity than Explore-then-Exploit
e c-Greedy has a better performance in the early phase of the learning process



Quantifying the Estimation Error

In Explore-then-Commit, we obtain N = T,/A i.i.d. samples of each arm.

Key Question:
|R(a) —R(a) [ <? F(V)
/ \ some decreasing function of N
Empirical mean True mean

of N i.i.d. samples



Quantifying the Estimation Error
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Quantifying the Estimation Error

In Explore-then-Commit, we obtain N = T,/A i.i.d. samples of each arm.

Key Question:
|R(a) —R(a) [ <? F(V)
/ \ some decreasing function of N
Empirical mean True mean

of N i.i.d. samples



Quantifying the Estimation Error

In Explore-then-Commit, we obtain N = T,/A i.i.d. samples of each arm.

Key Question:

With probability at least 1 — &,
|R(a) —R(a) | <7? f(IN,6)
/ \ some decreasing function of N

Empirical mean True mean
of N i.i.d. samples



Quantifying the Error: Concentration Inequality

Theorem. Hoeffding’s Inequality

Let X4, ..., Xy be independent g-sub-Gaussian random variables with mean u.
Then with probability at least 1 — 6,

N
1
PR
i=1

2log(2/6)
N .

IN
Q

A random variable is called g-sub-Gaussian if E[e?*~EXD] < e4*0°/2 v} e R.
Fact 1. V' (u, ?) is o-sub-Gaussian.

Fact 2. Arandom variable € [a, b] is (b — a)-sub-Gaussian.

Intuition: tail probability Pr{|X — E[X]| = z} bounded by that of Gaussians



Quantifying the Estimation Error

With probability at least 1 — 6, ‘ ﬁ(a) — R(a) ‘ =0 log Svl/(s)
AN

— Omit constants

. - 1
With high probability, | R a) R(a) = 6| |=
A —4 V N
/ R < ‘/1,
N
—— Omit constants and log(1/4§) factors




Explore-then-Commit Regret Analysis

In the first T, rounds, sample each arm N = T, /A times.
Compute the empirical mean R(a) for each arm a
In the remaining T — T, rounds, draw @ = argmax, R(a)

/
At the end of the exploration phase, we have for all arm a

4

T-7)2 =

R@-R@| 5 [ = [A A\ : -
Let @ = argmax, R(a) (the empirically best arm) Ry - ZQMK(GZ “K("f_))

€
Let a* = argmax, R(a) (the true best arm)

F@-r@st= R -RE) + (ke -Re DJr(m\) J4

m,

<0 xf/
Lo To



R(a*) —R(&) = R(a*) — R(@) + R(a*) — R(a*) + R(a) — R(a

regret <0 mean estimation error



Regret Bound of Explore-then-Commit and e-Greedy

Theorem. Regret Bound of Explore-then-Commit

Assume that R(a) € [-1,1] and w; is 1-sub-Gaussian.
Then Explore-then-Exploit ensures with high probability,

A
Regret < Ty + T — = AY3T?/3 (choosing T, = AY/3T?/3)
«/ 0

Theorem. Regret Bound of e-Greedy

_ _ In practice, we prefer time-
Assume that R(a) € [-1,1] and w; is 1-sub-Gaussian.

. . Aa\1/3
varying exploration ¢; = (?)

Then e-Greedy ensures with high probability,

AT 1/3
Regret < €T + /? ~ AY/3T?/3 (choosing € = (é) )




Can We Do Better?

In explore-then-commit and e-greedy, the probability to choose arms do not depend
on the estimated mean (except for the empirically best arm).

... Maybe, the probability of choosing arms can be adaptive to the estimated mean?

Solution: Refine the amount of exploration for each arm based on the current
mean estimation.

(Has to do this carefully to avoid under-exploration)



Refined Exploration

Boltzmann Exploration (Parameter: 1) 7 > O

In each round, sample a; according to
m(a) « exp(/l ﬁt(a))

where R, (a) is the empirical mean of arm a using samples up to time t — 1.

Inverse Gap Weighting (Parameter: 1) Gap,(a) 2 max R.(b) — R:(a)

( 1

A + AGap¢(a)

1-— Z ny(a’) for a = argmax, R,(b)
a'+a

for a # argmax, R, (b)
me(a) = |

\




Refined Exploration

e Boltzmann Exploration
e A quite commonly used exploration strategy (like e-greedy)
e However, its theoretically guarantee is less clear and probably less desirable.

Cesa-Bianchi, Gentile, Lugosi, Neu. Boltzmann Exploration Done Right, 2017.
Bian and Jun. Maillard Sampling: Boltzmann Exploration Done Optimally. 2021.

e Inverse Gap Weighting %5

= T
e Less well-known dﬁ o
e Allows to achieve a near-optima[’_rggret bound VAT, improving th by e-greedy

Foster and Rakhlin. Beyond UCB: Optimal and Efficient Contextual Bandits with Regression Oracles. 2020.




Guarantee of Inverse Gap Weighting

Inverse Gap Weighting ensures with high probability,

T
Alog T)

A
Regret < 7 + AlogT = /AT logT (choosing A =

D. Foster and A. Rakhlin. Beyond UCB: Optimal and Efficient Contextual Bandits with Regression Oracles. 2020.
See supplementary materials for a formal proof.

. . - t
Time-varying version: A; = \/;




Summary: MAB Based on Mean Estimation

Fort=1,2,..,T,
Design a distribution m,(-) based on the current mean estimation R, (-)

EG m.(a) = (1 - e)]I{a = argmax }?t(-)} +§ A1/3T72/3

BE m.(a) < exp(AR:(a)) XXX
1

IGW m.(a) = VAT

A+ 2 (mglx R.(b) — ﬁt(a))

Sample an arm a; ~ ; and receive the corresponding reward 1.
Refine the mean estimation R, (-) with the new sample (a,, ;).




Summary: MAB Based on Mean Estimation

(ag,1t)

Mean Estimation

R:()

e ()

Decision Rule

Ty (a)

Lusss. .. e,

e-Greedy  Boltzmann
~ €
me(a) = (1 — E)H{a = argmax Rt(-)} + 7

m(a) o< exp (A}?t (a))
1

A+2 (ml?x R.(b) — ﬁt(a))

my(a) =

Pick action a; ~ m;
Receive r;



Summary: MAB Based on Mean Estimation

e All 3 methods are based on the same mean estimation
e c-Greedy, Boltzmann exploration, Inverse gap weighting

e The key difference is in the decision rule, i.e., the mapping from estimated
means R, to a distribution m,.

e The shape of the mapping makes differences

e There is a scalar hyperparameter that allows for a tradeoff between
exploration and exploitation (e in EG, 4 in BE or IGW)



Regret of Methods over Different

Some Experiments k%

A 007 —e— BE(A=\D)

T = 10000 rounds Em;ingtm
A =2 arms 200 S
Reward mean R = [0.5,0.5 — A] y —o— 1GW (A=81)
Bernoulli distribution g 100
Time-dependent parameters 2
30 random seeds 0
code

=100 ~
Observations:
e Bound from theory could be loose 000 005 0.10 0.15 020 025 0.30

A (Difference in Mean Rewards)

-- theory captures worst-case guarantee

e Most algorithms have its worst regret at  Small A is easy: don’t need to distinguish the two arms
some intermediate A value Large A is also easy: easy to distinguish the two arms

e Smaller exploration leads to larger
variation in performance


https://bahh723.github.io/rl2025fa_files/two-armed-bandits.py

Contextual Bandits

Based on reward function estimation



Contextual Bandits Generalizes MAB and SL

Multi-Armed Bandit

No input, bandit feedback

Generalization
Exploration

Credit assignment

Input — Contextual Bandit

Input —

Supervised Learning [©

Takes input, bandit feedback

Takes input, full-information feedback

Exploration

{ Generalization
Credit assignment

4.2
Generalization
» 7 Exploration

Credit assignment



Multi-Armed Bandits vs. Contextual Bandits

Multi-Armed Bandit

Context —

Contextual Bandit

E.g. the user’s history,
location, social network
activity, ...

all-user recommendation

personalized recommendation



Contextual Bandits

Fortimet=1,2,..,T:
Environment generates a context x; € X
Learner chooses an action a; € A
Learner observes r; = R(x¢, ay) + wy




Discussion

e Contextual bandits is a minimal simultaneous generalization of supervised
learning (SL) and multi-armed bandits (MAB)

e We learned about SL in machine learning courses

e \We just learned some simple MAB algorithms
e 3 strategies based on mean estimation

e Question: Can you design a contextual bandits algorithm based on the
techniques you know for SL and MAB?



Two ways to leverage SL techniques in CB

x: context, a: action, r: reward

Learn a mapping from
(context, action) to reward

CB with regression oracle
Value-based approach
(discussed next)

Learn a mapping from
context to action (or action distribution)

CB with classification oracle
Policy-based approach

(slightly later in the course)



Recall: MAB Based on Mean Estimation

(ag,1t)

Mean Estimation

R:()

e ()

Decision Rule

Ty (a)

Lusss. .. e,

e-Greedy  Boltzmann
~ €
me(a) = (1 — E)H{a = argmax Rt(-)} + 7

m(a) o< exp (A}?t (a))
1

A+2 (ml?x R.(b) — ﬁt(a))

me(a) =

Choose a; ~ m;
Receive r;



CB Based on Reward Function Estimation (Regression)

(X¢, Qg 1)
. Re(:)) o m:(-|-) Receive x,
Regression > Decision Rule > Choose a; ~ (- |x;)
Receive r;
A Ty (alx)
X — - I
@ — T M h_l_l_l_l_,
a—- e-Greedy  Boltzmann
~ ~ ~ €
Train a R such that r; ~ R(x;,a;) me(alx) = (1 — €)l{a = argmax Ry (x,")} + 1

: AR, (x,
V . g ﬁ J, A stes s (alx) « exp( (x a))1

(alx) =
/ e A+ A (mglx R.(x,b) — R,(x, a))




CB Based on Reward Function Estimation

Instantiate a regression procedure R,
Fort=1,2,..,T,
Receive context x;
Design a distribution m,(-|x,) based on the estimated reward R, (x,")
EG m.(alxy) = (1 — e)l{a = argmax R, (x;,")} +§

BE . (alxy) « exp(AR;(x, a))

1

IGW 7. (alx;) = - -
A+ 2 (ml?x R.(x;, b) — R:(x¢, a))

Sample an action a; ~ m;(: |x;) and receive the corresponding reward r;.

Refine the reward estimator R, (-,-) with the new sample (x,, a;, ;).




Regret in Contextual Bandits

Fortimet=1,2,..,T:
Environment generates a context x; € X
Learner chooses an action a; € A
Learner observes r; = R(x¢, ay) + wy

i X— A

Regret = 2 R(x;,m*(x;)) — R(xt, a;) Benchmark policy: 7*(x) = argmax R(x,a)
— //_/ aA€EA
T r’_\
z maX R(xt, a) — z R(xt, at)
ae
t=1

t=1




Regret in Contextual Bandits /Q/Q gruinnd Fioe

G, an) (% G t)

/ S———

/
Regret Bound of e-Greedy R . /
egression efror
e-Greedy ensures \ T W ,
AT@ Err = z (ﬁt(xt' ar) — R(x, at))
Regret < €T + t=1
\ €

Regret Bound of Inverse Gap Weighting
IGW ensures

AT
Regret < 5a + A - Err

Will be proven in HW1



Summary

e Contextual bandits (CB) simultaneously generalizes supervised learning (SL)
and multi-armed bandits (MAB). It captures the challenges of generalization
and exploration in online RL.

e Any MAB algorithm based on “mean estimation” can be lifted as a CB
algorithm with “reward function estimation” by leveraging a regression oracle.

e This gives a general framework for value-based CB



Multi-Armed Bandits

Based on mean estimation and uncertainty quantification



Recall: MAB Based on Mean Estimation

(ag,1t)

Mean Estimation

R:()

Decision Rule

e ()

...

Choose a; ~ m;
Receive r;



MAB Based on Mean Estimation and Uncertainty Quantification

(ag,1t)

Mean Estimation & R:(), U () - () Choose 4. ~
Uncertainty Quantification " Decision Rule " Recelve TZ t

...

U.(a): quantifies the uncertainty of R;(a)

5 2log(2/8) ,
|Rt(a)—R(a)|sJ v 2 U@



Useful Idea: “Optimism in the Face of Uncertainty”

In words:
Act according to the best plausible world.

AND
Srennc!

ﬂ

>&

oy N
\?
P

Image source: UC Berkeley CS188




Another Idea: “Optimism in the Face of Uncertainty”

In words:
Act according to the best plausible world.

At time t, suppose that arm a has been drawn for N.(a) times, with empigk
mean R;(a).

What can we say about the true mean R(a)? ¢ Rel(e)
/\ ey
A Re(a) - | X
| R(a) — Rt(a)| < \/2 lzgg;(s) W.p.>1-6 e(*) J“’A-J
t

What's the most optimistic mean estimation for arm a?

PN 2 log(2/6)
Rt(@"‘\/ N.(@)




Upper Confidence Bound (UCB)

P Auer, N Cesa-Bianchi, P Fischer. Finite-time analysis of the multiarmed bandit problem, 2002.

UCB (Parameter: §)

In round t, draw

a, = argmax, R,(a)l+

Usually decreases over time as 6; ~ 1/t (drives continual expls

Exploration Bonus
= Amount of Uncerts

2log(2/6)
Ni(a)

where R,(a) is the empirical mean of arm a using samples up to time t — 1.

N;(a) is the number of samples of arm a up to time t — 1.

pration)

inty

cf. Mean-estimation-based algorithms samples a, ~ m,(-) = an increasing function of R,(+)

In those algorithms, Hoeffding's inequality is used in the regret analysis, but not in the algorithm.



Regret Bound of UCB

Theorem. Regret Bound of UCB
UCB ensures with high probability,

Regret < VAT .

Will be proven in HW1




Visualizing UCB

True mean: [0.2, 0.4, 0.6, 0.7] animation code



https://bahh723.github.io/rl2025sp_files/ucb-animation.gif
https://bahh723.github.io/rl2025fa_files/ucb.py

Summary: Algorithms We Learned So Far

Regret Bound Approach
Explore-then-Exploit A3 T?/3
e-Greedy AY/3 T2/3 L "
. Mean estimation + decision rule
Boltzmann Exploration X
Inverse Gap Weighting VAT
. Mean estimation
Upper Confidence Bound VAT + uncertainty quantification

+ decision rule




William Thompson. On the likelihood that one unknown

Thom pson Sam pl | ng probability exceeds another in view of the evidence of

two samples, 1933.

Thompson Sampling (Parameter: ¢ or ¢;) There are other/better ways to
design the noise for specific
In round t, draw (e.g., Bernoulli) reward
BN
a, = argmax, R,(a) +c n.(a)  withn,(a) ~ N¥(0,1)
\ Ni(a)

where R,(a) is the empirical mean of arm a using samples up to time t — 1.
N;(a) is the number of samples of arm a up to time t — 1.




Another interpretation of TS:
TS vs. UCB _ _
Sample R(a) to the posterior

distribution of R(a).
Act greedily according to R(a)

TS usually has stronger empirical performance

R\t (a)

A

Q

Ni(a)

UCB estimators

UCB: a; = argmax, R;(a) + ¢ (D)

Thompson Sampling: a, =~ argmax, R.;(a) +c /NL@ n;(a) with n;(a) ~ NV (0,1)
t



Uncertainty Quantification in Contextual Bandits?

(as, 1t)

Mean Estimation & R:(), U () - () Choose 4. ~
Uncertainty Quantification " Decision Rule " Recelve Tz t

e In UCB or TS for finite actions, the uncertainty measure is directly derived from
Hoeffding’'s bound.

e \When there is unseen context, it's no longer easy to “derive” uncertainty measure, so
the amount uncertainty needs to be “estimated”.

e We'll talk about this more later in the semester (special topics): how to estimate the
model’s uncertainty and use it to create exploration bonus.



Aleatoric and Epistemic Uncertainty

e Aleatoric uncertainty

e Comes from inherent randomness or noise in the data (e.g., sensor noise, coin flips)
e Irreducible — cannot be removed even with more data

e Epistemic uncertainty

e Comes from lack of data or limited model capacity
e Reducible — can shrink with more data or better models

The “uncertainty quantification” in UCB/TS quantifies Epistemic uncertainty.

R(x,a): underlying true reward function
R(x,a): reward function modeled by a neural network

r: reward feedback after taking action a on seeing x

Which kind of uncertainty do these
quantities capture?

R(x,a) — R(x, a)|
R(x,a) — |

R(x,a) — 7]




Summary



Summary

Value-based bandit algorithms

e Multi-armed bandits (non-contextual bandits)
e Based on mean estimation
e Based on mean estimation and uncertainty quantification

e Contextual bandits
e Based on reward function estimation



CB Based on Reward Function Estimation

(Special Case: MAB Based on Mean Estimation)

(X¢, Qg 1)
_ R.(:,") o m:(|*) Receive x,
Regression > Decision Rule > Choose a; ~ (- |x;)
Receive r;
A Ty (alx)
* R JJJLL. M h_l_l_l_l_,
a R — T arm
" e-Greedy  Boltzmann IGW

Train a R such that r; = R(x;, a;)



MAB Based on Mean and Uncertainty Estimation

(ag,1t)

Mean Estimation &
Uncertainty Quantification

R\t(')i Ut(°)‘

Decision Rule

e ()

Choose a; ~ m;
Receive r;

UCB: argmax R(a) + U.(a)
a

TS: argmax R(a) + U,(a)n:(a)

a

T

noise

Uncertainty quantification for CB is less trivial — discussed in the future (special topics).
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