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Contextual Bandits and Non-Contextual Bandits
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Multi-Armed Bandits
Non-Contextual Bandits with Discrete Actions



Multi-Armed Bandits
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Multi-Armed Bandits

Given:  arm set 𝒜 = {1, … , 𝐴}

For time 𝑡 = 1, 2, … , 𝑇: 

 Learner chooses an arm 𝑎𝑡 ∈ 𝒜

 Learner observes 𝑟𝑡 = 𝑅 𝑎𝑡 + 𝑤𝑡

Assumption:   𝑅 𝑎  is the (hidden) ground-truth reward function 

                         𝑤𝑡 is (zero-mean) noise

Goal:   maximize the total reward σ𝑡=1
𝑇 𝑅(𝑎𝑡)   (or σ𝑡=1

𝑇 𝑟𝑡) 

Arm = Action



How to Evaluate an Algorithm’s Performance? 

max
𝜋

෍

𝑡=1

𝑇

𝑅(𝜋) − ෍

𝑡=1

𝑇

𝑅(𝑎𝑡)

The total reward of the best policy

=  max
𝑎

 𝑇𝑅(𝑎) − ෍

𝑡=1

𝑇

𝑅(𝑎𝑡)

In MAB

Regret ∶=

● “My algorithm obtains 0.3𝑇 total reward within 𝑇 rounds”  – Is my algorithm good?

● “My algorithm ensures Regret ≤ 5𝑇3/4 ”

● Regret = 𝑜 𝑇  ⇒  the algorithm is as good as the optimal policy asymptotically

● Remark:  the learner doesn’t need to know or track the regret when running the 

algorithm.  Regret is just an analytical tool to analyze the algorithm in hindsight. 



Multi-Armed Bandits (MAB) 

● Key challenge in MAB:  Exploration 

● The other challenges of RL are not presented in MAB:  

● Generalization (there is no input in MAB)

● Credit assignments (there is no delayed feedback)

● We will discuss about two categories of exploration strategies

● Based on mean estimation

● Based on mean and uncertainty estimation



Multi-Armed Bandits
Based on mean estimation



The Exploration and Exploitation Trade-off in MAB

● To perform as well as the best policy (i.e., best arm) asymptotically, the 

learner has to pull the best arm most of the time 

     ⇒ need to exploit

● To identify the best arm, the learner has to try every arm sufficiently many 

times

    ⇒ need to explore



A Simple Strategy: Explore-then-Commit 

What is the right amount of exploration (𝑇0)? 

Explore-then-commit (Parameter: 𝑇0)

In the first 𝑇0 rounds, sample each arm 𝑇0/𝐴 times. (Explore) 

Compute the empirical mean ෠𝑅(𝑎) for each arm 𝑎  

In the remaining 𝑇 − 𝑇0 rounds, draw ො𝑎 = argmax𝑎 ෠𝑅(𝑎) (Exploit) 



Another Simple Strategy: 𝝐-Greedy

Take action

𝑎𝑡 = ቊ
 uniform 𝒜  with prob.  𝜖 

argmax𝑎 ෠𝑅𝑡 𝑎  with prob.  1 − 𝜖

where ෠𝑅𝑡 𝑎 =
σ𝑠=1

𝑡−1 𝕀 𝑎𝑠=𝑎  𝑟𝑠

σ𝑠=1
𝑡−1 𝕀 𝑎𝑠=𝑎  

is the empirical mean of arm 𝑎 using samples 

up to time 𝑡 − 1.  

𝝐-Greedy  (Parameter: 𝜖)

Mixing exploration and exploitation in time 

(Explore) 

(Exploit) 

What is the right amount of exploration (𝜖)? 



Comparison

● 𝜖-Greedy is more robust to non-stationarity than Explore-then-Exploit

● 𝜖-Greedy has a better performance in the early phase of the learning process



Quantifying the Estimation Error

In Explore-then-Commit, we obtain  𝑁 = 𝑇0/𝐴  i.i.d. samples of each arm. 

 ෠𝑅 𝑎 − 𝑅 𝑎  ≤ 

Empirical mean 
of 𝑁 i.i.d. samples

True mean

Key Question: 

some decreasing function of 𝑁

𝑓(𝑁)?



Quantifying the Estimation Error
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Quantifying the Estimation Error

In Explore-then-Commit, we obtain  𝑁 = 𝑇0/𝐴  i.i.d. samples of each arm. 

 ෠𝑅 𝑎 − 𝑅 𝑎  ≤ 

Empirical mean 
of 𝑁 i.i.d. samples

True mean

Key Question: 

some decreasing function of 𝑁

𝑓(𝑁)?



Quantifying the Estimation Error

In Explore-then-Commit, we obtain  𝑁 = 𝑇0/𝐴  i.i.d. samples of each arm. 

 ෠𝑅 𝑎 − 𝑅 𝑎  ≤ 

Empirical mean 
of 𝑁 i.i.d. samples

True mean

Key Question:  

some decreasing function of 𝑁

𝑓(𝑁, 𝛿)?

With probability at least 1 − 𝛿, 



Quantifying the Error:  Concentration Inequality

Let 𝑋1, … , 𝑋𝑁 be independent 𝜎-sub-Gaussian random variables with mean 𝜇.  

Then with probability at least 1 − 𝛿, 

1

𝑁
෍

𝑖=1

𝑁

𝑋𝑖 − 𝜇 ≤ 𝜎
2 log 2/𝛿

𝑁
 .

Theorem.  Hoeffding’s Inequality

A random variable is called 𝜎-sub-Gaussian if  𝔼 𝑒𝜆(𝑋−𝔼[𝑋]) ≤ 𝑒𝜆2𝜎2/2   ∀𝜆 ∈ ℝ.

Fact 1. 𝒩(𝜇, 𝜎2) is 𝜎-sub-Gaussian. 

Fact 2. A random variable ∈ [𝑎, 𝑏] is (𝑏 − 𝑎)-sub-Gaussian.

Intuition:  tail probability Pr |𝑋 − 𝔼 𝑋 | ≥ 𝑧  bounded by that of Gaussians



Quantifying the Estimation Error

Omit constants and log(1/𝛿) factors

With high probability,   ෠𝑅 𝑎 − 𝑅 𝑎  = ෨𝑂
1

𝑁

With probability at least 1 − 𝛿,    ෠𝑅 𝑎 − 𝑅 𝑎  = 𝑂
log (1/𝛿)

𝑁

Omit constants



Explore-then-Commit Regret Analysis

In the first 𝑇0 rounds, sample each arm 𝑁 = 𝑇0/𝐴 times. 

Compute the empirical mean ෠𝑅(𝑎) for each arm 𝑎  

In the remaining 𝑇 − 𝑇0 rounds, draw ො𝑎 = argmax𝑎 ෠𝑅(𝑎)

At the end of the exploration phase, we have for all arm 𝑎,  

෠𝑅 𝑎 − 𝑅(𝑎) ≲
1

𝑁
 =

𝐴

𝑇0
 

Let ො𝑎 = argmax𝑎 ෠𝑅 𝑎    (the empirically best arm)

Let 𝑎⋆ = argmax𝑎 𝑅(𝑎)   (the true best arm)

𝑅 𝑎⋆ − 𝑅 ො𝑎 ≤ ?



𝑅 𝑎⋆ − 𝑅 ො𝑎 = ෠𝑅 𝑎⋆ − ෠𝑅 ො𝑎 + 𝑅 𝑎⋆ − ෠𝑅 𝑎⋆ + ෠𝑅 ො𝑎 − 𝑅( ො𝑎)

≤ 0 mean estimation errorregret



Regret Bound of Explore-then-Commit and 𝝐-Greedy 

Then Explore-then-Exploit ensures with high probability, 

Regret ≲ 𝑇0 + 𝑇
𝐴

𝑇0
 

Theorem.  Regret Bound of Explore-then-Commit

Assume that 𝑅 𝑎 ∈ [−1,1] and 𝑤𝑡 is 1-sub-Gaussian. 

Then 𝜖-Greedy ensures with high probability, 

Regret ≲ 𝜖𝑇 +
𝐴𝑇

𝜖
 

Theorem.  Regret Bound of 𝝐-Greedy

Assume that 𝑅 𝑎 ∈ [−1,1] and 𝑤𝑡 is 1-sub-Gaussian. 

≈ 𝐴1/3𝑇2/3 (choosing 𝑇0 = 𝐴1/3𝑇2/3)

≈ 𝐴1/3𝑇2/3 (choosing 𝜖 =
𝐴

𝑇

1/3
)

In practice, we prefer time-

varying exploration 𝜖𝑡 ≈
𝐴

𝑡

1/3
 



Can We Do Better?

In explore-then-commit and 𝜖-greedy, the probability to choose arms do not depend 

on the estimated mean (except for the empirically best arm).  

… Maybe, the probability of choosing arms can be adaptive to the estimated mean? 

Solution: Refine the amount of exploration for each arm based on the current 

mean estimation. 

(Has to do this carefully to avoid under-exploration)



Refined Exploration

In each round, sample 𝑎𝑡 according to

where ෠𝑅𝑡 𝑎  is the empirical mean of arm 𝑎 using samples up to time 𝑡 − 1.  

Boltzmann Exploration  (Parameter: 𝜆)

𝜋𝑡 𝑎 =

1

𝐴 + 𝜆Gap𝑡(𝑎)
 

1 − ෍
𝑎′≠𝑎

𝜋𝑡(𝑎′)

Inverse Gap Weighting  (Parameter: 𝜆) Gap𝑡 𝑎 ≜ max
𝑏

 ෠𝑅𝑡 𝑏 − ෠𝑅𝑡(𝑎) 

𝜋𝑡 𝑎 ∝  exp 𝜆 ෠𝑅𝑡(𝑎)

for 𝑎 ≠ argmax𝑏 ෠𝑅𝑡(𝑏) 

for 𝑎 = argmax𝑏 ෠𝑅𝑡(𝑏) 



Refined Exploration

● Boltzmann Exploration

● A quite commonly used exploration strategy (like 𝜖-greedy)

● However, its theoretically guarantee is less clear and probably less desirable. 

Cesa-Bianchi, Gentile, Lugosi, Neu.  Boltzmann Exploration Done Right,  2017.

Bian and Jun. Maillard Sampling: Boltzmann Exploration Done Optimally.  2021. 

● Inverse Gap Weighting

● Less well-known

● Allows to achieve a near-optimal regret bound 𝐴𝑇, improving the 𝐴1/3𝑇2/3 by 𝜖-greedy  

Foster and Rakhlin. Beyond UCB: Optimal and Efficient Contextual Bandits with Regression Oracles. 2020.

 



Guarantee of Inverse Gap Weighting

Inverse Gap Weighting ensures with high probability, 

Regret ≲
𝐴

𝜆
+ 𝜆 log 𝑇 ≈ 𝐴𝑇 log 𝑇 (choosing 𝜆 =

𝑇

𝐴 log 𝑇
)

D. Foster and A. Rakhlin. Beyond UCB: Optimal and Efficient Contextual Bandits with Regression Oracles. 2020.

See supplementary materials for a formal proof.

Time-varying version: 𝜆𝑡 ≈
𝑡

𝐴
 



Summary: MAB Based on Mean Estimation

For 𝑡 = 1, 2, … , 𝑇, 

      Design a distribution 𝜋𝑡(⋅) based on the current mean estimation ෠𝑅𝑡(⋅) 

      Sample an arm 𝑎𝑡 ∼ 𝜋𝑡 and receive the corresponding reward 𝑟𝑡. 

      Refine the mean estimation ෠𝑅𝑡+1(⋅) with the new sample (𝑎𝑡 , 𝑟𝑡).  

𝜋𝑡 𝑎 =
1

𝐴 + 𝜆 max
𝑏

 ෠𝑅𝑡 𝑏 −  ෠𝑅𝑡 𝑎

𝜋𝑡 𝑎 ∝  exp 𝜆 ෠𝑅𝑡(𝑎)   

𝜋𝑡 𝑎 = 1 − 𝜖 𝕀 𝑎 = argmax ෠𝑅𝑡(⋅) +
𝜖

𝐴
EG

BE

IGW 𝐴𝑇 

𝐴1/3𝑇2/3

XXX



Summary: MAB Based on Mean Estimation

Mean Estimation Decision Rule

෠𝑅𝑡 𝑎 =
σ𝑠=1

𝑡−1 𝕀 𝑎𝑠 = 𝑎 𝑟𝑠

σ𝑠=1
𝑡−1 𝕀 𝑎𝑠 = 𝑎  

෠𝑅𝑡(⋅) 𝜋𝑡(⋅)
Pick action 𝑎𝑡 ∼ 𝜋𝑡 

Receive 𝑟𝑡

(𝑎𝑡 , 𝑟𝑡)

𝜖-Greedy Boltzmann IGW

𝜋𝑡 𝑎 =
1

𝐴 + 𝜆 max
𝑏

 ෠𝑅𝑡 𝑏 −  ෠𝑅𝑡 𝑎

𝜋𝑡 𝑎 ∝  exp 𝜆 ෠𝑅𝑡(𝑎)   

𝜋𝑡 𝑎 = 1 − 𝜖 𝕀 𝑎 = argmax ෠𝑅𝑡(⋅) +
𝜖

𝐴

arm

𝜋𝑡(𝑎)



Summary: MAB Based on Mean Estimation

● All 3 methods are based on the same mean estimation

● 𝜖-Greedy, Boltzmann exploration, Inverse gap weighting

● The key difference is in the decision rule, i.e., the mapping from estimated 

means ෠𝑅𝑡 to a distribution 𝜋𝑡. 

● The shape of the mapping makes differences

● There is a scalar hyperparameter that allows for a tradeoff between 

exploration and exploitation (𝜖 in EG, 𝜆 in BE or IGW)



Some Experiments

code

𝑇 = 10000 rounds

𝐴 = 2 arms

Reward mean 𝑅 = [0.5, 0.5 − Δ]

Bernoulli distribution

Time-dependent parameters

30 random seeds 

code

Observations:  

● Bound from theory could be loose

-- theory captures worst-case guarantee

● Most algorithms have its worst regret at 

some intermediate Δ value

● Smaller exploration leads to larger 

variation in performance 

Small Δ is easy: don’t need to distinguish the two arms

Large Δ is also easy:  easy to distinguish the two arms

https://bahh723.github.io/rl2025fa_files/two-armed-bandits.py


Contextual Bandits
Based on reward function estimation



Contextual Bandits Generalizes MAB and SL

Multi-Armed Bandit

4.2

?

?

Supervised Learning

4.2

5.0

3.1

Input

No input, bandit feedback Takes input, full-information feedback

Contextual Bandit

4.2

?

?

Input

Takes input, bandit feedback

Generalization

Exploration

Credit assignment

Generalization

Exploration

Credit assignment

Generalization

Exploration

Credit assignment



Multi-Armed Bandits vs. Contextual Bandits

Multi-Armed Bandit

Contextual BanditContext

E.g. the user’s history, 

location, social network 

activity, …

all-user recommendation

personalized recommendation



Contextual Bandits

For time 𝑡 = 1, 2, … , 𝑇: 

 Environment generates a context 𝑥𝑡 ∈ 𝒳

 Learner chooses an action 𝑎𝑡 ∈ 𝒜

 Learner observes 𝑟𝑡 = 𝑅(𝑥𝑡 , 𝑎𝑡) + 𝑤𝑡



Discussion

● Contextual bandits is a minimal simultaneous generalization of supervised 

learning (SL) and multi-armed bandits (MAB) 

● We learned about SL in machine learning courses 

● We just learned some simple MAB algorithms

● 3 strategies based on mean estimation

● Question:  Can you design a contextual bandits algorithm based on the 

techniques you know for SL and MAB? 



Two ways to leverage SL techniques in CB

𝑥: context,  𝑎: action,  𝑟: reward 

𝑟𝑅
𝑥

𝑎

Learn a mapping from 

(context, action) to reward

𝑎𝜋𝑥

Learn a mapping from 

context to action (or action distribution)

CB with regression oracle  CB with classification oracle  

Value-based approach Policy-based approach

(discussed next) (slightly later in the course)



Recall:  MAB Based on Mean Estimation

Mean Estimation Decision Rule

𝜖-Greedy Boltzmann IGW

𝜋𝑡 𝑎 =
1

𝐴 + 𝜆 max
𝑏

 ෠𝑅𝑡 𝑏 −  ෠𝑅𝑡 𝑎

𝜋𝑡 𝑎 ∝  exp 𝜆 ෠𝑅𝑡(𝑎)   

𝜋𝑡 𝑎 = 1 − 𝜖 𝕀 𝑎 = argmax ෠𝑅𝑡(⋅) +
𝜖

𝐴

෠𝑅𝑡 𝑎 =
σ𝑠=1

𝑡−1 𝕀 𝑎𝑠 = 𝑎 𝑟𝑠

σ𝑠=1
𝑡−1 𝕀 𝑎𝑠 = 𝑎  

෠𝑅𝑡(⋅) 𝜋𝑡(⋅)
Choose 𝑎𝑡 ∼ 𝜋𝑡 

Receive 𝑟𝑡

(𝑎𝑡 , 𝑟𝑡)

arm

𝜋𝑡(𝑎)



CB Based on Reward Function Estimation (Regression)

Regression Decision Rule

𝜖-Greedy Boltzmann IGW

𝜋𝑡 𝑎|𝑥 =
1

𝐴 + 𝜆 max
𝑏

 ෠𝑅𝑡 𝑥, 𝑏 −  ෠𝑅𝑡 𝑥, 𝑎

𝜋𝑡 𝑎|𝑥 ∝  exp 𝜆 ෠𝑅𝑡(𝑥, 𝑎)   

𝜋𝑡 𝑎|𝑥 = 1 − 𝜖 𝕀 𝑎 = argmax ෠𝑅𝑡(𝑥,⋅) +
𝜖

𝐴

෠𝑅𝑡(⋅,⋅) 𝜋𝑡(⋅ | ⋅) Receive 𝑥𝑡

Choose 𝑎𝑡 ∼ 𝜋𝑡(⋅ |𝑥𝑡) 

Receive 𝑟𝑡

(𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡)

arm

𝜋𝑡(𝑎|𝑥)

𝑟෠𝑅
𝑥

𝑎

Train a ෠𝑅 such that 𝑟𝑖 ≈ ෠𝑅(𝑥𝑖 , 𝑎𝑖)



CB Based on Reward Function Estimation

For 𝑡 = 1, 2, … , 𝑇, 

      Receive context 𝑥𝑡

      Design a distribution 𝜋𝑡 ⋅ 𝑥𝑡) based on the estimated reward ෠𝑅𝑡(𝑥𝑡,⋅) 

      Sample an action 𝑎𝑡 ∼ 𝜋𝑡(⋅ |𝑥𝑡) and receive the corresponding reward 𝑟𝑡. 

      Refine the reward estimator ෠𝑅𝑡+1(⋅,⋅) with the new sample (𝑥𝑡, 𝑎𝑡 , 𝑟𝑡).  

𝜋𝑡 𝑎|𝑥𝑡 =
1

𝐴 + 𝜆 max
𝑏

 ෠𝑅𝑡 𝑥𝑡, 𝑏 − ෠𝑅𝑡 𝑥𝑡 , 𝑎

𝜋𝑡 𝑎|𝑥𝑡 ∝  exp 𝜆 ෠𝑅𝑡(𝑥𝑡, 𝑎)   

𝜋𝑡 𝑎|𝑥𝑡 = 1 − 𝜖 𝕀 𝑎 = argmax ෠𝑅𝑡(𝑥𝑡 ,⋅) +
𝜖

𝐴
EG

BE

IGW

Instantiate a regression procedure ෠𝑅1



Regret in Contextual Bandits

For time 𝑡 = 1, 2, … , 𝑇: 

 Environment generates a context 𝑥𝑡 ∈ 𝒳

 Learner chooses an action 𝑎𝑡 ∈ 𝒜

 Learner observes 𝑟𝑡 = 𝑅(𝑥𝑡 , 𝑎𝑡) + 𝑤𝑡

Regret = ෍

𝑡=1

𝑇

𝑅(𝑥𝑡, 𝜋⋆(𝑥𝑡)) − ෍

𝑡=1

𝑇

𝑅 𝑥𝑡 , 𝑎𝑡 Benchmark policy:

= ෍

𝑡=1

𝑇

max
𝑎∈𝒜

 𝑅(𝑥𝑡 , 𝑎) − ෍

𝑡=1

𝑇

𝑅 𝑥𝑡 , 𝑎𝑡

𝜋⋆ 𝑥 = argmax
𝑎∈𝒜

 𝑅(𝑥, 𝑎) 



Regret in Contextual Bandits

Regret Bound of 𝝐-Greedy

𝜖-Greedy ensures

Regret ≲ 𝜖𝑇 +
𝐴𝑇 ⋅ Err

𝜖

Regret Bound of Inverse Gap Weighting

IGW ensures

Regret ≲
𝐴𝑇

𝜆
+ 𝜆 ⋅ Err

Err = ෍

𝑡=1

𝑇

෠𝑅𝑡 𝑥𝑡 , 𝑎𝑡 − 𝑅 𝑥𝑡 , 𝑎𝑡

2

Regression error

Will be proven in HW1



Summary

● Contextual bandits (CB) simultaneously generalizes supervised learning (SL) 

and multi-armed bandits (MAB). It captures the challenges of generalization 

and exploration in online RL. 

● Any MAB algorithm based on “mean estimation” can be lifted as a CB 

algorithm with “reward function estimation” by leveraging a regression oracle.   

● This gives a general framework for value-based CB



Multi-Armed Bandits
Based on mean estimation and uncertainty quantification



Recall: MAB Based on Mean Estimation

Mean Estimation Decision Rule
෠𝑅𝑡(⋅) 𝜋𝑡(⋅)

Choose 𝑎𝑡 ∼ 𝜋𝑡 

Receive 𝑟𝑡

(𝑎𝑡 , 𝑟𝑡)



MAB Based on Mean Estimation and Uncertainty Quantification

Mean Estimation & 
Uncertainty Quantification Decision Rule

෠𝑅𝑡 ⋅ , 𝑈𝑡(⋅) 𝜋𝑡(⋅)
Choose 𝑎𝑡 ∼ 𝜋𝑡 

Receive 𝑟𝑡

(𝑎𝑡 , 𝑟𝑡)

𝑈𝑡(𝑎):  quantifies the uncertainty of ෠𝑅𝑡(𝑎) 

෠𝑅𝑡 𝑎 − 𝑅(𝑎) ≤
 2log(2/𝛿)

𝑁𝑡(𝑎)
 ≜ 𝑈𝑡(𝑎)



Useful Idea: “Optimism in the Face of Uncertainty”

In words: 

Act according to the best plausible world. 

Image source: UC Berkeley CS188



Another Idea: “Optimism in the Face of Uncertainty”

In words: 

Act according to the best plausible world. 

At time 𝑡, suppose that arm 𝑎 has been drawn for 𝑁𝑡 𝑎  times, with empirical 

mean ෠𝑅𝑡(𝑎).  

What can we say about the true mean 𝑅(𝑎)? 

 𝑅 𝑎 − ෠𝑅𝑡 𝑎 ≤
2 log 2/𝛿

𝑁𝑡(𝑎)
   w.p. ≥ 1 − 𝛿 

What’s the most optimistic mean estimation for arm 𝑎? 

෠𝑅𝑡 𝑎 +
2 log 2/𝛿

𝑁𝑡(𝑎)
 



Upper Confidence Bound (UCB)

In round 𝑡,  draw

𝑎𝑡 = argmax𝑎 ෠𝑅𝑡 𝑎 +
2 log 2/𝛿

𝑁𝑡(𝑎)

where ෠𝑅𝑡 𝑎  is the empirical mean of arm 𝑎 using samples up to time 𝑡 − 1. 

𝑁𝑡(𝑎) is the number of samples of arm 𝑎 up to time 𝑡 − 1. 

UCB  (Parameter: 𝛿)

P Auer, N Cesa-Bianchi, P Fischer.  Finite-time analysis of the multiarmed bandit problem, 2002. 

Exploration Bonus

Usually decreases over time as 𝛿𝑡 ∼ 1/𝑡 (drives continual exploration)  

= Amount of Uncertainty

cf. Mean-estimation-based algorithms samples 𝑎𝑡 ∼ 𝜋𝑡(⋅) = an increasing function of ෠𝑅𝑡(⋅) 

In those algorithms, Hoeffding’s inequality is used in the regret analysis, but not in the algorithm. 



Regret Bound of UCB

UCB ensures with high probability, 

Regret ≲ 𝐴𝑇 .

Theorem.  Regret Bound of UCB

Will be proven in HW1



Visualizing UCB

True mean: [0.2, 0.4, 0.6, 0.7]     animation code

https://bahh723.github.io/rl2025sp_files/ucb-animation.gif
https://bahh723.github.io/rl2025fa_files/ucb.py


Summary:  Algorithms We Learned So Far

Regret Bound Approach

Explore-then-Exploit 

𝜖-Greedy

Boltzmann Exploration

Inverse Gap Weighting

𝐴1/3 𝑇2/3

𝐴1/3 𝑇2/3

X

𝐴𝑇

Mean estimation + decision rule

Upper Confidence Bound

Thompson Sampling
𝐴𝑇

Mean estimation 

+ uncertainty quantification

+ decision rule



Thompson Sampling

In round 𝑡,  draw

𝑎𝑡 = argmax𝑎 ෠𝑅𝑡 𝑎 + 𝑐
1

𝑁𝑡(𝑎)
 𝑛𝑡 𝑎  

where ෠𝑅𝑡 𝑎  is the empirical mean of arm 𝑎 using samples up to time 𝑡 − 1. 

𝑁𝑡(𝑎) is the number of samples of arm 𝑎 up to time 𝑡 − 1. 

Thompson Sampling (Parameter: 𝑐 or 𝑐𝑡)

with 𝑛𝑡 𝑎 ∼ 𝒩(0,1) 

William Thompson. On the likelihood that one unknown 

probability exceeds another in view of the evidence of 

two samples, 1933. 

There are other/better ways to 
design the noise for specific 
(e.g., Bernoulli) reward 



TS vs. UCB

෠𝑅𝑡(𝑎)
≈

1

𝑁𝑡(𝑎)

UCB estimators

UCB:  𝑎𝑡 ≈ argmax𝑎 ෠𝑅𝑡 𝑎 + 𝑐
1

𝑁𝑡(𝑎)

Thompson Sampling:  𝑎𝑡 ≈ argmax𝑎 ෠𝑅𝑡 𝑎 + 𝑐
1

𝑁𝑡(𝑎)
𝑛𝑡(𝑎) with 𝑛𝑡 𝑎 ∼ 𝒩(0,1) 

TS usually has stronger empirical performance

Another interpretation of TS: 

Sample ෨𝑅(𝑎) to the posterior 
distribution of 𝑅(𝑎). 

Act greedily according to ෨𝑅(𝑎) 



Uncertainty Quantification in Contextual Bandits?

Mean Estimation & 
Uncertainty Quantification Decision Rule

෠𝑅𝑡 ⋅ , 𝑈𝑡(⋅) 𝜋𝑡(⋅)
Choose 𝑎𝑡 ∼ 𝜋𝑡 

Receive 𝑟𝑡

(𝑎𝑡 , 𝑟𝑡)

● In UCB or TS for finite actions, the uncertainty measure is directly derived from 

Hoeffding’s bound. 

● When there is unseen context, it’s no longer easy to “derive” uncertainty measure, so 

the amount uncertainty needs to be “estimated”.  

● We’ll talk about this more later in the semester (special topics): how to estimate the 

model’s uncertainty and use it to create exploration bonus. 



Aleatoric and Epistemic Uncertainty

● Aleatoric uncertainty

● Comes from inherent randomness or noise in the data (e.g., sensor noise, coin flips)

● Irreducible — cannot be removed even with more data

● Epistemic uncertainty

● Comes from lack of data or limited model capacity

● Reducible — can shrink with more data or better models

The “uncertainty quantification” in UCB/TS quantifies Epistemic uncertainty.  

𝑅 𝑥, 𝑎 − ෠𝑅(𝑥, 𝑎)

𝑅 𝑥, 𝑎 − 𝑟

෠𝑅 𝑥, 𝑎 − 𝑟

𝑅(𝑥, 𝑎):  underlying true reward function

෠𝑅(𝑥, 𝑎):  reward function modeled by a neural network

𝑟:  reward feedback after taking action 𝑎 on seeing 𝑥

Which kind of uncertainty do these 

quantities capture? 



Summary



Summary

Value-based bandit algorithms

● Multi-armed bandits (non-contextual bandits)

● Based on mean estimation

● Based on mean estimation and uncertainty quantification

● Contextual bandits 

● Based on reward function estimation



CB Based on Reward Function Estimation

Regression Decision Rule

𝜖-Greedy Boltzmann IGW

෠𝑅𝑡(⋅,⋅) 𝜋𝑡(⋅ | ⋅) Receive 𝑥𝑡

Choose 𝑎𝑡 ∼ 𝜋𝑡(⋅ |𝑥𝑡) 

Receive 𝑟𝑡

(𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡)

arm

𝜋𝑡(𝑎|𝑥)

𝑟෠𝑅
𝑥

𝑎

Train a ෠𝑅 such that 𝑟𝑖 ≈ ෠𝑅(𝑥𝑖 , 𝑎𝑖)

(Special Case:  MAB Based on Mean Estimation)



MAB Based on Mean and Uncertainty Estimation

Mean Estimation & 
Uncertainty Quantification Decision Rule

෠𝑅𝑡 ⋅ , 𝑈𝑡(⋅) 𝜋𝑡(⋅)
Choose 𝑎𝑡 ∼ 𝜋𝑡 

Receive 𝑟𝑡

(𝑎𝑡 , 𝑟𝑡)

UCB:  argmax
𝑎

 ෠𝑅 𝑎 + 𝑈𝑡(𝑎) 

TS:  argmax
𝑎

 ෠𝑅 𝑎 + 𝑈𝑡 𝑎 𝑛𝑡(𝑎) 

noise

Uncertainty quantification for CB is less trivial – discussed in the future (special topics).  
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