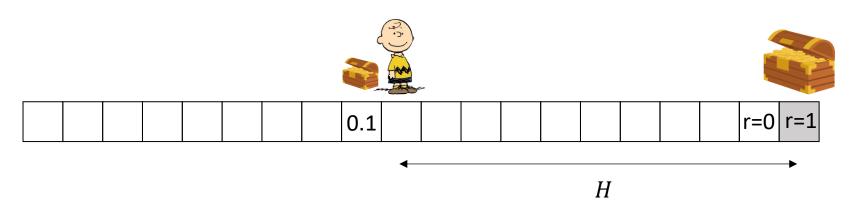
Exploration in MDPs

Chen-Yu Wei

State-Space Exploration in MDPs



Environment:

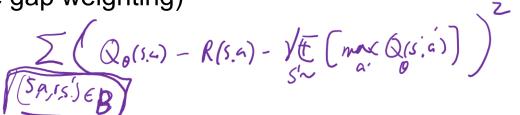
- Fixed-horizon MDP with episode length H
- Initial state at 0
- A single rewarding state at state H
- Actions: Go LEFT or RIGHT

Suppose we perform DQN with ϵ -greedy with random initialization

 \Rightarrow On average, we need 2^H episodes to see the reward

Regret Analysis for MDPs?

- We have done regret analysis for several bandit algorithms:
 - Regression oracle + (ϵ -greedy or inverse gap weighting)
 - UCB
 - EXP3



- We did not really establish regret bounds for MDPs. We only argued:
 - Approximate value iteration: under the assumption that the data in replay buffer is exploratory
 - Approximate policy iteration: monotonically improvement

Regret Analysis for MDPs?

$$\mathbb{E}_{s\sim\rho}\big[V^{\pi^{\star}}(s)\big] - \mathbb{E}_{s\sim\rho}\big[V^{\pi}(s)\big]$$

$$= \sum_{s,a} d_{\rho}^{\pi}(s,a) (V^{\star}(s) - Q^{\star}(s,a))$$

For VI-based algorithm (approximating Q^*)

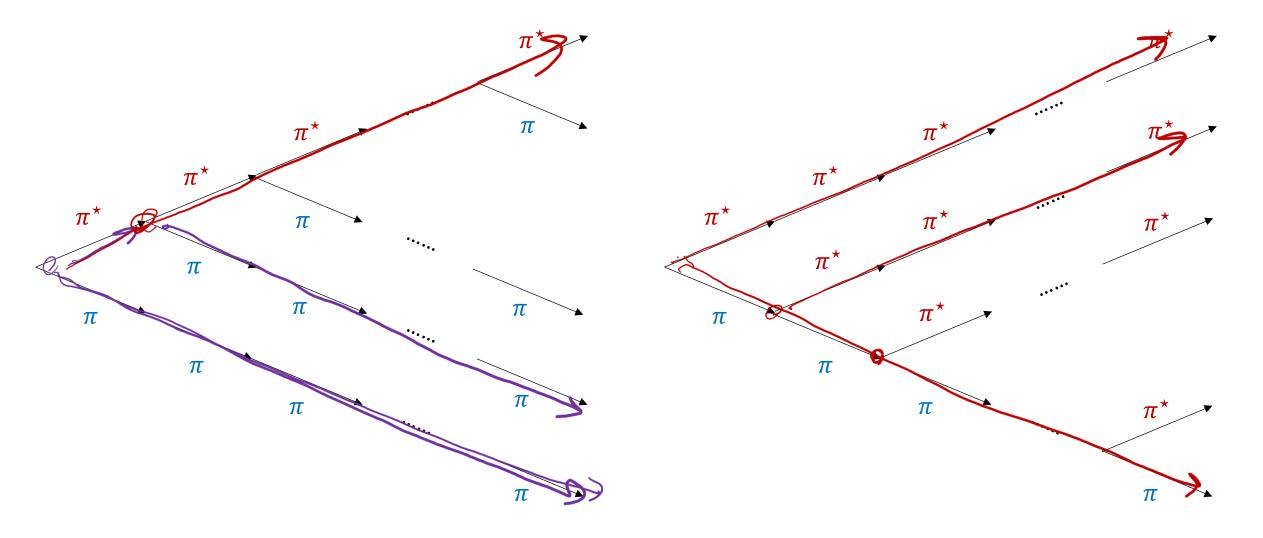
Approximating $Q^*(s, a)$ requires the replay buffer to cover wide range of state-actions.

$$=\sum_{s,a} d_{\rho}^{\pi^{\star}}(s,a) \left(Q^{\pi}(s,a) - V^{\pi}(s)\right) \qquad \qquad (5.4) \sim d_{\rho}^{\pi}(s,a) - \sum_{s'} \pi(s's) Q^{\pi}(s,a)$$

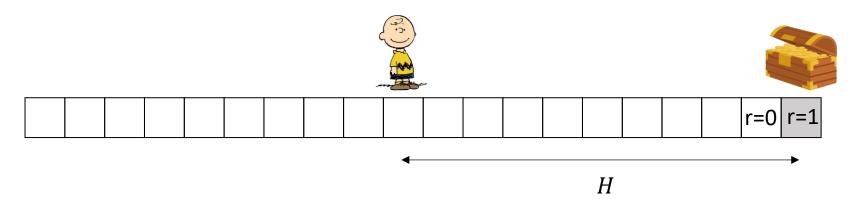
For PI-based algorithm (approximating Q^{π})

Approximating $Q^{\pi}(s, a)$ only requires state-actions generated from current policy But...

$$\sum_{h=1}^{H} \sum_{s,a} \left(d_{\rho,h}^{\pi^{\star}}(s) \right) \left(\pi_{h}'(a|s) - \pi_{h}(a|s) \right) Q_{h}^{\pi}(s,a) = \sum_{h=1}^{H} \sum_{s,a} d_{\rho,h}^{\pi}(s) \left(\pi_{h}'(a|s) - \pi_{h}(a|s) \right) Q_{h}^{\pi^{\star}}(s,a)$$



Regret Analysis for MDPs?



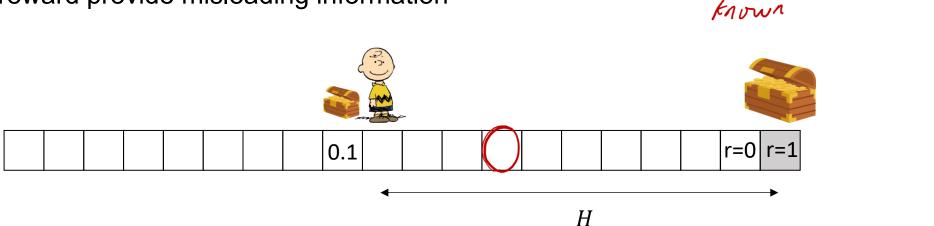
$$\sum_{s,a} d_{\rho}^{\pi}(s,a) \left(V^{\star}(s) - Q^{\star}(s,a) \right)$$

$$\sum_{s,a} d_{\rho}^{\pi^{\star}}(s,a) \left(Q^{\pi}(s,a) - V^{\pi}(s) \right)$$

PI-based algorithm only tries to make $\sum_{s,a} d_{\rho}^{\pi_k}(s,a) \left(Q^{\pi}(s,a) - V^{\pi}(s)\right)$ small. It can only quickly find optimal policy when $d_{\rho}^{\pi_k} \approx d_{\rho}^{\pi^*}$

Insufficiency of algorithms we have discussed for MDPs

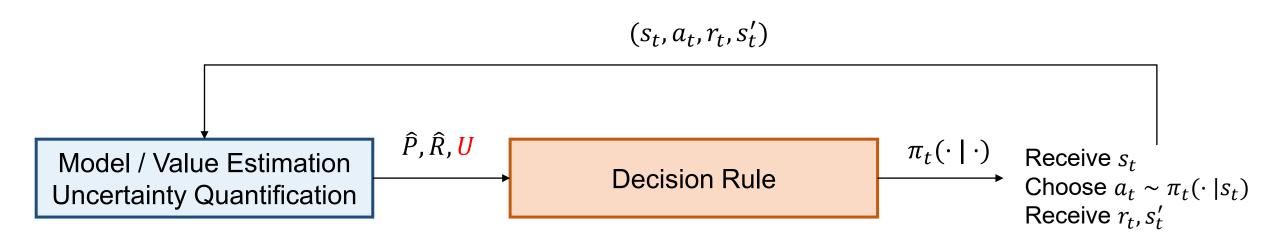
- Lack of exploration over the state space (we need deep exploration)
- This issue is particularly critical if
 - Local reward does not provide any information
 - Local reward provide misleading information



menu

- Solution
 - Try to make the data (i.e., state-action) distribution close to d^{π^*}
 - Try to visit as many states as possible (by quantifying the leaner's **uncertainty** about a state)

Exploration via Uncertainty Quantification



Exploration Bonus for Bandits (Optimism Principle)

We have discussed this idea for action exploration – UCB.

Upper Confidence Bound

$$a_t = \operatorname{argmax}_a \ \widehat{R}_t(a) + \left(\frac{2\log(2/\delta)}{N_t(a)}\right)$$

 $\hat{R}_t(a)$ = the empirical mean of arm a up to time t-1.

 $N_t(a)$ = the number of times we draw arm a up to time t-1.

$$\widehat{R}_{\ell}(a) + \sqrt{\frac{2(8(1))}{N_{\ell}(a)}} \geqslant R(a)$$
 n.h.p.

Exploration Bonus for MDPs

UCB Value Iteration (UCBVI)

For episode 1, 2, ..., *T*:

$$\tilde{Q}_{H+1}(s,a) = 0 \quad \forall s, a$$

For step H, H - 1, ..., 1:

$$\tilde{Q}_h(s,a) \triangleq \hat{R}(s,a) + \sum_{s'} \hat{P}(s'|s,a) \max_{a'} \tilde{Q}_{h+1}(s',a') + H \sqrt{\frac{2S \log(2/\delta)}{N_t(s,a)}} \quad \forall s,a$$

Receive $s_1 \sim \rho$

For step 1, 2, ..., *H*:

Take action
$$a_h = \operatorname{argmax}_a \tilde{Q}_h(s_h, a)$$

Receive
$$r_h = R(s_h, a_h) + \text{noise}, \quad s_{h+1} \sim P(\cdot | s_h, a_h)$$

Nt(s,a,s') = # thes ne visit s.a.
and see hexts tates'

Nt(s,a) < Htimes we visit sig

 $\mathcal{R}(\alpha)$ t $\sqrt{\frac{1}{W_{4}(\alpha)}}$

Exploration Bonus for MDPs

$$\left| \widehat{P}(s,a) - P(s,a) \right| \lesssim \sqrt{\frac{1}{N_{t}(s,a)}}$$

$$\left| \widehat{P}(\cdot | s,a) - P(\cdot | s,a) \right| \lesssim \sqrt{\frac{5}{N_{t}(s,a)}}$$

$$\tilde{Q}_h(s,a) \triangleq \hat{R}(s,a) + \sum_{s'} \hat{P}(s'|s,a) \max_{a'} \tilde{Q}_{h+1}(s',a') + \underbrace{\frac{2S \log{(2/\delta)}}{N_t(s,a)}}_{N_t(s,a)} \forall s,a$$

$$Q_{h}^{*}(s_{i,\alpha}) = R(s_{i,\alpha}) + \sum_{s} P(s'|s_{i,\alpha}) \max_{a'} Q_{hii}^{*}(s',a')$$

$$= \widehat{Q}_{h}(s_{i,\alpha}) - \widehat{Q}_{h}^{*}(s_{i,\alpha})$$

$$= \widehat{R}(s_{i,\alpha}) - R(s_{i,\alpha}) + \sum_{s'} \widehat{P}(s'|s_{i,\alpha}) \max_{a'} \widehat{Q}_{hii}(s',a') - P(s'|s_{i,\alpha}) \max_{a'} \widehat{Q}_{hii}(s',a')$$

$$= \widehat{R}(s_{i,\alpha}) - R(s_{i,\alpha}) + \sum_{s'} \widehat{P}(s'|s_{i,\alpha}) \max_{a'} \widehat{Q}_{hii}(s',a') - P(s'|s_{i,\alpha}) \max_{a'} \widehat{Q}_{hii}(s',a')$$

$$+ \sum_{s'} \widehat{P}(s'|s_{i,\alpha}) - P(s|s_{i,\alpha}) \max_{a'} \widehat{Q}_{hii}^{*}(s',s') \in b_{\epsilon}(s_{i,\alpha})$$

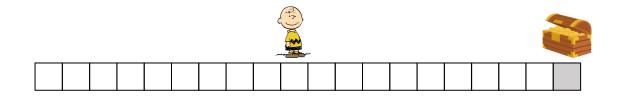
Exploration Bonus for MDPs

Theorem. Regret Bound of UCBVI

Proven in HW4

UCBVI ensures with high probability,

Regret =
$$\sum_{t=1}^{T} (V^{\star}(s_{t,1}) - V^{\pi_t}(s_{t,1})) \lesssim HS\sqrt{AT}.$$



Improving the required number of episodes from 2^H to poly(H)

Jaksch, Ortner, Auer. Near-Optimal Regret Bounds for Reinforcement Learning. 2010. Azar, Osband, Munos. Minimax Regret Bounds for Reinforcement Learning. 2017.

Thompson Sampling (Posterior Sampling)

Bayesian interpretation:

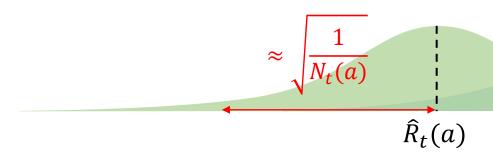
Assume the reward mean $(\theta(1), ..., \theta(A))$ is drawn from a Gaussian distribution (prior distribution). Then the **posterior distribution** is

$$P(\theta(a)|\mathcal{H}_t) = \mathcal{N}\left(\hat{R}_t(a), \frac{1}{N_t(a)}\right)$$

UCB:
$$a_t \approx \operatorname{argmax}_a \ \hat{R}_t(a) + c \sqrt{\frac{1}{N_t(a)}}$$

TS:
$$a_t \approx \operatorname{argmax}_a \ \widehat{R}_t(a) + c \sqrt{\frac{1}{N_t(a)}} n_t(a) \ \text{with } n_t(a) \sim \mathcal{N}(0,1)$$

UCB estimators



Randomized Exploration for MDPs

Randomized Value Iteration

For episode 1, 2, ..., *T*:

$$\tilde{Q}_{H+1}(s,a) = 0 \quad \forall s, a$$

For step H, H - 1, ..., 1:

$$\tilde{Q}_h(s,a) \triangleq \hat{R}(s,a) + \sum_{s'} \hat{P}(s'|s,a) \max_{a'} \tilde{Q}_{h+1}(s',a') + H \sqrt{\frac{2S \log(2/\delta)}{N_t(s,a)}} n_t(s,a)$$

Receive $s_1 \sim \rho$

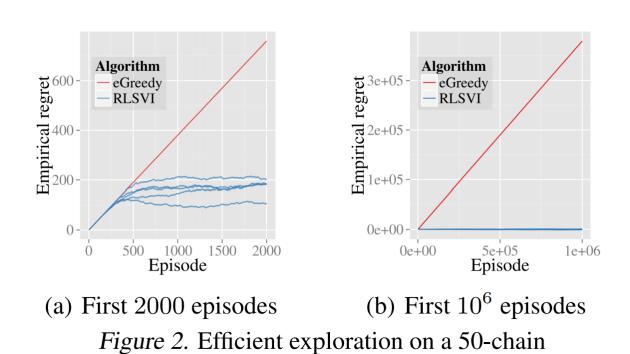
For step 1, 2, ..., *H*:

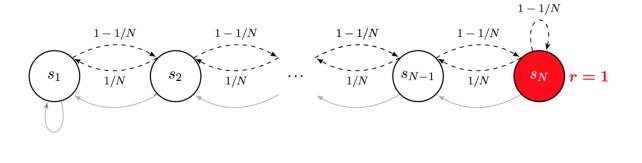
Take action $a_h = \operatorname{argmax}_a \tilde{Q}_h(s_h, a)$

Receive $r_h = R(s_h, a_h) + \text{noise}, \quad s_{h+1} \sim P(\cdot | s_h, a_h)$

Osband, Van Roy, Wen. Generalization and Exploration via Randomized Value Functions. 2014.

Randomized Exploration for MDPs





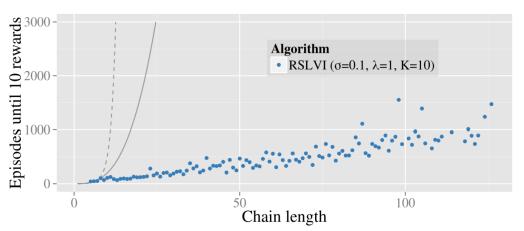


Figure 3. RLSVI learning time against chain length.

Recap: Exploration in Finite-State Finite-Action MDPs

Find exploration bonus B(s, a) such that

$$|\widehat{R}(s,a) - R(s,a)| \le B(s,a) \quad \text{reward uncertainty}$$

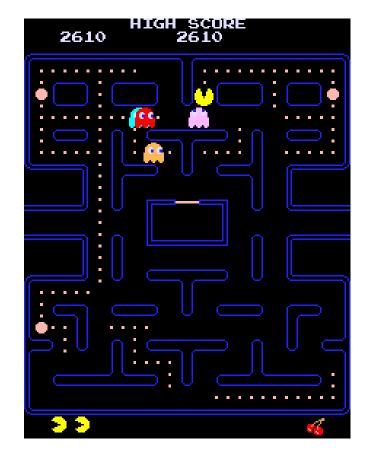
$$|\widehat{\mathbb{E}_{s' \sim \widehat{P}(\cdot|s,a)}[V(s')]} - \mathbb{E}_{s' \sim P(\cdot|s,a)}[V(s')]| \le B(s,a) \quad \text{transition uncertainty}$$

Then perform VI (e.g. DQN) over the reward $r(s,a) + \alpha B(s,a)$ or PI (e.g. PPO, PG) with reward estimator

$$\frac{\pi_{\theta}(a_i|s_i)}{\pi_{\text{old}}(a_i|s_i)}\underbrace{A^{\pi_{\text{old}}}(s_i,a_i;R+\alpha B)} \quad \text{or} \quad \frac{\pi_{\theta}(a_i|s_i)}{\pi_{\text{old}}(a_i|s_i)} \underbrace{A^{\pi_{\text{old}}}(s_i,a_i;R)} + \alpha \sum_{a} \pi_{\theta}(a|s_i)\underbrace{A^{\pi_{\text{old}}}(s_i,a;B)}_{A^{\pi_{\text{old}}}(s_i,a_i;B)}$$

The advantage function of π_{old} with reward function $R + \alpha B$

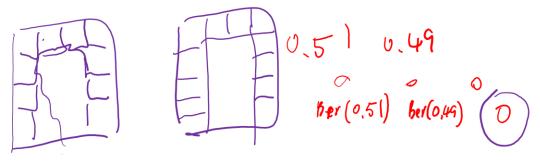
$$\frac{\mathcal{T}_{0}(\varsigma; s_{i})}{\mathcal{T}_{0|A}(\varsigma; s_{i})} A^{\mathcal{T}_{0|A}(s_{i}, \varsigma_{i})} + \propto \sum_{\alpha} \mathcal{T}_{0}(\alpha|s) g(s_{i}, \alpha) \\
+ \propto \sum_{\alpha} \mathcal{T}_{0}(\varsigma; s_{i}) Q^{\mathcal{T}_{0|A}(s_{i}, \varsigma_{i})} Q^{\mathcal{T}_{0|A}(s_{i}, \varsigma_{i})}$$

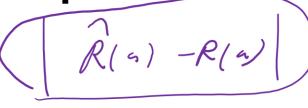


Common Approaches of Exploration

• Upper Confidence Bound

- Thompson Sampling (Posterior Sampling)
- Information-Directed Exploration
 - Information-Directed Sampling





world 2

Exploration in Large State Spaces

B(5,a): Simularous explosedu for state and actual B(5): Need also a separ-te exploration mechanism for actual spend

UCB / TS with State(-Action) Discretization

HW4 Task

Partition the state-action space into a finite number of groups

Then instead of counting the #visits to individual state-action, we only count the #visits to each group

g(s,a): the group (s,a) belongs to

$$\tilde{Q}_h(s,a) \triangleq \hat{R}(s,a) + \sum_{s'} \hat{P}(s'|s,a) \max_{a'} \tilde{Q}_{h+1}(s',a') + c \cdot \frac{1}{\sqrt{N_t(g(s,a))}}$$

$$\tilde{Q}_h(s,a) \triangleq \hat{R}(s,a) + \sum_{s'} \hat{P}(s'|s,a) \max_{a'} \tilde{Q}_{h+1}(s',a') + c \cdot \frac{\mathcal{N}(0,1)}{\sqrt{N_t(g(s,a))}}$$

$\Phi(s,a) = e_{g(s,a)} = \begin{pmatrix} s \\ s \end{pmatrix}$

UCB / TS with State(-Action) Features

 $\phi(s,a) = e_{s,a} \in \mathbb{R}^{s \times A}$ $\phi(s,a) = \frac{1}{N(s,a)}$

Suppose for any (s, a), we have access to a feature vector $\phi(s, a) \in \mathbb{R}^d$.

Then instead of counting the #visits to every state-action, we can evaluate the

novelty of the feature.

$$\Lambda_t = \sum_{i < t} \sum_{h=1}^{H} \phi(s_{ih}, a_{ih}) \phi(s_{ih}, a_{ih})^{\mathsf{T}}$$

$$\tilde{Q}_h(s,a) \triangleq \hat{R}(s,a) + \sum_{a'} \hat{P}(s'|s,a) \max_{a'} \tilde{Q}_{h+1}(s',a') + c \cdot \sqrt{\phi(s,a)} \tilde{\Lambda}_t^{-1} \phi(s,a)$$

Jin et al. Provably efficient reinforcement learning with linear function approximation. 2019.

$$\tilde{Q}_h(s,a) \triangleq \hat{R}(s,a) + \sum_{s'} \hat{P}(s'|s,a) \max_{a'} \tilde{Q}_{h+1}(s',a') + c \cdot \mathcal{N}(0,\phi(s,a)\Lambda_t^{-1}\phi(s,a))$$

Zanette et al. Frequentist Regret Bounds for Randomized Least-Squares Value Iteration. 2019.

Ideas for Exploration

Ideas from UCB:

1.
$$\tilde{R}(s,a) = \hat{R}(s,a) + \frac{1}{\sqrt{N(s,a)}}$$
 where $N(s,a) \approx \text{Amount of prior visit to } (s,a)$

2.
$$\tilde{R}(s,a) = \hat{R}(s,a) + e(s,a)$$
 where $e(s,a) \approx \text{Prediction error on } \hat{R}(s,a)$ and $\hat{P}(\cdot | s,a)$

Ideas from TS:

3. $\tilde{R}(s,a) = \hat{R}(s,a) + \text{noise whose variance scales with the uncertainty of } \hat{R}(s,a) + \text{noise whose variance scales with the uncertainty of } \hat{R}(s,a) + \text{noise whose variance scales with the uncertainty of } \hat{R}(s,a) + \text{noise whose variance scales with the uncertainty of } \hat{R}(s,a) + \text{noise whose variance scales with the uncertainty of } \hat{R}(s,a) + \text{noise whose variance scales with the uncertainty of } \hat{R}(s,a) + \text{noise whose variance scales with the uncertainty of } \hat{R}(s,a) + \text{noise whose variance scales with the uncertainty of } \hat{R}(s,a) + \text{noise whose variance scales with the uncertainty of } \hat{R}(s,a) + \text{noise whose variance scales with the uncertainty of } \hat{R}(s,a) + \text{noise whose variance scales with the uncertainty of } \hat{R}(s,a) + \text{noise whose variance scales with the uncertainty of } \hat{R}(s,a) + \text{noise whose variance scales with } \hat{R}(s,a) + \text{noise whose variance } \hat{R}(s,a) + \text{noise whose } \hat{R}(s,a) + \text{noise whose } \hat{R}(s,a) + \text{noise } \hat{R}(s,a) + \text{noi$

Ideas from Information-directed Sampling:

4.
$$\tilde{R}(s,a) = \hat{R}(s,a) + \lambda \operatorname{KL}(\mathcal{P}(\cdot | \mathcal{H}_t, s, a, s'), \mathcal{P}(\cdot | \mathcal{H}_t))$$
Information gain

After these modifications, just perform standard RL algorithm over \tilde{R} .

1. Bonus from Prediction Error

Bonus from Prediction Error

5 (s,a): next state production of 1 mm (s.a)

Ideally, we would like to quantify $\|\hat{P}(\cdot|s,a) - P(\cdot|s,a)\|_{2}$ and set it as bonus.

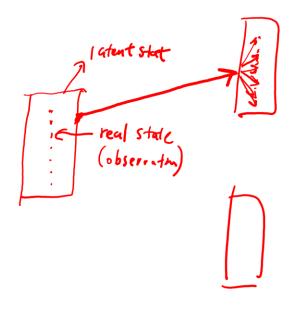
However, modeling transition is not always easy. Sometimes, what we can do is just **predicting the next state** and measure $\|\hat{s}'(s,a) - \underline{s}'(s,a)\|$

There are some issues if we naively do this:

- For environments with stochastic transitions, we will never have small prediction error for the next state.
- 2. For many environments, some part of the state is uncontrollable by the learner (e.g., movement of the clouds in the background).

Bonus from Prediction Error

In some special cases, the world can be modeled as a deterministic latent-state MDPs.



- we have mappy from roal state s latest state
- 2 (stent state transitue is deterministic

Intrinsic Curiosity Module (ICM)

Inverse model:

rse model:
$$\hat{a}_t = f_I(\phi(s_t), \phi(s_{t+1}))$$

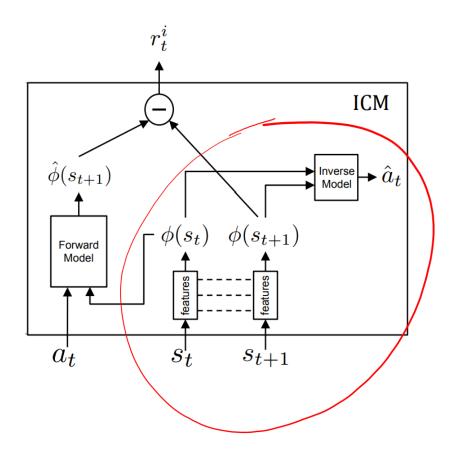
$$\min_{f_I, \phi} \|\hat{a}_t - a_t\|_2^2$$

Forward model:

$$\hat{\phi}(s_{t+1}) = f_F(\phi(s_t), a_t)$$

$$\min_{f_F} \|\hat{\phi}(s_{t+1}) - \phi(s_{t+1})\|_2^2$$

Bonus
$$B(s_t, a_t) \triangleq \|\hat{\phi}(s_{t+1}) - \phi(s_{t+1})\|_2^2$$



Random Network Distillation (RND)

HW4 Task

Given a target function $f^*(s, a)$ and buffer data $\mathcal{B} = \{(s_i, a_i)\}_{i=1}^n$

Minimize
$$\frac{1}{n} \sum_{i=1}^{n} ||f_{\theta}(s_i, a_i) - f^*(s_i, a_i)||^2$$

Use $B(s,a) = ||f_{\theta}(s,a) - f^{\star}(s,a)||^2$ as the bonus

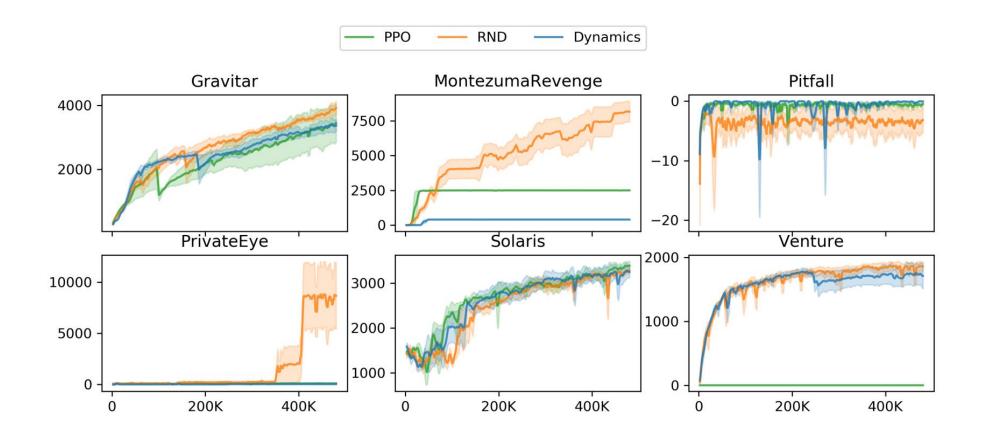
Ideally, we want $f^*(s,a) \approx P(\cdot | s,a) \in \mathbb{R}^S$

But we can simply use a random network $f^*(s, a) = f_{\phi}(s, a)$

low novelty high novelty

Burda et al. Exploration by Random Network Distillation. 2018.

Random Network Distillation



2. Thompson Sampling

Recall: Randomized Value Iteration

Randomized Value Iteration For episode 1, 2, ..., T: d_{ist} d_{ist} d_{ist} $\tilde{Q}_{H+1}(s,a) = 0 \quad \forall s,a$ For step H, H = 1, ..., 1: $\tilde{Q}_{h}(s,a) \triangleq \hat{R}(s,a) + \sum_{s'} \hat{P}(s'|s,a) \max_{a'} \tilde{Q}_{h+1}(s',a') + H \sqrt{\frac{2 \log(2/\delta)}{N_{t}(s,a)}}$ Receive $S_{1} \sim p$ For step 1, 2, ..., *H*: Take action $a_h = \operatorname{argmax}_a \tilde{Q}_h(s_h, a)$ Receive $r_h = R(s_h, a_h) + \text{noise}, \quad s_{h+1} \sim P(\cdot | s_h, a_h)$

Osband, Van Roy, Wen. Generalization and Exploration via Randomized Value Functions. 2014.

Recall: Randomized Value Iteration

$$\tilde{Q}_h(s,a) \triangleq \hat{R}(s,a) + \sum_{s'} \hat{P}(s'|s,a) \max_{a'} \tilde{Q}_{h+1}(s',a') + n_t(s,a)$$

Adapting this idea to DQN:

$$\theta \neq \underset{\theta}{\operatorname{argmin}} \sum_{(s,a,r,s')\in\mathcal{B}} \left(r + \max_{a'} Q_{\overline{\theta}}(s',a') + \underbrace{n_t(s,a)} - Q_{\theta}(s,a)\right)^2 \tag{*}$$

Notice that different noise gives different θ .

Direct generalization from Randomized VI (not easy to implement)

$$\Theta = \text{Space of } \theta$$
's

In each episode, sample a $\theta \in \Theta$ with the distribution following (*), and execute $\pi(s) = \operatorname{argmax} Q_{\theta}(s, a)$

a

Osband et al. Deep Exploration via Bootstrapped DQN. 2016.

Osband et al. Randomized Prior Functions for Deep Reinforcement Learning. 2018.

111111111111

Randomly initialize K instances of DQN $\theta_1, ..., \theta_K$ (each θ_i has their own target network $\bar{\theta}_i$ and replay buffer \mathcal{B}_i).

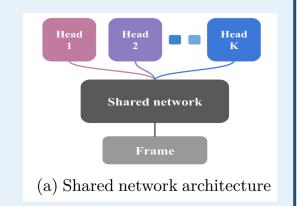
For each episode:

Randomly sample $i \sim \text{Unif} \{1, 2, ..., K\}$

Execute $\pi(s) = \max_{a} Q_{\theta_i}(s, a)$ in the whole episode.

Randomly place the obtained (s, a, r, s') in some/all replay buffers.

Update all DQN parameters.



Osband et al. Deep Exploration via Bootstrapped DQN. 2016.

Osband et al. Randomized Prior Functions for Deep Reinforcement Learning. 2018.

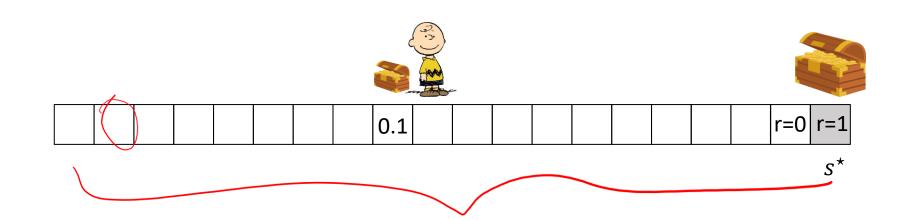
Some intuitions:

- The random initialization makes $Q_{\theta_1}(s, a)$,..., $Q_{\theta_K}(s, a)$ all very different. We can view them as associated with different initial noise $n_1(s, a)$.
- Over the course of training, for (s,a)'s that are more often visited, their effective magnitude of $n_t(s,a)$ decreases (because we train those DQNs without adding more noise).
- For (s, a)'s that are not often visited, their effective magnitude of $n_t(s, a)$ remains high.
- Why does this perform deep exploration? For a particular state s, if $\max_a Q_{\theta_i}(s,a)$ is initialized high but has not been visited many times before, the training of θ_i will propagate this high value to other state and encourage the learner to reach s from other states.

Osband et al. Deep Exploration via Bootstrapped DQN. 2016.

Osband et al. Randomized Prior Functions for Deep Reinforcement Learning. 2018.

- In the toy example, as long as **one of the** K **DQNs** initializes s^* (or some states close to it) with a high value, then it can help the learner explore to s^* .
- In this example, roughly we need K = O(number of states) to achieve this effect.

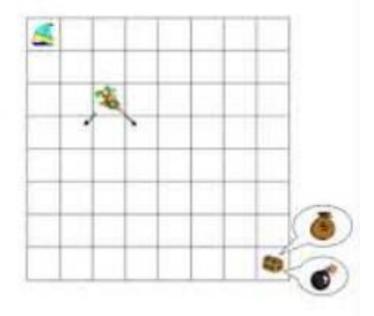


Osband et al. Deep Exploration via Bootstrapped DQN. 2016.

Osband et al. Randomized Prior Functions for Deep Reinforcement Learning. 2018.

"Deep Sea" Exploration

- Stylized "chain" domain testing "deep exploration":
 - State = N x N grid, observations 1-hot.
 - Start in top left cell, fall one row each step.
 - Actions (0,1) map to left/right in each cell.
 - "left" has reward = 0, "right" has reward = -0.1/N
 - ... but if you make it to bottom right you get +1.
- Only one policy (out of more than 2^M) positive return.
- E-greedy / Boltzmann / policy gradient / are useless.



3. Information-Directed Exploration

Houthooft et al. VIME: Variational Information Maximizing Exploration. 2017.