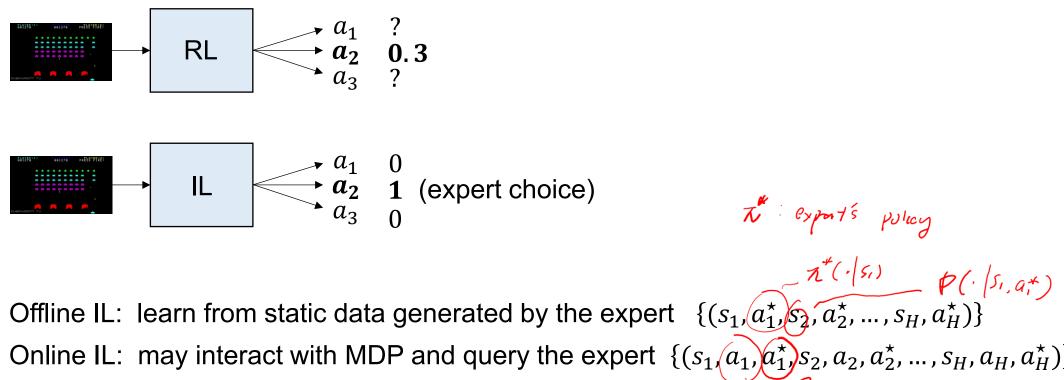
Imitation Learning

Chen-Yu Wei

Imitation Learning ∈ Supervised Learning

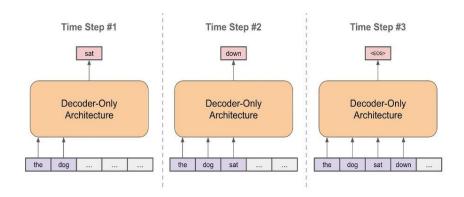


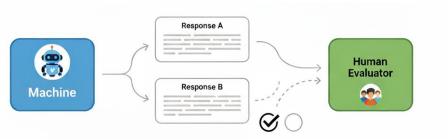
Online IL: may interact with MDP and query the expert $\{(s_1,a_1,a_1^*),s_2,a_2,a_2^*,\ldots,s_H,a_H,a_H^*\}$

Goal: output a policy $\hat{\pi}$ such that $V^{\pi^*}(\rho) - V^{\hat{\pi}}(\rho)$ is small

Examples

Language models

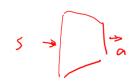




RLHF

Robotics

Types



$$Z(a(s) \iff z^*(a(s))$$

- Direct Imitation: directly learn policy to imitate the expert
 - Behavior cloning
 - DAgger
 - Direct preference optimization (preference feedback)
- Occupancy matching

$$d^2(s,a) \Leftrightarrow d^2(s,a)$$

- (S1, G1, Sc, G2, ...)
- Inverse RL: learn an MDP (or just reward function) from expert, and perform RL on it
 - Adversarial IRL (paper)
 - MaxEnt IRL (paper)
 - RLHF (preference feedback)

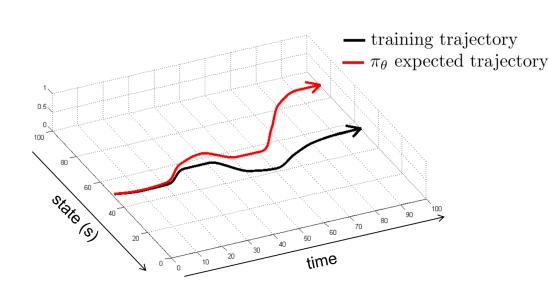
Behavior Cloning: Reduction to Classification

Relate
$$V^{\pi^*}(\rho) - V^{\widehat{\pi}}(\rho)$$
 to $\mathbb{E}^{\pi^*} \left[\frac{1}{H} \sum_{h=1}^{H} \mathbb{I} \{ \widehat{\pi}(s_h) \neq a_h^* \} \right]$

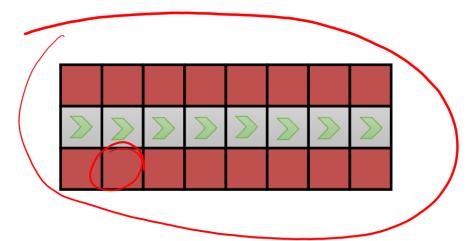
$$V^{\mathcal{I}}(\rho) - V^{\widehat{\pi}}(\rho) = \sum_{h=1}^{\infty} \sum_{s,a} d^{\mathcal{I}}(s) \left(\frac{1}{\mathcal{I}(a[s) - \mathcal{I}(a[s) - \mathcal$$

indicator loss

Behavior Cloning: Reduction to Classification



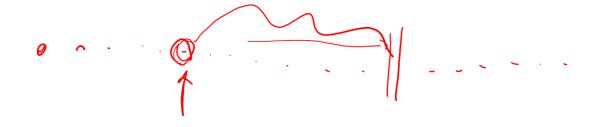
$$\frac{1}{1+1} \sum_{h} \underline{\mathbb{I}}(Z_{h}(S_{h}) + Z(S_{h})) \leq 2$$



Behavior Cloning: Reduction to Classification

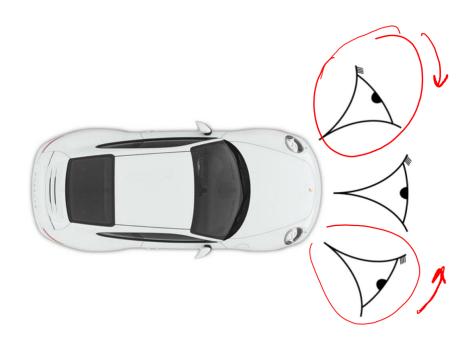
The bound might be pessimistic

Single mistake may not lead to catastrophic failure



Solution

Data augmentation



Bojarsky et al. End to End Learning for Self-Driving Cars. 2016

Solution: Interact with Expert (Online IL)

DAgger: Dataset Aggregation

goal: collect training data from $p_{\pi_{\theta}}(\mathbf{o}_t)$ instead of $p_{\text{data}}(\mathbf{o}_t)$

how? just run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$

but need labels \mathbf{a}_t !

- 1. train $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$
- 2. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
- 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$