Reinforcement Learning: Introduction

Chen-Yu Wei

RL is a New Regular Course in UVA CS

- From this semester, the CS department makes RL a regular course
 - CS 4501 → CS 4771
 - CS 6501 → CS 6771
- There will be Graduate RL and Undergraduate RL every semester
 - We will use the following pattern in the near future (at least 2 years)

	Fall	Spring	
Undergraduate	Prof. Shangtong Zhang	Me	
Graduate	Me	Prof. Shangtong Zhang	

Platforms

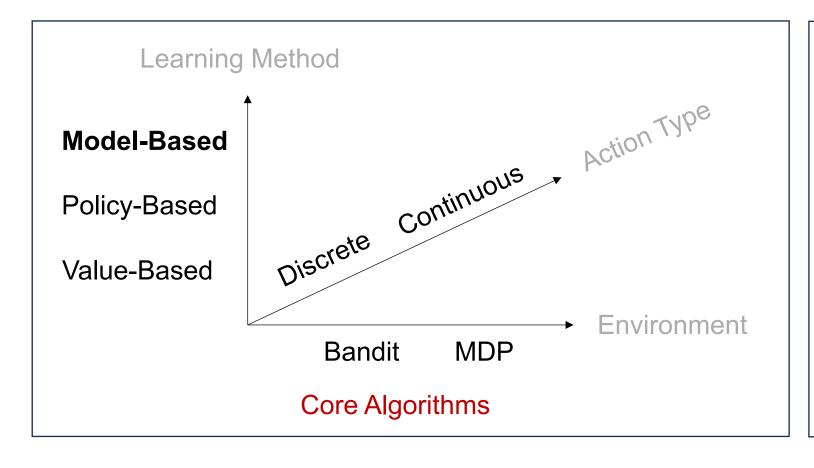
- Course website: https://bahh723.github.io/rl2025fa/
 - Syllabus, announcement, slides, lecture recordings
 - Can be accessed from Lou's List or my personal website
- Gradescope (haven't created)
 - Homework submission
- Piazza (haven't created)
 - Questions and discussions

They will be created once the student list becomes more stable (e.g., next week).

Topics in This Course

- The **math** behind **basic** RL algorithms
- We will follow the previous semester (Spring 2025) closely (link)

Topics in This Course



Exploration in MDPs
Inference-Time Algorithms
Imitation Learning

Special Topics

Bold are tentative new topics in this semester

This semester I plan to have less *in-class* math proofs – the proofs go to homework.

Prerequisites

- Linear Algebra, Probability, Calculus, Machine Learning
- Convex Optimization
- Python

Assignments are sometimes math heavy (check the HWs in previous semesters)

Recommended Resources (longer list)

- Courses
 - UC Berkeley CS285
- Webpages
 - OpenAl SpinningUp
- Books
 - Sutton and Barto, <u>Reinforcement Learning</u>: <u>An Introduction</u>
 - Agarwal, Jiang, Kakade, and Sun, Reinforcement Learning: Theory and Algorithms
- Implementations
 - OpenAl StableBaseline3
 - ShangtongZhang

Assignments (60%): 4 Problem Sets

A mixture or one of the following:

- Math / algorithm design problems
 - Submission: Latex or hand-writing + taking photo
- Programming tasks (using PyTorch)
 - Might need you to plot results or report numbers
 - Submission: It's usually easier to do them in Latex (I'll release latex template)

Assignments (60%): 4 Problem Sets

- Late policy
 - 10 free late days distributed to all assignments as you like
 - No assignment can be submitted 7 days after its deadline
 - Each additional late day results in 10% deduction in the semester's assignment grade

Examples

- HW1: 3 days late, HW2: 6 days late, HW3: 3 days late, HW4: 2 days late
 → HW grade *= 0.6
- HW1: 8 days late, HW2: 6 days late, HW3: 3 days late, HW4: 2 days late
 → HW1 = 0 points and HW grade *= 0.9

Final Project (35%)

- Breakdown
 - Proposal (5%): \leq 3 pages in NeurlPS format
 - Midterm report (5%): \leq 3 pages in NeurlPS format
 - Presentation (10%):
 Upload a ~10 mins video to Panopto (a shared online space)
 - Online discussions (5%): Discussions on Panopto
 - Final report (10%): ≤ 8 pages in NeurIPS format

- Types of projects (basically any)
 - Application, algorithm design, systematic comparison, theoretical understanding, survey...
- Goal: Apply RL techniques to problems you're interested in.

Final Project (35%)

- It may be built on existing projects
 - Describe in the proposal the current status of the project and what's new (otherwise the proposal will get no points)
- 2-3 students in a group (no solo project is allowed)
- Proposal deadline: September 27

Participation (5%)

- You will get
 - \geq 1 if attendance rate \geq 30%
 - \geq 2 if attendance rate \geq 50%
 - ≥ 3 if attendance rate ≥ 80% or if you have occasional interaction in the class or piazza (not including final presentation)
 - = 5 if you have very active interaction in the class or piazza

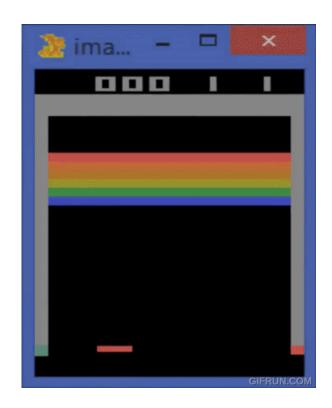
TA & Office Hour

- TA: Braham Snyder
 - Email: dqr2ye@virginia.edu
 - Office hour: TBD

- Me
 - Email: chenyu.wei@virginia.edu
 - Office hour: Monday 3:30-4:30pm at Rice 409
- Starting from the next week

Learning To Make Decisions from Interactions

Games

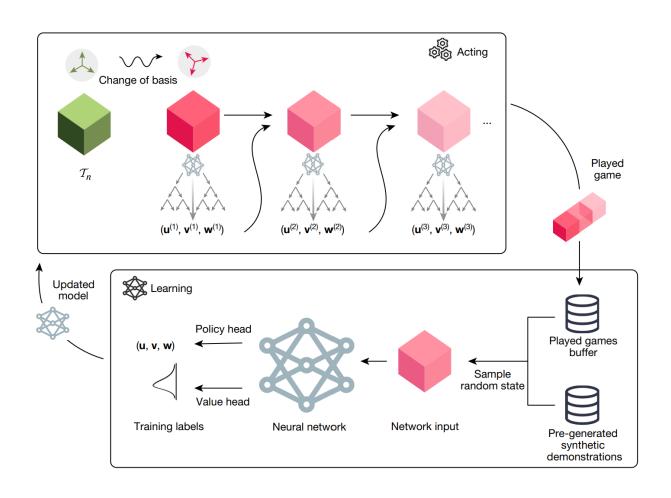


10 mins training

120 mins

240 mins

Algorithm Discovery (faster matrix multiplication)



Size (n, m, p)	Best method known	Best rank known		ensor rank Standard
(2, 2, 2)	(Strassen, 1969) ²	7	7	7
(3, 3, 3)	(Laderman, 1976) ¹⁵	23	23	23
(4, 4, 4)	(Strassen, 1969) ² $(2, 2, 2) \otimes (2, 2, 2)$	49	47	49
(5, 5, 5)	(3, 5, 5) + (2, 5, 5)	98	96	98
(2, 2, 3)	(2,2,2) + (2,2,1)	11	11	11
(2, 2, 4)	(2, 2, 2) + (2, 2, 2)	14	14	14
(2, 2, 5)	(2, 2, 2) + (2, 2, 3)	18	18	18
(2, 3, 3)	(Hopcroft and Kerr, 1971) ¹	⁶ 15	15	15
(2, 3, 4)	(Hopcroft and Kerr, 1971) ¹	⁶ 20	20	20
(2, 3, 5)	(Hopcroft and Kerr, 1971) ¹	⁶ 25	25	25
(2, 4, 4)	(Hopcroft and Kerr, 1971) ¹	⁶ 26	26	26
(2, 4, 5)	(Hopcroft and Kerr, 1971) ¹	⁶ 33	33	33
(2, 5, 5)	(Hopcroft and Kerr, 1971) ¹	⁶ 40	40	40
(3, 3, 4)	(Smirnov, 2013) ¹⁸	29	29	29
(3, 3, 5)	(Smirnov, 2013) ¹⁸	36	36	36
(3, 4, 4)	(Smirnov, 2013) ¹⁸	38	38	38
(3, 4, 5)	(Smirnov, 2013) ¹⁸	48	47	47
(3, 5, 5)	(Sedoglavic and Smirnov, 202	21) ¹⁹ 58	58	58
(4, 4, 5)	(4, 4, 2) + (4, 4, 3)	64	63	63
(4, 5, 5)	$(2,5,5)\otimes(2,1,1)$	80	76	76

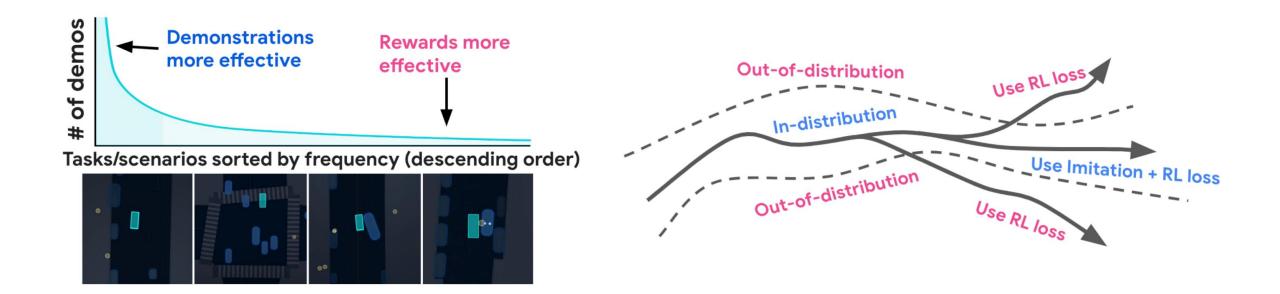
Autonomous Driving

RL in simulators

Self-driving on the road

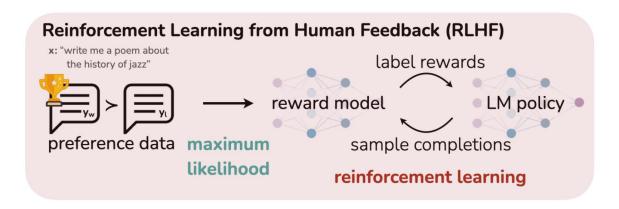
Amini et al., "VISTA 2.0: An Open, Data-driven Simulator for Multimodal Sensing and Policy Learning for Autonomous Vehicles", 2021

Autonomous Driving

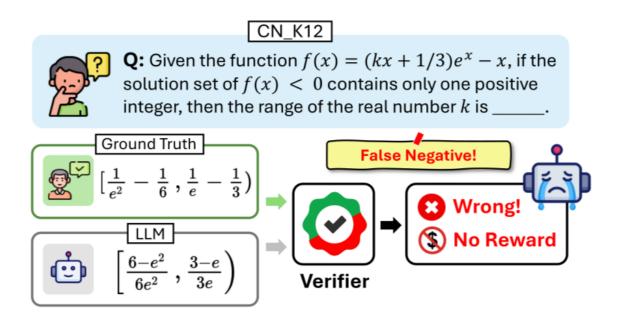


Lu et al., "Imitation Is Not Enough: Robustifying Imitation with Reinforcement Learning for Challenging Driving Scenarios", 2022

Post-Training Large Language Models



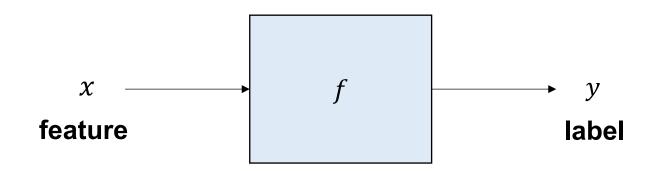
Rafailov et al., "Direct Preference Optimization: Your Language Model is Secretly a Reward Model", 2023



Xu et al. "TinyV: Reducing False Negatives in Verification Improves RL for LLM Reasoning", 2025

Closer Look at Reinforcement Learning

Supervised Learning



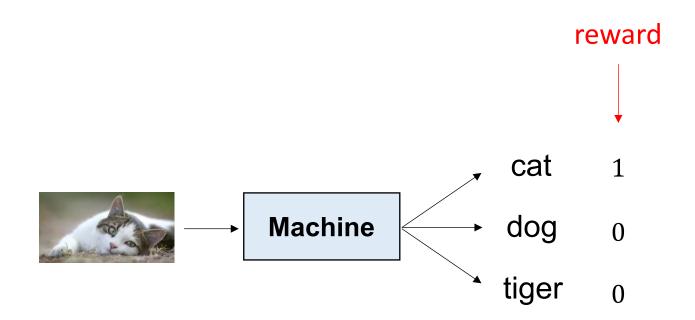
$$f$$
 (cat) = Cat f (temperature, humidity,...) = 1000mm precipitation

Given a lot of (x, y) pairs, find an f that such that $f(x) \approx y$

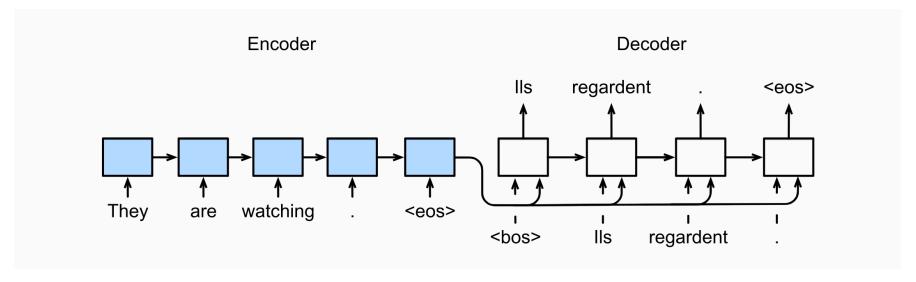
• Reinforce?

• Reinforce?

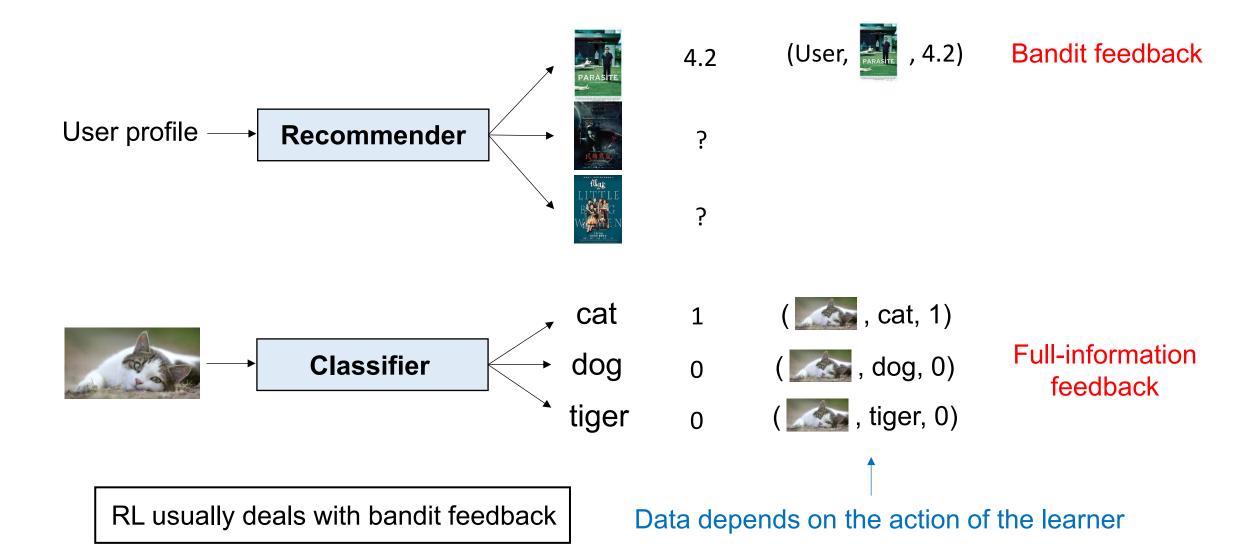
• Learning from reward feedback?



• Learning sequential decision making?



"Dive into Deep Learning"

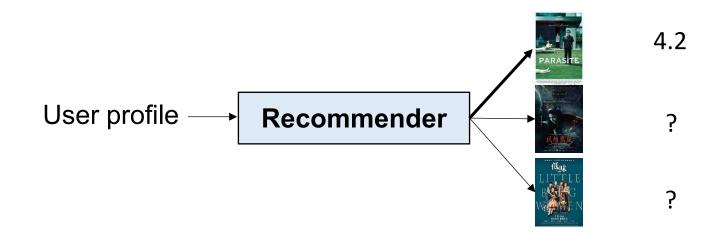


feedback

collected data

Bandit Feedback

• Needs **exploration**

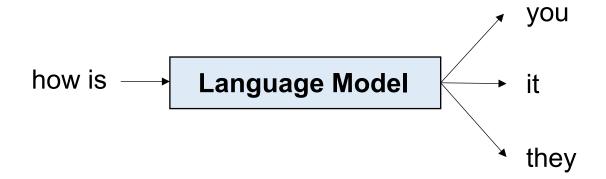


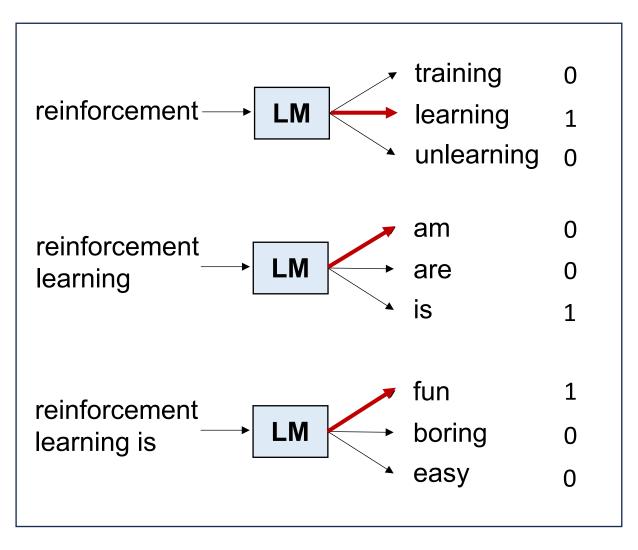
Bandit Feedback

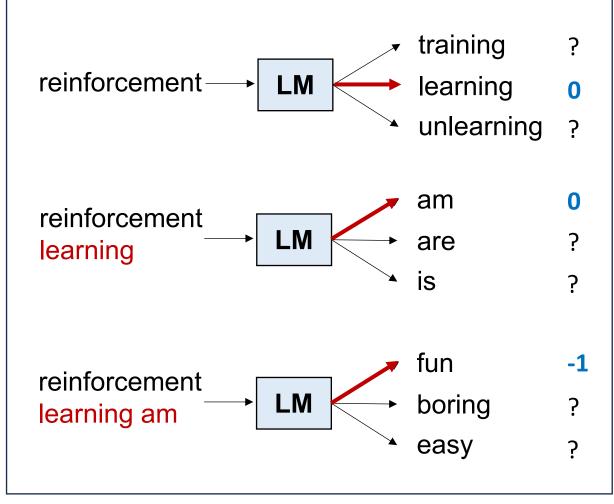
- Learning from reward feedback → Learning from bandit reward feedback
- SL and RL differs in the way of training, not the modeling
- E.g., Bandit classification

RL in Sequential Decision Making

Often, a task is accomplished by a **sequence of action**, e.g., language.







Full-information feedback

Data does not depend on the actions

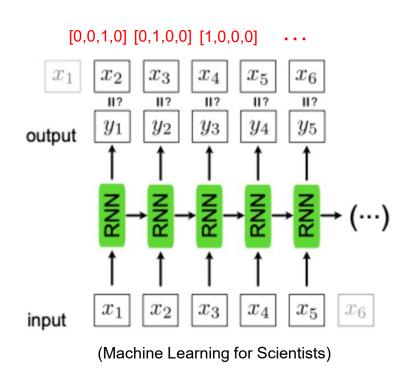
Immediate feedback

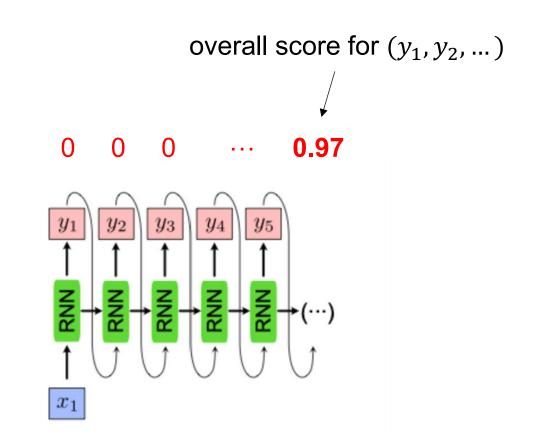
Bandit feedback

Data depends on the actions

Delayed feedback

RL in Sequential Decision Making

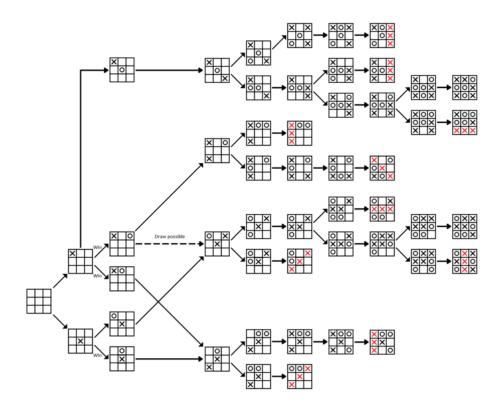




Bandit + **Delayed and Aggregated** Feedback

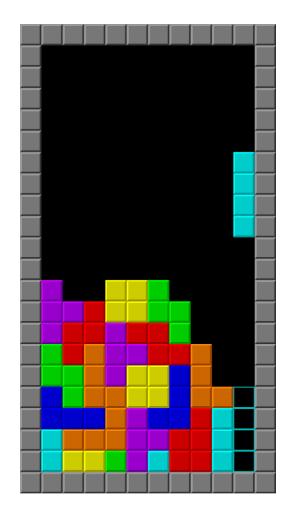
Delayed and Aggregated Feedback

• Need for (temporal) credit assignment



Delayed and Aggregated Feedback

• Need for (temporal) credit assignment



RL in Sequential Decision Making

Learning sequential decision making

→ Learning sequential decision making with bandit and delayed feedback

SL: "what to do in each step" (full-information, immediate)

RL: "how you're doing overall" (bandit, delayed)

RL Signal Can Be Very Sparse

- "Pure" Reinforcement Learning (cherry)
 - The machine predicts a scalar reward given once in a while.
 - A few bits for some samples
- Supervised Learning (icing)
 - The machine predicts a category or a few numbers for each input
 - Predicting human-supplied data
 - 10→10,000 bits per sample
- Unsupervised/Predictive Learning (cake)
 - The machine predicts any part of its input for any observed part.
 - Predicts future frames in videos
 - Millions of bits per sample
 - (Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)

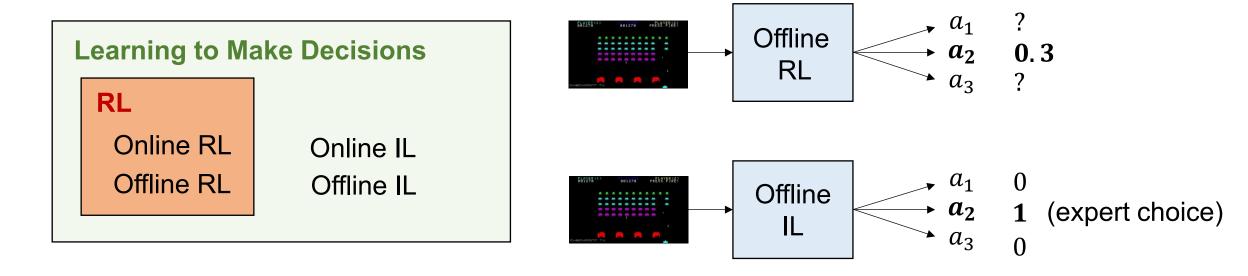
Terminologies

Online RL: through interactions, getting bandit / delayed feedback

Offline RL: through existing data, getting bandit / delayed feedback

Online IL: through querying expert, getting label feedback

Offline IL: through expert data, getting label feedback



What is this Course About?

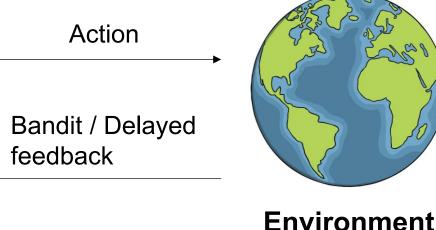
- Built on traditional (i.e., supervised) machine learning techniques, we introduce additional techniques to handle bandit / delayed feedback.
- It's not about a whole new machine learning paradigm. It's a set of techniques that should be properly integrated with other machine learning methods.
- We will largely reuse supervised learning techniques, treating them as black box
 - So, it's better if you've already took machine learning course before

SL techniques

gradient descent regression classification neural network etc.

RL Techniques

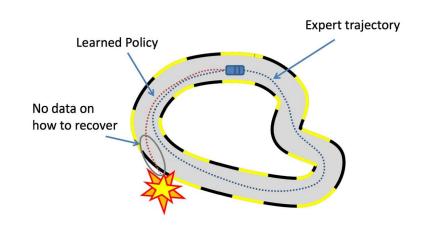
Conversion / Reduction for the purpose of exploration and credit assignment



When Is IL (SL) Insufficient?

- The truly best policy is unknown / expert is imperfect
 - Atari game, Go
 - Faster matrix multiplication
 - ⇒ RL can **search** for better solutions

- RL signal may more faithfully reflect our real objective
 - RL from Human Feedback
 - ⇒ RL can provide **alignment** to the real objective
- The expert data has limited coverage
 - Autonomous driving
 - ⇒ RL can explore edge cases and **robustify** solutions



Challenges in RL

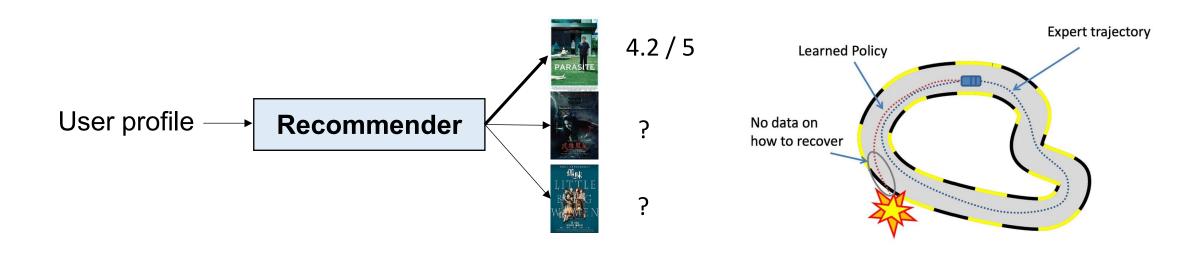
Challenges in RL (1)

Generalization: a key challenge in all machine learning paradigms

(Khosravian and Amirkhani, 2022)

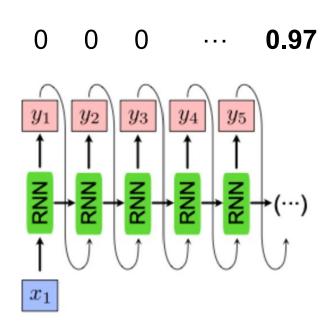
Challenges in RL (2)

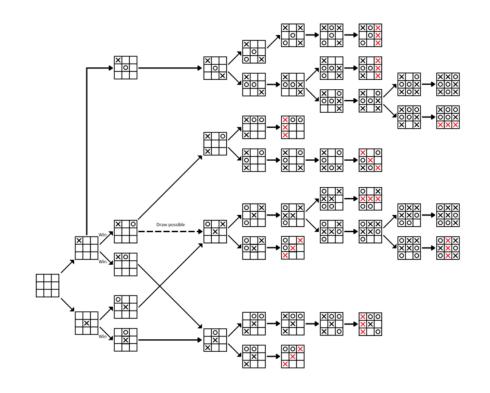
Exploration (in online RL)Partial data coverage (in offline RL)



Challenges in RL (3)

Credit assignment (due to delayed and aggregated feedback)





Identify the contribution of each action to the outcome

Exploration /
Partial Data Coverage
(:Bandit feedback)

Credit Assignment (:Delayed feedback)

Other Challenges

- Reward design
- Simulation-to-reality gap
- Safety, robustness under attacks, ... (similar challenges are also in SL)