Markov Decision Processes
Chen-Yu Wei



Sequence of Actions

MARIO
000000 %00

W T | | |
A_| f = - H{_

To win the game, the learner has to take a sequence of actions a; —» a, —» - = ay.
The effect of a particular action may not be revealed instantaneously.
e Some effect may be revealed instantaneously

e Some may be revealed later



Sequence of Actions
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Sequence of Actions

e The number of possible combinations of actions grows exponentially with the length of
the sequence.

e \We would like to decompose the problem so that every single decision in the sequence is
easy to make.

e State: a summary of the status of the world and the progress of the learner, so that
all future decisions can only depend on the state and not on everything else.
e Games (Go, Chess): To decide future moves, the player only need the current board configuration.

e Robot navigation to a goal: only need the current position and not the exact path reaching the
current position.

e Inventory management: only need the current inventory level, and not the sequence of past sales.




Sequence of Actions
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Like a sequential contextual bandit problem — except that
future contexts depends on the learner’s past decisions.



Interaction Protocol (Episodic Setting)

Forepisodet=1,2,...,T:

h<1 )sz' T,

(/Environment generates initial stat@

While episode t has not ended:
Learner chooses an action a, j,

Learner observes instantaneous

Environment generates next stat
h<h+1

Markov assumption: .

OT\\S 1,at,1, ""St,h—ll at,h_

itionally independent
given s, p,

re arith [E[rt,h] = R(S¢,n At.n)

P(-| St,hs at,h)

o loafh of episrde

T
Goal: maximize Z R(sen,aep)
t=1 h=1




From Observations to States
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Example: Racing

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated
Two actions: Slow, Fast

Going faster gets double reward

Overheated



Example: Racing

S a s' P(s'|s,a) |R(s,a)
Slow 1.0 +1
Fast 0.5 +2
Fast 0.5 +2
Slow 0.5 +1
0.5 +1
Fast 10
Slow 0.5 +1 Som 0
0.5
Fast 1.0 -10 .
7 ’5 (end) 10 O Fast 05 +2
h 0-5 Overheafed

+2




Formulations

e Interaction Protocol
e Fixed-Horizon
e Variable-Horizon

Horizon = Length of an episode




Interaction Protocols (1/2): Fixed-Horizon

Horizon length is a fixed number H

h <1

Observe initial state s; ~ p

While h < H:
Choose action qa;,
Observe reward r;, with E[r;,] = R(s3, ap)
Observe next state s, ~ P(: |sp, ay)

Examples: games with a fixed number of time




Interaction Protocols (2/2): Variable-Horizon

The learner interacts with the environment until reaching terminal states 7 c §

h <1

Observe initial state s; ~ p

While s, € T':
Choose action qa;,
Observe reward r;, with E[r;,] = R(s3, ap)
Observe next state s, ~ P(: |sp, ay)
h—h+1

Examples: video games, robotics tasks, personalized recommendations, etc.



Formulations

e Performance Metric
e Jotal Reward
e Discounted Reward

Horizon = Length of an episode




Performance Metric

7. the step where the episode ends

Total Reward: T
h=1
T
Discounted Total Reward: Z Y1, y € [0,1): discount factor
h=1

Due to discounting, the future reward starting from any state is always upper bounded by ran?iayof s

even if the episode length is very very long.

Without discounting, the range of future reward could be unbounded - making it hard to optimize

There is a potential mismatch between our ultimate goal and what we really optimized.



Formulations

e Policy
e Markov policy
e Stationary policy



Policy for MDPs

Markov Policy

ap ~ wr(- | Sp)

a, = 1m,(sp) For fixed-horizon setting, there exists an

optimal policy in this class

Stationary Policy

ap ~ (| sp)

a = mw(sy) For infinite-horizon/goal-oriented settings,

there exists an optimal policy in this class

Markov Policy = Stationary Policy where the state is augmented with the timestep.



A stationary policy specifies
m(Slow | Cool)

m(Fast | Cool)

m(Slow | Warm)

m(Fast | Warm)

A Markov policy specifies
1y, (Slow | Cool)

my (Fast | Cool)

my, (Slow | Warm)

my (Fast | Warm)

Vh

Overheated



Value Iteration
(Fixed-Horizon + Total-Reward)



Two Tasks

- Policy Evaluation: Calculate the expected total reward of a given policy

What is the expected total reward for the policy m(cool) = fast, m(warm) = slow?
Policy Optimization: Find the best policy

What is the policy that achieves the highest expected total reward?

Overheated



Value lteration for Policy Evaluation

states <

O
e
.

State transition: P(s’|s,a)
Reward: R(s,a)

>
|
S

Qr(s,a) = E”

H
z R(sg,ay)
k=h

H
Vi (s) = E" [Z R(sk, ax)
k=nh

(Sh; ah) = (S' a)‘

Shzs“

Backward induction:
Viie1(s) =0 Vs
Forh=H,..1: for all s, a

0F(5,0) = R(5,@) + ) P(s'l5,0) V5 (5)

\ J
Y

Expected total reward
of m from step h + 1

ViE(s) = ) mn(als) QF (s, @)

a




Qr is called “the state-action value functions of policy r”

Be"man Equation Vit is called “the state value function of policy r”

Both can be just called “value functions”

0F(5,0) = R(5,0) + ) P(s'ls,) Vi1 (5)

Vi) = ) malal $)0F (s, @)

a

or | Qi@ =R(5,a)+ ) P(s'ls,0) Mper (@150 (5", @)
s',a'

or Vit(s) = 2 my(al s)| R(s,a) + 2 P(s'|s,a) Vit 1 (s)

a




The Meaning of Bellman Equations

Definitions Relations (Bellman Equations)  Calculation (VI)

Calculate

Qr(s,a), Vi (s) Vs,a
fromh=Htoh=1

H
0F(5,0) £ E7 [Z R a) | Gnan) = G, a)] 05 (5,0) = R(5,@) + ) P(s'l5,@) Vit (5)
k=h S/

Sp = S‘ Vi'(s) = Z mp(al $)Qp (s, a)

a

H
Vit(s) £ E™ lz R(sy, ax)
k=h

N
Based on Dynamic Programming



Value Iteration for Policy Optimization

* _ T
s,a) = max E
Qh( ) me Markov Policy

H
z R(sy, ax)
k=h

(sn,an) = (s, a)‘

O O O O S
@é ) = e maltponiey ® | £, R @) =‘
states < Q Q Q "
: : : Backward induction:
V5.1() =0 |/
O O O O i ’

Forh=H,..1: forall s,a

Q5@ = R(s,@)+ ) P(s'ls, @) Vi1 (5)

\ J
Y

State transition: P(s’|s, a) Expected optimal total
Reward: R(s,a) reward from step h + 1

Vi(s) = max Qr(s,a)  mp(s) = argmax Q;(s,a)




Q3(s, a)

= Q3 (cool, slow
Exercise s( )
Q3 (cool, fast)
S a S P(s'ls,a) | R(s,a) Q3 (warm, slow)
Q3 (warm, fast)
Slow 1.0 +1 |
V3(s)
Fast 0.5 +2 V3*(Cool)
Fast 0.5 42 V5 (warm)
Slow 0.5 +1 Q3 (s, a)
Q- (cool, slow)
Slow 0.5 +1 0% (cool, fast)
Fast 1.0 -10 Q2 (warm, slow)
Q; (warm, fast)
7| (end) 1.0 o | e
; V3 (s)
V> (cool)
Assume H = 3 *



Qy, : optimal state-action value functions

Bellman Optlmahty Equation V- optimal state value functions

or “optimal value functions”

0i(5,@) = R(5,@) + ) P(s'l5,@) Vi1 (5)

Vi (s) = max Qx(s, a)

or | Q5@ =R + ) P('ls ) (max Qi (s, @)

or Vi (s) = max| R(s,a) + 2 P(s'|s,a) Vy11(s")
a
Sl

m;(s) = argmax Qj (s, @)
a



Value lteration
(Variable-Horizon + Discounted Reward)



Value Iteration for Policy Evaluation

states <

State transition: P(s’|s,a)
Reward: R(s,a)

l
0f (s, @) = E™ | > ¥ R(sy, an)
h=1

Vi'(s) = E" yh-

Q"(s,a) = Qx(s,a)

(Slial) = (S' a)‘

51=S]

V(s) =V ()

1R(Shr ah)

Vgi(s) =0 Vs
Fori=1,2,3,..

forall s,a

Q(s,a) = R(s,a) -I-]/ZP(S |s,a) V2, (s")

Vis) = ) m(als) QF (s, @)

a

If |QZT(Si a) —

Q™ .(s,a)| < eforall s,a: terminate




Bellman Equation

0™(s,a) = R(s,a) + )/2 P(s'|s,a) V™ (s")

Vi(s) = ) n(al )Q"(s,)

a

or Q™(s,a) = R(s,a) +vy 2 P(s'|s,a) w(a’|s")Q™(s’,a")

or Ve(s) = 2 m(al s) (R(S, a) + yE P(s'|s,a) V”(S’))

a




The Meaning of Bellman Equations

Definitions Relations (Bellman Equations) Calculation (VI)

co

Q" (s,a) = E* lz Y 1R(sp, an)

h=1

(s1,a1) = (s, a)‘ Q"(s,a) = R(s,a) + Vz P(s'|s,a)V™(s) | Calculate

s’ Qi (s,a),V{"(s) ¥s,a
fori=1,2,..
until terminated

(00]

V™(s) = B lz Y"1R (s, an)

h=1 a

S S‘ V(s) = ) n(al $)07(s,0)




The Quality of Q' (s, a) when VI Terminates

Unanswered questions:

1. WIll VI (for policy evaluation) always terminate?

2. At termination, we know max |QF(s,a) — Q™. (s, a)| <€,
S,a
but our goal is to approximate Q™ (s, a).

What can we say about max |Q7 (s, a) — Q™ (s, a)|?
s,a



The Quality of Q' (s, a) when VI Terminates

Let f: S XA — R be any function. Define

BellmanError(f) = max f(s,a) —| R(s,a) +vy z P(s'|s,a)m(a’|s")f(s', a)

ValueError(f) = rglzglxlf(s, a) —Q™(s,a)|

With this theorem, we can argue the quality of Q' (s, a)

Theorem when VI terminates through the following:

BellmanError(f)
1-vy

ValueError(f) < 1. Prove that when VI terminates, BellmanError(Q[") < €

2. Using the theorem, we get ValueError(Q[) < TEY




Value Iteration for Policy Optimization

states <

State transition: P(s’|s,a)
Reward: R(s,a)

(S0, ag) = (s, a)‘

SOZS“

Q*(s,a) = Qx(s,a) V*(s) = Ve (s)

i
0; (s,@) = max B™ | > y"'R(sy, )
h=1

Vi (s) = max E7 | >y R (s, ap)
VIA

Vg(s) =0 Vs

Fori=1,2,3,.. foralls, a
Q;(s,a) = R(s,a) + yz P(s'|s,a) V_{(s")
S/
V7 (s) = max Q} (s, a)
a

If |Qf(s,a) — Q/_,(s,a)| < eforall s,a: terminate




Bellman Optimality Equation  =*(s) = argmax Q*(s,a)

Q*(s,a) = R(s,a) + yz: P(s'|s,a) V*(s")

V*(s) = max Q*(s,a)

or Q*(s,a) = R(s,a) +yZP(s’|s, a) max Q*(s',a")

or V*(s) = max (R(S, a)+vy 2 P(s'|s,a) V*(S’))




The Solution Quality when VI Terminates

Unanswered questions:

1. WIll VI (for policy optimization) always terminate?
2. At termination, we know max Q7 (s,a) — Q/_1(s, )| < €,
What can we say about max 1@ (s,a) — Q*(s,a)|?
And what can we say about the performance of the greedy policy 7

defined as 7t(als) =1 [a = argmax Q; (s, a’)]? or simply 7(s) = argmax Q}(s,a’)
a’ a’



The Solution Quality when VI Terminates (1/2)

Let f: S XA — R be any function. Define

BellmanError(f) = max
S,a

f(s,a) — (R(S, a) + yz P(s'|s,a) max f(s’,a’)>

ValueError(f) = rglzcllxlf(s, a) —Q*(s,a)]

Theorem

BellmanError(f)

ValueError(f) <

11—y




The Solution Quality when VI Terminates (2/2)

Let f: S XA — R be any function. Define

m¢(s) = argmax f (s, a)

Theorem

V*(p) — V¥ (p) < 7 2 ValueError(f)




Policy lteration



Policy Iteration

Policy Iteration
Fori=1, 2, ..

Vs, m;(s) <« argmax Q™i-1(s,a)
a

Theorem (monotonic improvement). Policy lteration ensures
Vs,a,  Q"i(s,a) = Q"1(s,a)

When converged (i.e., m; = m;_4), we have m; = ™.

(We will prove this later.)




N = oo = Policy Iteration

Generalized Policy Iteration

N = 1 = Value Iteration for policy optimization

Fori=1,2,..

m;(s) = max Q;(s,a) «<— Policy update

Q < Q;

Repeat for N times:

Q(s,a) <« R(s,a) +y z P(s'ls,a) m;(a'ls)Q(s",a’) <[ | Value update
sl a'

|

Qi+1 < 0Q

Notice: in value iteration for PO, there may not exist a policy = such that Q; = Q™
In contrast, in policy iteration we have Q; = Q™i-1
VI for PO can be viewed as Pl with incomplete policy evaluation



Summary

Value lteration for Policy Optimization (VI for PO)
e |s essentially a dynamic programming algorithm
e Finds the value functions of the optimal policy

Value lteration for Policy Evaluation (VI for PE)
e Also a dynamic programming algorithm
e Finds the value functions of the given policy

Policy lteration (Pl)
e An iterative policy improvement algorithm
e Each iteration involves a policy evaluation subtask

VI for PO and Pl can be viewed as special cases of Generalized PI



Performance Difference Lemma



Recall: Regret

T

- :
Regret = max E™ z Z IHEI A ETY)
t=1

E[Regret] = E

Tt

h=1

o _
Z(V1*(St,1) — V1nt(5t,1))
t=1 |

> (7 () = 1 (0)
t=1 |

Tt

T
=) ) RGsemacn)
t=1h=1

Vi*(p) 2 Es-p[VI* (s)]



Unanswered Questions

e For an estimation Q(s,a) =~ Q*(s, a) with error, how can we bound

V*(p) — V¥ (p) where #(s) = argmax Q (s, a)?

a

e How to show that Policy Iteration leads to monotonic policy improvement?

e Also, how are these methods related to the third challenge of online RL.:
credit assignment?



Performance Difference Lemma

For any two stationary policies ' and m in the discounted setting,

Esp [V ()] = Bep V()] = ) dF'(5) (' (als) - m(al$))Q" (s, @)

= > d7'(5,0) (Q"(s5,0) = V™ (s))

dj(s) £ E”

dj(s,a) £ E”

00)

|h=1

Y {sp =5} | s~ p

00)

Y {(sn, an) = (s, @)}

h=1

Discounted occupancy measure on state s




Performance Difference Lemma

We can also swap the roles of ' and m and apply the same lemma

Esp [V ()] = Esop [V7'(5)] = Zd%) (n(als) - 7' (al$))Q™ (s, )
X (—1)
= Eoep [V7(9)] = Eep V()] = ) dZ(s) (' (als) - m(als))Q™ (s, )

Original version:

Esp [V7'(5)] = Beep V()] = ) dF () (' (als) — m(al$))Q" (5, @)



Performance Difference Lemma (Fixed-Horizon)

For any two Markov policies 7' and r in the fixed-horizon setting,

By, -p [V (50)] = By p VI (51)] = sz 1) (mh(als) — my(al)) QF (s, )

1sa

Z D dz(5,@) (QF (5, @) — Vi (s))

=1 s,a

A%, (s) & E7[I{sy = s} |51 ~ p] = P"(s, = 5| 51 ~ p)

dg,h(s» Cl) = [En[]l{(sh' ah) — (S' a)} | S1 ™~ ,0] — Pn((ShJ ah) — (S! Cl) | S1 ™~ ,0)




The Meaning of Performance Difference Lemma

It tells us how credit are assigned to each state/step
The sub-optimality of a policy :

Es~p [V*(S)] — ]Es~p [VH(S)] = Z dg(S) (T[*(CllS) — T[(CllS))Qn*(S, Cl)
s,a
If  is highly sub-optimal, then we can always
in =) )V - sa)
1) An (s,a)-pair on the path of = such that S,a
V*(s) — Q*(s,a) is positive and large - . ~
2) An (s,a)-pair on the path of ©* such that - Z dp (s) (7‘[ (als) - n(als))Q (s,a)
Q™(s,a) — V™(s) is positive and large S,a

=) 5 (50 Q@) ~ V()




A game tree for the ‘X’ player, where
the ‘O’ player always plays in the
first available cell (from left to right,

top to bottom).

V*(s) =? 0Q*(s,a) =?
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A game tree for the ‘X’ player, where
the ‘O’ player always plays in the
first available cell (from left to right,
top to bottom).
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X|O]X Let © be a policy of the ‘X’ player
| that always plays the last available
| cell.

ST V@ = s =2
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Proof (Sketch) of Performance Difference Lemma









Unanswered Question 1

Suboptimality < (1 — y)~! Value Error
Let f: § X A — R be any function

If
If(s,a) —Q*(s,a)| <€ Vs,a

then

2€
V*(s) =V (s) < T—> Vs

— 1=V

where m¢(s) = argmax f (s, a)
a







Unanswered Question 2

Policy Iteration ensures
Vs,a,  Q"i(s,a) = Q™-1(s,a)

When converged (i.e., m; = m;_,), we have m; = n™.




T = Ti—1

= m;(s) = argmax Q™ (s, a)

a
= Q"(s,a) = R(s,a) +7 Y P(s']s,a)mi(a'|s) QT (', ') = R(s,a) +7 3 P(s'|s,a) max Q" (s', a’)
al
s’.a’ s’
= ()™ satisfies the Bellman optimality equation
= BellmanError(Q™) = 0

1
= Q" (s,a) = Q" (s, a) by the “ValueError < 1~ BellmanError” lemma on Page 38
-

= m;(s) = argmax Q™ (s,a) = 7*(s).



Recap: MDP

Definitions of Q" (s,a),V"™(s),Q*(s,a),V*(s)

Bellman equations (related to dynamic programming)

Value lteration to approximate Q™ (s,a)/V™(s) or Q*(s,a)/V*(s)
Policy Iteration to find =* --- involving Q™ (s, a) /V™(s) approximation
Unified by Generalized Policy Iteration

Performance difference lemma to decompose E;.., [V”' (s)] — Egp[VT(s)]

e Credit assignment
o =Y,qad;(s,a) (V”' (s) — Q™ (s, a)) (helpful in analyzing VI by letting n’ = n™*)
o =Y ,d¥ (s,a) (Q"(s,a) — V™(s)) (helpful in analyzing Pl by letting 7' = ;1)



Next

e Our discussion indicates there are two potential ways to find optimal policy

e Value-lteration-based: approximate Q(s,a) =~ Q*(s,a) and let (s) = argmax Q(s, a)
a

e Policy-lteration-based: approximate Q(s,a) =~ Q™(s,a) and let #(s) = argmax Q(s, a)
a

e ... or something in between (based on generalized policy iteration)

e RL algorithms we will discuss:
e Performing approximate VI or Pl using samples
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