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Sequence of Actions

To win the game, the learner has to take a sequence of actions 𝑎1 → 𝑎2 → ⋯ → 𝑎𝐻.

The effect of a particular action may not be revealed instantaneously. 

● Some effect may be revealed instantaneously

● Some may be revealed later



Sequence of Actions

state

(a summary of the current status in a multi-stage game)



Sequence of Actions

● The number of possible combinations of actions grows exponentially with the length of 

the sequence. 

● We would like to decompose the problem so that every single decision in the sequence is 

easy to make. 

● State:  a summary of the status of the world and the progress of the learner, so that 

all future decisions can only depend on the state and not on everything else. 

● Games (Go, Chess):  To decide future moves, the player only need the current board configuration.

● Robot navigation to a goal:  only need the current position and not the exact path reaching the 

current position.   

● Inventory management:  only need the current inventory level, and not the sequence of past sales. 



Sequence of Actions 

𝑠1 𝑠ℎ−1 𝑠ℎ
….. …..

action

Like a sequential contextual bandit problem – except that 

future contexts depends on the learner’s past decisions.  



Interaction Protocol (Episodic Setting)

For episode 𝑡 = 1, 2, … , 𝑇: 

      ℎ ← 1

      Environment generates initial state 𝑠𝑡,1

      While episode 𝑡 has not ended:     

            Learner chooses an action 𝑎𝑡,ℎ 

            Learner observes instantaneous reward 𝑟𝑡,ℎ with 𝔼 𝑟𝑡,ℎ = 𝑅(𝑠𝑡,ℎ, 𝑎𝑡,ℎ)

            Environment generates next state 𝑠𝑡,ℎ+1 ∼ 𝑃 ⋅ 𝑠𝑡,ℎ, 𝑎𝑡,ℎ)

            ℎ ← ℎ + 1

Goal:  maximize ෍

𝑡=1

𝑇

෍

ℎ=1

𝜏𝑡

𝑅(𝑠𝑡,ℎ, 𝑎𝑡,ℎ)

Markov assumption: 

𝑟𝑡,ℎ and 𝑠𝑡,ℎ+1 are conditionally independent 

of (𝑠𝑡,1, 𝑎𝑡,1, … , 𝑠𝑡,ℎ−1, 𝑎𝑡,ℎ−1) given 𝑠𝑡,ℎ



From Observations to States

Stacking recent observations Hidden Markov modelRecurrent neural network



Regret (Episodic Setting)

Regret =  − ෍

𝑡=1

𝑇

෍

ℎ=1

𝜏𝑡

𝑅(𝑠𝑡,ℎ, 𝑎𝑡,ℎ)

Benchmark

max
𝜋⋆

 𝔼𝜋⋆
෍

𝑡=1

𝑇

෍

ℎ=1

෤𝜏𝑡

𝑅( ǁ𝑠𝑡,ℎ , 𝜋⋆( ǁ𝑠𝑡,ℎ))

𝑠𝑡,1

ǁ𝑠𝑡,2 ǁ𝑠𝑡,෤𝜏𝑡ǁ𝑠𝑡,3

𝑠𝑡,2 𝑠𝑡,3 𝑠𝑡,𝜏𝑡

……

…

𝜋⋆(𝑠𝑡,1)
𝜋⋆( ǁ𝑠𝑡,2) 𝜋⋆( ǁ𝑠𝑡,3)

𝑎𝑡,1

𝑎𝑡,2 𝑎𝑡,3

Trajectory generated by 𝜋⋆

Trajectory generated by learner 



Example: Racing

● A robot car wants to travel far, quickly

● Three states: Cool, Warm, Overheated

● Two actions: Slow, Fast

● Going faster gets double reward



Example: Racing

𝑠 𝑎 𝑠′ 𝑃(𝑠′|𝑠, 𝑎) 𝑅(𝑠, 𝑎) 

Slow 1.0 +1

Fast 0.5 +2

Fast 0.5 +2

Slow 0.5 +1

Slow 0.5 +1

Fast 1.0 –10

(end) 1.0 0



Formulations

● Interaction Protocol

● Fixed-Horizon

● Variable-Horizon

● Performance Metric

● Total Reward

● Discounted Reward

● Policy

● Markov policy

● Stationary policy

Horizon = Length of an episode



Interaction Protocols (1/2):  Fixed-Horizon

ℎ ← 1

Observe initial state 𝑠1 ∼ 𝜌

While 𝒉 ≤ 𝑯:

      Choose action 𝑎ℎ 

      Observe reward 𝑟ℎ with 𝔼 𝑟ℎ = 𝑅(𝑠ℎ, 𝑎ℎ)

      Observe next state 𝑠ℎ+1 ∼ 𝑃(⋅ |𝑠ℎ, 𝑎ℎ)

Horizon length is a fixed number 𝐻

Examples:  games with a fixed number of time 



Interaction Protocols (2/2):  Variable-Horizon

The learner interacts with the environment until reaching terminal states 𝒯 ⊂ 𝒮

ℎ ← 1

Observe initial state 𝑠1 ∼ 𝜌

While 𝑠ℎ ∉ 𝒯:

      Choose action 𝑎ℎ 

      Observe reward 𝑟ℎ with 𝔼 𝑟ℎ = 𝑅(𝑠ℎ, 𝑎ℎ)

      Observe next state 𝑠ℎ+1 ∼ 𝑃(⋅ |𝑠ℎ, 𝑎ℎ)

      ℎ ← ℎ + 1

Examples:  video games, robotics tasks, personalized recommendations, etc.



Formulations

● Interaction Protocol

● Fixed-Horizon

● Variable-Horizon

● Performance Metric

● Total Reward

● Discounted Reward

● Policy

● Markov policy

● Stationary policy

Horizon = Length of an episode



Performance Metric

Total Reward:   ෍

ℎ=1

𝜏

𝑟ℎ

𝜏: the step where the episode ends  

Discounted Total Reward: ෍

ℎ=1

𝜏

𝛾ℎ−1𝑟ℎ 𝛾 ∈ [0,1):  discount factor

There is a potential mismatch between our ultimate goal and what we really optimized. 

Due to discounting, the future reward starting from any state is always upper bounded by 
range of 𝑟

1−𝛾
, 

even if the episode length is very very long.  

Without discounting, the range of future reward could be unbounded → making it hard to optimize 



Formulations

● Interaction Protocol

● Fixed-Horizon

● Variable-Horizon

● Performance Metric

● Total Reward

● Discounted Reward

● Policy

● Markov policy

● Stationary policy



Policy for MDPs

Markov Policy

Stationary Policy

𝑎ℎ ∼  𝜋ℎ ⋅ | 𝑠ℎ

𝑎ℎ =  𝜋ℎ 𝑠ℎ

𝑎ℎ ∼  𝜋 ⋅ | 𝑠ℎ

𝑎ℎ =  𝜋 𝑠ℎ

For fixed-horizon setting, there exists an 
optimal policy in this class

For infinite-horizon/goal-oriented settings, 
there exists an optimal policy in this class

Markov Policy = Stationary Policy where the state is augmented with the timestep.   



A stationary policy specifies

𝜋 Slow Cool) 

𝜋 Fast Cool) 

𝜋 Slow Warm) 

𝜋 Fast Warm) 

A Markov policy specifies

𝜋ℎ Slow Cool) 

𝜋ℎ Fast Cool) 

𝜋ℎ Slow Warm) 

𝜋ℎ Fast Warm) 

∀ℎ 



Value Iteration
(Fixed-Horizon + Total-Reward)



Two Tasks

Policy Evaluation:   Calculate the expected total reward of a given policy 

What is the expected total reward for the policy 𝜋 cool = fast, 𝜋 warm = slow? 

Policy Optimization:   Find the best policy

What is the policy that achieves the highest expected total reward? 



Value Iteration for Policy Evaluation

State transition:  𝑃(𝑠′|𝑠, 𝑎)

Reward: 𝑅(𝑠, 𝑎)

Backward induction: 

𝑉ℎ
𝜋(𝑠) = ෍

𝑎

𝜋ℎ 𝑎 𝑠 𝑄ℎ
𝜋(𝑠, 𝑎)

Expected total reward 
of 𝜋 from step ℎ + 1

… … …

ℎ = 1 ℎ = 2 ℎ = 𝐻

states

𝑠

…

ℎ = 3

…

…

For ℎ = 𝐻, … 1:      for all 𝑠, 𝑎

𝑄ℎ
𝜋(𝑠, 𝑎) = 𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉ℎ+1
𝜋 (𝑠′)

𝑉𝐻+1
𝜋 𝑠 = 0 ∀𝑠

𝑄ℎ
𝜋 𝑠, 𝑎 = 𝔼𝜋 ቮ෍

𝑘=ℎ

𝐻

𝑅(𝑠𝑘, 𝑎𝑘) 𝑠ℎ , 𝑎ℎ = (𝑠, 𝑎)

𝑉ℎ
𝜋 𝑠 = 𝔼𝜋 ቮ෍

𝑘=ℎ

𝐻

𝑅(𝑠𝑘, 𝑎𝑘) 𝑠ℎ = 𝑠



Bellman Equation

𝑄ℎ
𝜋 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉ℎ+1
𝜋 (𝑠′)

𝑉ℎ
𝜋 𝑠 = ෍

𝑎

𝜋ℎ 𝑎  𝑠)𝑄ℎ
𝜋(𝑠, 𝑎)

𝑄ℎ
𝜋 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + ෍

𝑠′,𝑎′

𝑃 𝑠′ 𝑠, 𝑎 𝜋ℎ+1 𝑎′ 𝑠′ 𝑄ℎ+1
𝜋 (𝑠′, 𝑎′)

𝑉ℎ
𝜋 𝑠 = ෍

𝑎

𝜋ℎ 𝑎  𝑠) 𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉ℎ+1
𝜋 (𝑠′)

or

or

𝑄ℎ
𝜋 is called “the state-action value functions of policy 𝜋”

𝑉ℎ
𝜋 is called “the state value function of policy 𝜋”

Both can be just called “value functions”



The Meaning of Bellman Equations

𝑄ℎ
𝜋 𝑠, 𝑎 ≜ 𝔼𝜋 ቮ෍

𝑘=ℎ

𝐻

𝑅(𝑠𝑘, 𝑎𝑘) 𝑠ℎ , 𝑎ℎ = (𝑠, 𝑎)

𝑉ℎ
𝜋 𝑠 ≜ 𝔼𝜋 ቮ෍

𝑘=ℎ

𝐻

𝑅(𝑠𝑘, 𝑎𝑘) 𝑠ℎ = 𝑠

Definitions

𝑄ℎ
𝜋 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉ℎ+1
𝜋 (𝑠′)

𝑉ℎ
𝜋 𝑠 = ෍

𝑎

𝜋ℎ 𝑎  𝑠)𝑄ℎ
𝜋(𝑠, 𝑎)

Relations (Bellman Equations) Calculation (VI)

Calculate 

𝑄ℎ
𝜋 𝑠, 𝑎 , 𝑉ℎ

𝜋 𝑠  ∀𝑠, 𝑎 

from ℎ = 𝐻 to ℎ = 1

Based on Dynamic Programming



Value Iteration for Policy Optimization

State transition:  𝑃(𝑠′|𝑠, 𝑎)

Reward: 𝑅(𝑠, 𝑎)

Backward induction: 

𝑉ℎ
⋆ 𝑠 = max

𝑎
 𝑄ℎ

⋆(𝑠, 𝑎)

Expected optimal total 
reward from step ℎ + 1

… … …

ℎ = 1 ℎ = 2 ℎ = 𝐻

states

𝑠

…

ℎ = 3

…

…

For ℎ = 𝐻, … 1:      for all 𝑠, 𝑎

𝑄ℎ
⋆(𝑠, 𝑎) = 𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉ℎ+1
⋆ (𝑠′)

𝑉𝐻+1
⋆ 𝑠 = 0 ∀𝑠

𝜋ℎ
⋆ 𝑠 = argmax

𝑎
 𝑄ℎ

⋆(𝑠, 𝑎)

𝑄ℎ
⋆ 𝑠, 𝑎 = max

𝜋∈ Markov Policy
 𝔼𝜋 ቮ෍

𝑘=ℎ

𝐻

𝑅(𝑠𝑘 , 𝑎𝑘) 𝑠ℎ, 𝑎ℎ = (𝑠, 𝑎)

𝑉ℎ
⋆ 𝑠 = max

𝜋∈ Markov Policy
 𝔼𝜋 ቮ෍

𝑘=ℎ

𝐻

𝑅(𝑠𝑘, 𝑎𝑘) 𝑠ℎ = 𝑠



Assume 𝐻 = 3

𝑠 𝑎 𝑠′ 𝑃 𝑠’ 𝑠, 𝑎  𝑅(𝑠, 𝑎) 

Slow 1.0 +1

Fast 0.5 +2

Fast 0.5 +2

Slow 0.5 +1

Slow 0.5 +1

Fast 1.0 –10

(end) 1.0 0

Exercise

𝑽𝟑
⋆ (𝒔)

𝑸𝟑
⋆ (𝒔, 𝒂)

𝑄3
⋆(cool, slow)

𝑄3
⋆(cool, fast)

𝑄3
⋆(warm, slow)

𝑄3
⋆(warm, fast)

𝑉3
⋆(cool)

𝑉3
⋆(warm)

𝑸𝟐
⋆ (𝒔, 𝒂)

𝑄2
⋆(cool, slow)

𝑄2
⋆(cool, fast)

𝑄2
⋆(warm, slow)

𝑄2
⋆(warm, fast)

𝑽𝟐
⋆ (𝒔)

𝑉2
⋆(cool)

𝑉2
⋆(warm)



Bellman Optimality Equation

𝜋ℎ
⋆ 𝑠 = argmax

𝑎
 𝑄ℎ

⋆(𝑠, 𝑎)

𝑄ℎ
⋆ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉ℎ+1
⋆ (𝑠′)

𝑉ℎ
⋆ 𝑠 = max

𝑎
 𝑄ℎ

⋆(𝑠, 𝑎)

𝑄ℎ
⋆ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + ෍

𝑠′ 

𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

 𝑄ℎ+1
⋆ (𝑠′, 𝑎′)

𝑉ℎ
⋆ 𝑠 = max

𝑎
𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉ℎ+1
⋆ (𝑠′)

or

or

𝑄ℎ
⋆ : optimal state-action value functions 

𝑉ℎ
⋆ : optimal state value functions

or “optimal value functions”



Value Iteration
(Variable-Horizon + Discounted Reward)



Value Iteration for Policy Evaluation

State transition:  𝑃(𝑠′|𝑠, 𝑎)

Reward: 𝑅(𝑠, 𝑎)

𝑉𝑖
𝜋(𝑠) = ෍

𝑎

𝜋 𝑎 𝑠 𝑄𝑖
𝜋(𝑠, 𝑎)

… …

ℎ = 1 ℎ = 2

states

𝑠

…

ℎ = 3

…

…

For 𝑖 = 1, 2, 3, …      for all 𝑠, 𝑎

𝑄𝑖
𝜋(𝑠, 𝑎) = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉𝑖−1
𝜋 (𝑠′)

𝑄𝑖
𝜋 𝑠, 𝑎 = 𝔼𝜋 ቮ෍

ℎ=1

𝑖

𝛾ℎ−1𝑅(𝑠ℎ , 𝑎ℎ) 𝑠1, 𝑎1 = (𝑠, 𝑎)

𝑉𝑖
𝜋 𝑠 = 𝔼𝜋 ቮ෍

ℎ=1

𝑖

𝛾ℎ−1𝑅(𝑠ℎ , 𝑎ℎ)  𝑠1 = 𝑠

𝑉0
𝜋 𝑠 = 0 ∀𝑠

1 𝛾 𝛾2weight

𝑄𝜋 𝑠, 𝑎 = 𝑄∞
𝜋 (𝑠, 𝑎) 𝑉𝜋 𝑠 = 𝑉∞

𝜋(𝑠)

If  𝑄𝑖
𝜋 𝑠, 𝑎 − 𝑄𝑖−1

𝜋 (𝑠, 𝑎) ≤ 𝜖 for all 𝑠, 𝑎:  terminate



Bellman Equation

𝑄𝜋 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉𝜋(𝑠′)

𝑉𝜋 𝑠 = ෍

𝑎

𝜋 𝑎  𝑠)𝑄𝜋(𝑠, 𝑎)

𝑄𝜋 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′,𝑎′

𝑃 𝑠′ 𝑠, 𝑎 𝜋 𝑎′ 𝑠′ 𝑄𝜋(𝑠′, 𝑎′)

𝑉𝜋 𝑠 = ෍

𝑎

𝜋 𝑎  𝑠) 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉𝜋(𝑠′)

or

or



The Meaning of Bellman Equations

Definitions

𝑄𝜋 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉𝜋(𝑠′)

𝑉𝜋 𝑠 = ෍

𝑎

𝜋 𝑎  𝑠)𝑄𝜋(𝑠, 𝑎)

Relations (Bellman Equations) Calculation (VI)

Calculate 

𝑄𝑖
𝜋 𝑠, 𝑎 , 𝑉𝑖

𝜋 𝑠  ∀𝑠, 𝑎 

for 𝑖 = 1, 2, …

until terminated

𝑄𝜋 𝑠, 𝑎 = 𝔼𝜋 ቮ෍

ℎ=1

∞

𝛾ℎ−1𝑅(𝑠ℎ , 𝑎ℎ) 𝑠1, 𝑎1 = (𝑠, 𝑎)

𝑉𝜋 𝑠 = 𝔼𝜋 ቮ෍

ℎ=1

∞

𝛾ℎ−1𝑅(𝑠ℎ , 𝑎ℎ)  𝑠1 = 𝑠



The Quality of 𝑄𝑖
𝜋(𝑠, 𝑎) when VI Terminates 

but our goal is to approximate 𝑄𝜋(𝑠, 𝑎). 

1.  Will VI (for policy evaluation) always terminate?  

What can we say about  max
𝑠,𝑎

𝑄𝑖
𝜋(𝑠, 𝑎) − 𝑄𝜋(𝑠, 𝑎) ? 

Unanswered questions:  

2.  At termination, we know  max
𝑠,𝑎

𝑄𝑖
𝜋 𝑠, 𝑎 − 𝑄𝑖−1

𝜋 (𝑠, 𝑎) ≤ 𝜖,  



The Quality of 𝑄𝑖
𝜋(𝑠, 𝑎) when VI Terminates 

BellmanError 𝑓 = max
𝑠,𝑎

𝑓 𝑠, 𝑎 − 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′,𝑎′

𝑃 𝑠′ 𝑠, 𝑎 𝜋 𝑎′ 𝑠′ 𝑓(𝑠′, 𝑎′)

ValueError 𝑓 = max
𝑠,𝑎

𝑓 𝑠, 𝑎 − 𝑄𝜋(𝑠, 𝑎)

Let 𝑓:  𝒮 × 𝒜 → ℝ be any function.  Define

ValueError 𝑓  ≤
BellmanError 𝑓

1 − 𝛾

Theorem
With this theorem, we can argue the quality of 𝑄𝑖

𝜋(𝑠, 𝑎) 

when VI terminates through the following: 

1. Prove that when VI terminates, BellmanError 𝑄𝑖
𝜋 ≤ 𝜖

2. Using the theorem, we get ValueError 𝑄𝑖
𝜋 ≤

𝜖

1−𝛾



Value Iteration for Policy Optimization

State transition:  𝑃(𝑠′|𝑠, 𝑎)

Reward: 𝑅(𝑠, 𝑎)

𝑉𝑖
⋆ 𝑠 = max

𝑎
 𝑄𝑖

⋆(𝑠, 𝑎)

… …

ℎ = 1 ℎ = 2

states

𝑠

…

ℎ = 3

…

…

For 𝑖 = 1, 2, 3, …      for all 𝑠, 𝑎

𝑄𝑖
⋆(𝑠, 𝑎) = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉𝑖−1
⋆ (𝑠′)

𝑄𝑖
⋆ 𝑠, 𝑎 = max

𝜋
 𝔼𝜋 ቮ෍

ℎ=1

𝑖

𝛾ℎ−1𝑅(𝑠ℎ , 𝑎ℎ) 𝑠0, 𝑎0 = (𝑠, 𝑎)

𝑉𝑖
⋆ 𝑠 = max

𝜋
 𝔼𝜋 ቮ෍

ℎ=1

𝑖

𝛾ℎ−1𝑅(𝑠ℎ , 𝑎ℎ)  𝑠0 = 𝑠

𝑉0
⋆ 𝑠 = 0 ∀𝑠

1 𝛾 𝛾2

𝑄⋆ 𝑠, 𝑎 = 𝑄∞
⋆ (𝑠, 𝑎) 𝑉⋆ 𝑠 = 𝑉∞

⋆(𝑠)

weight

If  𝑄𝑖
⋆ 𝑠, 𝑎 − 𝑄𝑖−1

⋆ (𝑠, 𝑎) ≤ 𝜖 for all 𝑠, 𝑎 :  terminate



Bellman Optimality Equation

𝑄⋆ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉⋆(𝑠′)

𝑉⋆ 𝑠 = max
𝑎

 𝑄⋆(𝑠, 𝑎)

𝑄⋆ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′ 

𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

 𝑄⋆(𝑠′, 𝑎′)

𝑉⋆ 𝑠 = max
𝑎

𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉⋆(𝑠′)

or

or

𝜋⋆ 𝑠 = argmax
𝑎

 𝑄⋆(𝑠, 𝑎)



The Solution Quality when VI Terminates 

1.  Will VI (for policy optimization) always terminate?  

What can we say about  max
𝑠,𝑎

𝑄𝑖
⋆(𝑠, 𝑎) − 𝑄⋆(𝑠, 𝑎) ? 

Unanswered questions:  

2.  At termination, we know  max
𝑠,𝑎

𝑄𝑖
⋆ 𝑠, 𝑎 − 𝑄𝑖−1

⋆ (𝑠, 𝑎) ≤ 𝜖,  

And what can we say about the performance of the greedy policy ෝ𝝅 

defined as ො𝜋 𝑎|𝑠 = 𝕀 𝑎 = argmax
𝑎′

 𝑄𝑖
⋆(𝑠, 𝑎′) ? or simply ො𝜋 𝑠 = argmax

𝑎′
 𝑄𝑖

⋆(𝑠, 𝑎′)



The Solution Quality when VI Terminates (1/2) 

BellmanError 𝑓 = max
𝑠,𝑎

𝑓 𝑠, 𝑎 − 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎  max
𝑎′

 𝑓(𝑠′, 𝑎′)

ValueError 𝑓 = max
𝑠,𝑎

𝑓 𝑠, 𝑎 − 𝑄⋆(𝑠, 𝑎)

Let 𝑓:  𝒮 × 𝒜 → ℝ be any function.  Define

ValueError 𝑓  ≤
BellmanError 𝑓

1 − 𝛾

Theorem



The Solution Quality when VI Terminates (2/2) 

𝜋𝑓 𝑠 = argmax
𝑎

 𝑓(𝑠, 𝑎)

Let 𝑓:  𝒮 × 𝒜 → ℝ be any function.  Define

𝑉⋆ 𝜌 − 𝑉𝜋𝑓 𝜌 ≤
2

1 − 𝛾
 ValueError(𝑓)

Theorem 



Policy Iteration



Policy Iteration

Policy Iteration

For 𝑖 = 1, 2, … 

∀𝑠,  𝜋𝑖 𝑠  ← argmax
𝑎

 𝑄𝜋𝑖−1(𝑠, 𝑎)

Theorem (monotonic improvement).  Policy Iteration ensures

∀𝑠, 𝑎, 𝑄𝜋𝑖 𝑠, 𝑎 ≥ 𝑄𝜋𝑖−1 𝑠, 𝑎

(We will prove this later.)

When converged (i.e., 𝜋𝑖 = 𝜋𝑖−1),  we have 𝜋𝑖 = 𝜋⋆. 



Generalized Policy Iteration

For 𝑖 = 1, 2, …  

𝜋𝑖(𝑠) = max
𝑎

 𝑄𝑖(𝑠, 𝑎)

𝑄(𝑠, 𝑎) ← 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′,𝑎′

𝑃 𝑠′ 𝑠, 𝑎 𝜋𝑖 𝑎′ 𝑠′ 𝑄(𝑠′, 𝑎′)

Repeat for 𝑁 times:  

𝑄 ← 𝑄𝑖

𝑄𝑖+1 ← 𝑄

Policy update

Value update

𝑁 = 1 ⇒ Value Iteration for policy optimization

𝑁 = ∞ ⇒ Policy Iteration

Notice:  in value iteration for PO, there may not exist a policy 𝜋 such that 𝑄𝑖 = 𝑄𝜋

In contrast,  in policy iteration we have 𝑄𝑖 = 𝑄𝜋𝑖−1

VI for PO can be viewed as PI with incomplete policy evaluation



Summary

● Value Iteration for Policy Optimization (VI for PO)

● Is essentially a dynamic programming algorithm

● Finds the value functions of the optimal policy

● Value Iteration for Policy Evaluation (VI for PE)

● Also a dynamic programming algorithm

● Finds the value functions of the given policy

● Policy Iteration (PI)

● An iterative policy improvement algorithm

● Each iteration involves a policy evaluation subtask

● VI for PO and PI can be viewed as special cases of Generalized PI



Performance Difference Lemma



Recall:  Regret 

Regret =  − ෍

𝑡=1

𝑇

෍

ℎ=1

𝜏𝑡

𝑅(𝑠𝑡,ℎ, 𝑎𝑡,ℎ)max
𝜋⋆

 𝔼𝜋⋆
෍

𝑡=1

𝑇

෍

ℎ=1

෤𝜏𝑡

𝑅( ǁ𝑠𝑡,ℎ , 𝜋⋆( ǁ𝑠𝑡,ℎ))

𝔼 Regret =  𝔼 ෍

𝑡=1

𝑇

𝑉1
⋆ 𝑠𝑡,1 − 𝑉1

𝜋𝑡(𝑠𝑡,1)

=  𝔼 ෍

𝑡=1

𝑇

𝑉1
⋆ 𝜌 − 𝑉1

𝜋𝑡(𝜌) 𝑉1
𝜋 𝜌 ≜ 𝔼𝑠∼𝜌 𝑉1

𝜋(𝑠)



Unanswered Questions

● For an estimation ෠𝑄 𝑠, 𝑎 ≈ 𝑄⋆(𝑠, 𝑎) with error, how can we bound 

𝑉⋆ 𝜌 − 𝑉ෝ𝜋(𝜌)            where ො𝜋 𝑠 = argmax
𝑎

 ෠𝑄(𝑠, 𝑎)?

● How to show that Policy Iteration leads to monotonic policy improvement? 

● Also, how are these methods related to the third challenge of online RL: 
credit assignment? 



Performance Difference Lemma

For any two stationary policies 𝜋′ and 𝜋 in the discounted setting, 

𝔼𝑠∼𝜌 𝑉𝜋′
𝑠 − 𝔼𝑠∼𝜌 𝑉𝜋 𝑠 = ෍

𝑠,𝑎

𝑑𝜌
𝜋′

𝑠 𝜋′ 𝑎 𝑠 − 𝜋 𝑎 𝑠 𝑄𝜋(𝑠, 𝑎)

= ෍

𝑠,𝑎

𝑑𝜌
𝜋′

𝑠, 𝑎 𝑄𝜋(𝑠, 𝑎) − 𝑉𝜋(𝑠)

𝑑𝜌
𝜋 𝑠, 𝑎 ≜  𝔼𝜋 ቮ෍

ℎ=1

∞

𝛾ℎ−1𝕀 (𝑠ℎ, 𝑎ℎ) = (𝑠, 𝑎)  𝑠1 ∼ 𝜌

𝑑𝜌
𝜋 𝑠 ≜  𝔼𝜋 ቮ෍

ℎ=1

∞

𝛾ℎ−1𝕀 𝑠ℎ = 𝑠  𝑠1 ∼ 𝜌 Discounted occupancy measure on state 𝑠



Performance Difference Lemma

We can also swap the roles of 𝜋′ and 𝜋 and apply the same lemma 

𝔼𝑠∼𝜌 𝑉𝜋 𝑠 − 𝔼𝑠∼𝜌 𝑉𝜋′
𝑠 = ෍

𝑠,𝑎

𝑑𝜌
𝜋 𝑠 𝜋 𝑎 𝑠 − 𝜋′ 𝑎 𝑠 𝑄𝜋′

(𝑠, 𝑎)

⇒  𝔼𝑠∼𝜌 𝑉𝜋′
𝑠 − 𝔼𝑠∼𝜌 𝑉𝜋 𝑠 = ෍

𝑠,𝑎

𝑑𝜌
𝜋 𝑠 𝜋′ 𝑎 𝑠 − 𝜋 𝑎 𝑠 𝑄𝜋′

(𝑠, 𝑎)
× (−1)

𝔼𝑠∼𝜌 𝑉𝜋′
𝑠 − 𝔼𝑠∼𝜌 𝑉𝜋 𝑠 = ෍

𝑠,𝑎

𝑑𝜌
𝜋′

𝑠 𝜋′ 𝑎 𝑠 − 𝜋 𝑎 𝑠 𝑄𝜋(𝑠, 𝑎)

Original version: 

=



Performance Difference Lemma (Fixed-Horizon)

For any two Markov policies 𝜋′ and 𝜋 in the fixed-horizon setting, 

𝔼𝑠1∼𝜌 𝑉1
𝜋′

𝑠1 − 𝔼𝑠1∼𝜌 𝑉1
𝜋 𝑠1 = ෍

ℎ=1

𝐻

෍

𝑠,𝑎

𝑑𝜌,ℎ
𝜋′

𝑠 𝜋ℎ
′ 𝑎 𝑠 − 𝜋ℎ 𝑎 𝑠 𝑄ℎ

𝜋(𝑠, 𝑎)

= ෍

ℎ=1

𝐻

෍

𝑠,𝑎

𝑑𝜌,ℎ
𝜋′

𝑠, 𝑎 𝑄ℎ
𝜋(𝑠, 𝑎) − 𝑉ℎ

𝜋(𝑠)  

𝑑𝜌,ℎ
𝜋 𝑠 ≜  𝔼𝜋 𝕀 𝑠ℎ = 𝑠  | 𝑠1 ∼ 𝜌 = ℙ𝜋 𝑠ℎ = 𝑠 𝑠1 ∼ 𝜌)

𝑑𝜌,ℎ
𝜋 𝑠, 𝑎 ≜  𝔼𝜋 𝕀 (𝑠ℎ, 𝑎ℎ) = (𝑠, 𝑎)  | 𝑠1 ∼ 𝜌 = ℙ𝜋 (𝑠ℎ, 𝑎ℎ) = (𝑠, 𝑎) 𝑠1 ∼ 𝜌)



The Meaning of Performance Difference Lemma

It tells us how credit are assigned to each state/step

The sub-optimality of a policy 𝜋:

𝔼𝑠∼𝜌 𝑉⋆ 𝑠 − 𝔼𝑠∼𝜌 𝑉𝜋 𝑠 = ෍

𝑠,𝑎

𝑑𝜌
𝜋 𝑠 𝜋⋆ 𝑎 𝑠 − 𝜋 𝑎 𝑠 𝑄𝜋⋆

(𝑠, 𝑎)

= ෍

𝑠,𝑎

𝑑𝜌
𝜋⋆

𝑠, 𝑎 𝑄𝜋(𝑠, 𝑎) − 𝑉𝜋(𝑠)

= ෍

𝑠,𝑎

𝑑𝜌
𝜋 𝑠, 𝑎 𝑉⋆(𝑠) − 𝑄⋆(𝑠, 𝑎)

If 𝜋 is highly sub-optimal, then we can always 

find 

1) An 𝑠, 𝑎 -pair on the path of 𝜋 such that 

𝑉⋆ 𝑠 − 𝑄⋆ 𝑠, 𝑎  is positive and large

2) An 𝑠, 𝑎 -pair on the path of 𝜋⋆ such that 

𝑄𝜋 𝑠, 𝑎 − 𝑉𝜋 𝑠  is positive and large

= ෍

𝑠,𝑎

𝑑𝜌
𝜋⋆

𝑠 𝜋⋆ 𝑎 𝑠 − 𝜋 𝑎 𝑠 𝑄𝜋(𝑠, 𝑎)



A game tree for the ‘X’ player, where 

the ‘O’ player always plays in the 

first available cell (from left to right, 

top to bottom).

𝑉⋆ 𝑠 =?   𝑄⋆ 𝑠, 𝑎 =?

0

+1 +1

0

+1

+1

-1

+1

+1

+1

-1 -1 -1

-1

+1

+1

+1

-1 -1 -1 -1

+1 +1

+1

+1
0

+1 -1
+1

+1 -1
-1

-1 +1
-1

-1 +1
-1

-1

+1
+1 -1

+1
+1



A game tree for the ‘X’ player, where 

the ‘O’ player always plays in the 

first available cell (from left to right, 

top to bottom).
𝑉𝜋 𝑠 =?   𝑄𝜋 𝑠, 𝑎 =?

Let 𝜋 be a policy of the ‘X’ player 

that always plays the last available 

cell. 

0

+1 +1

0

+1

+1

-1

+1

+1

+1

-1 -1 -1

-1

+1

+1

+1

-1 -1 -1 -1

-1 -1

-1

+1
0

+1 -1
+1

+1 -1
-1

-1 +1
-1

-1 +1
-1

-1

+1
+1 -1

-1
-1



Proof (Sketch) of Performance Difference Lemma







Unanswered Question 1

Let 𝑓:  𝒮 × 𝒜 → ℝ be any function

𝑓 𝑠, 𝑎 − 𝑄⋆(𝑠, 𝑎) ≤ 𝜖 ∀𝑠, 𝑎
If

then 

𝑉⋆ 𝑠 − 𝑉𝜋𝑓 𝑠 ≤
2𝜖

1 − 𝛾
 ∀𝑠

Suboptimality ≤ 𝟏 − 𝜸 −𝟏 Value Error

where 𝜋𝑓 𝑠 = argmax
𝑎

 𝑓(𝑠, 𝑎)  





Unanswered Question 2

Policy Iteration ensures

∀𝑠, 𝑎, 𝑄𝜋𝑖 𝑠, 𝑎 ≥ 𝑄𝜋𝑖−1 𝑠, 𝑎

When converged (i.e., 𝜋𝑖 = 𝜋𝑖−1),  we have 𝜋𝑖 = 𝜋⋆. 





Recap: MDP

● Definitions of 𝑄𝜋 𝑠, 𝑎 , 𝑉𝜋 𝑠 , 𝑄⋆ 𝑠, 𝑎 , 𝑉⋆(𝑠)

● Bellman equations (related to dynamic programming)

● Value Iteration to approximate 𝑄𝜋 𝑠, 𝑎 /𝑉𝜋(𝑠) or 𝑄⋆ 𝑠, 𝑎 /𝑉⋆(𝑠) 

● Policy Iteration to find 𝜋⋆ --- involving 𝑄𝜋 𝑠, 𝑎 /𝑉𝜋(𝑠) approximation 

● Unified by Generalized Policy Iteration

● Performance difference lemma to decompose 𝔼𝑠∼𝜌 𝑉𝜋′
𝑠 − 𝔼𝑠∼𝜌 𝑉𝜋 𝑠

● Credit assignment

● = σ𝑠,𝑎 𝑑𝜌
𝜋 𝑠, 𝑎 𝑉𝜋′

(𝑠) − 𝑄𝜋′
(𝑠, 𝑎)     (helpful in analyzing VI by letting 𝜋′ = 𝜋⋆)

● = σ𝑠,𝑎 𝑑𝜌
𝜋′

𝑠, 𝑎 𝑄𝜋 𝑠, 𝑎 − 𝑉𝜋(𝑠)     (helpful in analyzing PI by letting 𝜋′ = 𝜋𝑖+1)



Next

● Our discussion indicates there are two potential ways to find optimal policy

● Value-Iteration-based:  approximate ෠𝑄 𝑠, 𝑎 ≈ 𝑄⋆(𝑠, 𝑎) and let ො𝜋(𝑠) = argmax
𝑎

 ෠𝑄(𝑠, 𝑎)

● Policy-Iteration-based:  approximate ෠𝑄 𝑠, 𝑎 ≈ 𝑄𝜋(𝑠, 𝑎) and let ො𝜋(𝑠) = argmax
𝑎

 ෠𝑄(𝑠, 𝑎)

● … or something in between (based on generalized policy iteration)

● RL algorithms we will discuss: 

● Performing approximate VI or PI using samples
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