
Markov Decision Processes
Chen-Yu Wei

Sequence of Actions

To win the game, the learner has to take a sequence of actions 𝑎1 → 𝑎2 → ⋯ → 𝑎𝐻.

The effect of a particular action may not be revealed instantaneously.

● Some effect may be revealed instantaneously

● Some may be revealed later

Sequence of Actions

state

(a summary of the current status in a multi-stage game)

Sequence of Actions

● The number of possible combinations of actions grows exponentially with the length of

the sequence.

● We would like to decompose the problem so that every single decision in the sequence is

easy to make.

● State: a summary of the status of the world and the progress of the learner, so that

all future decisions can only depend on the state and not on everything else.

● Games (Go, Chess): To decide future moves, the player only need the current board configuration.

● Robot navigation to a goal: only need the current position and not the exact path reaching the

current position.

● Inventory management: only need the current inventory level, and not the sequence of past sales.

Sequence of Actions

𝑠1 𝑠ℎ−1 𝑠ℎ
….. …..

action

Like a sequential contextual bandit problem – except that

future contexts depends on the learner’s past decisions.

Interaction Protocol (Episodic Setting)

For episode 𝑡 = 1, 2, … , 𝑇:

 ℎ ← 1

 Environment generates initial state 𝑠𝑡,1

 While episode 𝑡 has not ended:

 Learner chooses an action 𝑎𝑡,ℎ

 Learner observes instantaneous reward 𝑟𝑡,ℎ with 𝔼 𝑟𝑡,ℎ = 𝑅(𝑠𝑡,ℎ, 𝑎𝑡,ℎ)

 Environment generates next state 𝑠𝑡,ℎ+1 ∼ 𝑃 ⋅ 𝑠𝑡,ℎ, 𝑎𝑡,ℎ)

 ℎ ← ℎ + 1

Goal: maximize ෍

𝑡=1

𝑇

෍

ℎ=1

𝜏𝑡

𝑅(𝑠𝑡,ℎ, 𝑎𝑡,ℎ)

Markov assumption:

𝑟𝑡,ℎ and 𝑠𝑡,ℎ+1 are conditionally independent

of (𝑠𝑡,1, 𝑎𝑡,1, … , 𝑠𝑡,ℎ−1, 𝑎𝑡,ℎ−1) given 𝑠𝑡,ℎ

From Observations to States

Stacking recent observations Hidden Markov modelRecurrent neural network

Regret (Episodic Setting)

Regret = − ෍

𝑡=1

𝑇

෍

ℎ=1

𝜏𝑡

𝑅(𝑠𝑡,ℎ, 𝑎𝑡,ℎ)

Benchmark

max
𝜋⋆

 𝔼𝜋⋆
෍

𝑡=1

𝑇

෍

ℎ=1

෤𝜏𝑡

𝑅(ǁ𝑠𝑡,ℎ , 𝜋⋆(ǁ𝑠𝑡,ℎ))

𝑠𝑡,1

ǁ𝑠𝑡,2 ǁ𝑠𝑡,෤𝜏𝑡ǁ𝑠𝑡,3

𝑠𝑡,2 𝑠𝑡,3 𝑠𝑡,𝜏𝑡

……

…

𝜋⋆(𝑠𝑡,1)
𝜋⋆(ǁ𝑠𝑡,2) 𝜋⋆(ǁ𝑠𝑡,3)

𝑎𝑡,1

𝑎𝑡,2 𝑎𝑡,3

Trajectory generated by 𝜋⋆

Trajectory generated by learner

Example: Racing

● A robot car wants to travel far, quickly

● Three states: Cool, Warm, Overheated

● Two actions: Slow, Fast

● Going faster gets double reward

Example: Racing

𝑠 𝑎 𝑠′ 𝑃(𝑠′|𝑠, 𝑎) 𝑅(𝑠, 𝑎)

Slow 1.0 +1

Fast 0.5 +2

Fast 0.5 +2

Slow 0.5 +1

Slow 0.5 +1

Fast 1.0 –10

(end) 1.0 0

Formulations

● Interaction Protocol

● Fixed-Horizon

● Variable-Horizon

● Performance Metric

● Total Reward

● Discounted Reward

● Policy

● Markov policy

● Stationary policy

Horizon = Length of an episode

Interaction Protocols (1/2): Fixed-Horizon

ℎ ← 1

Observe initial state 𝑠1 ∼ 𝜌

While 𝒉 ≤ 𝑯:

 Choose action 𝑎ℎ

 Observe reward 𝑟ℎ with 𝔼 𝑟ℎ = 𝑅(𝑠ℎ, 𝑎ℎ)

 Observe next state 𝑠ℎ+1 ∼ 𝑃(⋅ |𝑠ℎ, 𝑎ℎ)

Horizon length is a fixed number 𝐻

Examples: games with a fixed number of time

Interaction Protocols (2/2): Variable-Horizon

The learner interacts with the environment until reaching terminal states 𝒯 ⊂ 𝒮

ℎ ← 1

Observe initial state 𝑠1 ∼ 𝜌

While 𝑠ℎ ∉ 𝒯:

 Choose action 𝑎ℎ

 Observe reward 𝑟ℎ with 𝔼 𝑟ℎ = 𝑅(𝑠ℎ, 𝑎ℎ)

 Observe next state 𝑠ℎ+1 ∼ 𝑃(⋅ |𝑠ℎ, 𝑎ℎ)

 ℎ ← ℎ + 1

Examples: video games, robotics tasks, personalized recommendations, etc.

Formulations

● Interaction Protocol

● Fixed-Horizon

● Variable-Horizon

● Performance Metric

● Total Reward

● Discounted Reward

● Policy

● Markov policy

● Stationary policy

Horizon = Length of an episode

Performance Metric

Total Reward: ෍

ℎ=1

𝜏

𝑟ℎ

𝜏: the step where the episode ends

Discounted Total Reward: ෍

ℎ=1

𝜏

𝛾ℎ−1𝑟ℎ 𝛾 ∈ [0,1): discount factor

There is a potential mismatch between our ultimate goal and what we really optimized.

Due to discounting, the future reward starting from any state is always upper bounded by
range of 𝑟

1−𝛾
,

even if the episode length is very very long.

Without discounting, the range of future reward could be unbounded → making it hard to optimize

Formulations

● Interaction Protocol

● Fixed-Horizon

● Variable-Horizon

● Performance Metric

● Total Reward

● Discounted Reward

● Policy

● Markov policy

● Stationary policy

Policy for MDPs

Markov Policy

Stationary Policy

𝑎ℎ ∼ 𝜋ℎ ⋅ | 𝑠ℎ

𝑎ℎ = 𝜋ℎ 𝑠ℎ

𝑎ℎ ∼ 𝜋 ⋅ | 𝑠ℎ

𝑎ℎ = 𝜋 𝑠ℎ

For fixed-horizon setting, there exists an
optimal policy in this class

For infinite-horizon/goal-oriented settings,
there exists an optimal policy in this class

Markov Policy = Stationary Policy where the state is augmented with the timestep.

A stationary policy specifies

𝜋 Slow Cool)

𝜋 Fast Cool)

𝜋 Slow Warm)

𝜋 Fast Warm)

A Markov policy specifies

𝜋ℎ Slow Cool)

𝜋ℎ Fast Cool)

𝜋ℎ Slow Warm)

𝜋ℎ Fast Warm)

∀ℎ

Value Iteration
(Fixed-Horizon + Total-Reward)

Two Tasks

Policy Evaluation: Calculate the expected total reward of a given policy

What is the expected total reward for the policy 𝜋 cool = fast, 𝜋 warm = slow?

Policy Optimization: Find the best policy

What is the policy that achieves the highest expected total reward?

Value Iteration for Policy Evaluation

State transition: 𝑃(𝑠′|𝑠, 𝑎)

Reward: 𝑅(𝑠, 𝑎)

Backward induction:

𝑉ℎ
𝜋(𝑠) = ෍

𝑎

𝜋ℎ 𝑎 𝑠 𝑄ℎ
𝜋(𝑠, 𝑎)

Expected total reward
of 𝜋 from step ℎ + 1

… … …

ℎ = 1 ℎ = 2 ℎ = 𝐻

states

𝑠

…

ℎ = 3

…

…

For ℎ = 𝐻, … 1: for all 𝑠, 𝑎

𝑄ℎ
𝜋(𝑠, 𝑎) = 𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉ℎ+1
𝜋 (𝑠′)

𝑉𝐻+1
𝜋 𝑠 = 0 ∀𝑠

𝑄ℎ
𝜋 𝑠, 𝑎 = 𝔼𝜋 ቮ෍

𝑘=ℎ

𝐻

𝑅(𝑠𝑘, 𝑎𝑘) 𝑠ℎ , 𝑎ℎ = (𝑠, 𝑎)

𝑉ℎ
𝜋 𝑠 = 𝔼𝜋 ቮ෍

𝑘=ℎ

𝐻

𝑅(𝑠𝑘, 𝑎𝑘) 𝑠ℎ = 𝑠

Bellman Equation

𝑄ℎ
𝜋 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉ℎ+1
𝜋 (𝑠′)

𝑉ℎ
𝜋 𝑠 = ෍

𝑎

𝜋ℎ 𝑎 𝑠)𝑄ℎ
𝜋(𝑠, 𝑎)

𝑄ℎ
𝜋 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + ෍

𝑠′,𝑎′

𝑃 𝑠′ 𝑠, 𝑎 𝜋ℎ+1 𝑎′ 𝑠′ 𝑄ℎ+1
𝜋 (𝑠′, 𝑎′)

𝑉ℎ
𝜋 𝑠 = ෍

𝑎

𝜋ℎ 𝑎 𝑠) 𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉ℎ+1
𝜋 (𝑠′)

or

or

𝑄ℎ
𝜋 is called “the state-action value functions of policy 𝜋”

𝑉ℎ
𝜋 is called “the state value function of policy 𝜋”

Both can be just called “value functions”

The Meaning of Bellman Equations

𝑄ℎ
𝜋 𝑠, 𝑎 ≜ 𝔼𝜋 ቮ෍

𝑘=ℎ

𝐻

𝑅(𝑠𝑘, 𝑎𝑘) 𝑠ℎ , 𝑎ℎ = (𝑠, 𝑎)

𝑉ℎ
𝜋 𝑠 ≜ 𝔼𝜋 ቮ෍

𝑘=ℎ

𝐻

𝑅(𝑠𝑘, 𝑎𝑘) 𝑠ℎ = 𝑠

Definitions

𝑄ℎ
𝜋 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉ℎ+1
𝜋 (𝑠′)

𝑉ℎ
𝜋 𝑠 = ෍

𝑎

𝜋ℎ 𝑎 𝑠)𝑄ℎ
𝜋(𝑠, 𝑎)

Relations (Bellman Equations) Calculation (VI)

Calculate

𝑄ℎ
𝜋 𝑠, 𝑎 , 𝑉ℎ

𝜋 𝑠 ∀𝑠, 𝑎

from ℎ = 𝐻 to ℎ = 1

Based on Dynamic Programming

Value Iteration for Policy Optimization

State transition: 𝑃(𝑠′|𝑠, 𝑎)

Reward: 𝑅(𝑠, 𝑎)

Backward induction:

𝑉ℎ
⋆ 𝑠 = max

𝑎
 𝑄ℎ

⋆(𝑠, 𝑎)

Expected optimal total
reward from step ℎ + 1

… … …

ℎ = 1 ℎ = 2 ℎ = 𝐻

states

𝑠

…

ℎ = 3

…

…

For ℎ = 𝐻, … 1: for all 𝑠, 𝑎

𝑄ℎ
⋆(𝑠, 𝑎) = 𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉ℎ+1
⋆ (𝑠′)

𝑉𝐻+1
⋆ 𝑠 = 0 ∀𝑠

𝜋ℎ
⋆ 𝑠 = argmax

𝑎
 𝑄ℎ

⋆(𝑠, 𝑎)

𝑄ℎ
⋆ 𝑠, 𝑎 = max

𝜋∈ Markov Policy
 𝔼𝜋 ቮ෍

𝑘=ℎ

𝐻

𝑅(𝑠𝑘 , 𝑎𝑘) 𝑠ℎ, 𝑎ℎ = (𝑠, 𝑎)

𝑉ℎ
⋆ 𝑠 = max

𝜋∈ Markov Policy
 𝔼𝜋 ቮ෍

𝑘=ℎ

𝐻

𝑅(𝑠𝑘, 𝑎𝑘) 𝑠ℎ = 𝑠

Assume 𝐻 = 3

𝑠 𝑎 𝑠′ 𝑃 𝑠’ 𝑠, 𝑎 𝑅(𝑠, 𝑎)

Slow 1.0 +1

Fast 0.5 +2

Fast 0.5 +2

Slow 0.5 +1

Slow 0.5 +1

Fast 1.0 –10

(end) 1.0 0

Exercise

𝑽𝟑
⋆ (𝒔)

𝑸𝟑
⋆ (𝒔, 𝒂)

𝑄3
⋆(cool, slow)

𝑄3
⋆(cool, fast)

𝑄3
⋆(warm, slow)

𝑄3
⋆(warm, fast)

𝑉3
⋆(cool)

𝑉3
⋆(warm)

𝑸𝟐
⋆ (𝒔, 𝒂)

𝑄2
⋆(cool, slow)

𝑄2
⋆(cool, fast)

𝑄2
⋆(warm, slow)

𝑄2
⋆(warm, fast)

𝑽𝟐
⋆ (𝒔)

𝑉2
⋆(cool)

𝑉2
⋆(warm)

Bellman Optimality Equation

𝜋ℎ
⋆ 𝑠 = argmax

𝑎
 𝑄ℎ

⋆(𝑠, 𝑎)

𝑄ℎ
⋆ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉ℎ+1
⋆ (𝑠′)

𝑉ℎ
⋆ 𝑠 = max

𝑎
 𝑄ℎ

⋆(𝑠, 𝑎)

𝑄ℎ
⋆ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

 𝑄ℎ+1
⋆ (𝑠′, 𝑎′)

𝑉ℎ
⋆ 𝑠 = max

𝑎
𝑅 𝑠, 𝑎 + ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉ℎ+1
⋆ (𝑠′)

or

or

𝑄ℎ
⋆ : optimal state-action value functions

𝑉ℎ
⋆ : optimal state value functions

or “optimal value functions”

Value Iteration
(Variable-Horizon + Discounted Reward)

Value Iteration for Policy Evaluation

State transition: 𝑃(𝑠′|𝑠, 𝑎)

Reward: 𝑅(𝑠, 𝑎)

𝑉𝑖
𝜋(𝑠) = ෍

𝑎

𝜋 𝑎 𝑠 𝑄𝑖
𝜋(𝑠, 𝑎)

… …

ℎ = 1 ℎ = 2

states

𝑠

…

ℎ = 3

…

…

For 𝑖 = 1, 2, 3, … for all 𝑠, 𝑎

𝑄𝑖
𝜋(𝑠, 𝑎) = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉𝑖−1
𝜋 (𝑠′)

𝑄𝑖
𝜋 𝑠, 𝑎 = 𝔼𝜋 ቮ෍

ℎ=1

𝑖

𝛾ℎ−1𝑅(𝑠ℎ , 𝑎ℎ) 𝑠1, 𝑎1 = (𝑠, 𝑎)

𝑉𝑖
𝜋 𝑠 = 𝔼𝜋 ቮ෍

ℎ=1

𝑖

𝛾ℎ−1𝑅(𝑠ℎ , 𝑎ℎ) 𝑠1 = 𝑠

𝑉0
𝜋 𝑠 = 0 ∀𝑠

1 𝛾 𝛾2weight

𝑄𝜋 𝑠, 𝑎 = 𝑄∞
𝜋 (𝑠, 𝑎) 𝑉𝜋 𝑠 = 𝑉∞

𝜋(𝑠)

If 𝑄𝑖
𝜋 𝑠, 𝑎 − 𝑄𝑖−1

𝜋 (𝑠, 𝑎) ≤ 𝜖 for all 𝑠, 𝑎: terminate

Bellman Equation

𝑄𝜋 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉𝜋(𝑠′)

𝑉𝜋 𝑠 = ෍

𝑎

𝜋 𝑎 𝑠)𝑄𝜋(𝑠, 𝑎)

𝑄𝜋 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′,𝑎′

𝑃 𝑠′ 𝑠, 𝑎 𝜋 𝑎′ 𝑠′ 𝑄𝜋(𝑠′, 𝑎′)

𝑉𝜋 𝑠 = ෍

𝑎

𝜋 𝑎 𝑠) 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉𝜋(𝑠′)

or

or

The Meaning of Bellman Equations

Definitions

𝑄𝜋 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉𝜋(𝑠′)

𝑉𝜋 𝑠 = ෍

𝑎

𝜋 𝑎 𝑠)𝑄𝜋(𝑠, 𝑎)

Relations (Bellman Equations) Calculation (VI)

Calculate

𝑄𝑖
𝜋 𝑠, 𝑎 , 𝑉𝑖

𝜋 𝑠 ∀𝑠, 𝑎

for 𝑖 = 1, 2, …

until terminated

𝑄𝜋 𝑠, 𝑎 = 𝔼𝜋 ቮ෍

ℎ=1

∞

𝛾ℎ−1𝑅(𝑠ℎ , 𝑎ℎ) 𝑠1, 𝑎1 = (𝑠, 𝑎)

𝑉𝜋 𝑠 = 𝔼𝜋 ቮ෍

ℎ=1

∞

𝛾ℎ−1𝑅(𝑠ℎ , 𝑎ℎ) 𝑠1 = 𝑠

The Quality of 𝑄𝑖
𝜋(𝑠, 𝑎) when VI Terminates

but our goal is to approximate 𝑄𝜋(𝑠, 𝑎).

1. Will VI (for policy evaluation) always terminate?

What can we say about max
𝑠,𝑎

𝑄𝑖
𝜋(𝑠, 𝑎) − 𝑄𝜋(𝑠, 𝑎) ?

Unanswered questions:

2. At termination, we know max
𝑠,𝑎

𝑄𝑖
𝜋 𝑠, 𝑎 − 𝑄𝑖−1

𝜋 (𝑠, 𝑎) ≤ 𝜖,

The Quality of 𝑄𝑖
𝜋(𝑠, 𝑎) when VI Terminates

BellmanError 𝑓 = max
𝑠,𝑎

𝑓 𝑠, 𝑎 − 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′,𝑎′

𝑃 𝑠′ 𝑠, 𝑎 𝜋 𝑎′ 𝑠′ 𝑓(𝑠′, 𝑎′)

ValueError 𝑓 = max
𝑠,𝑎

𝑓 𝑠, 𝑎 − 𝑄𝜋(𝑠, 𝑎)

Let 𝑓: 𝒮 × 𝒜 → ℝ be any function. Define

ValueError 𝑓 ≤
BellmanError 𝑓

1 − 𝛾

Theorem
With this theorem, we can argue the quality of 𝑄𝑖

𝜋(𝑠, 𝑎)

when VI terminates through the following:

1. Prove that when VI terminates, BellmanError 𝑄𝑖
𝜋 ≤ 𝜖

2. Using the theorem, we get ValueError 𝑄𝑖
𝜋 ≤

𝜖

1−𝛾

Value Iteration for Policy Optimization

State transition: 𝑃(𝑠′|𝑠, 𝑎)

Reward: 𝑅(𝑠, 𝑎)

𝑉𝑖
⋆ 𝑠 = max

𝑎
 𝑄𝑖

⋆(𝑠, 𝑎)

… …

ℎ = 1 ℎ = 2

states

𝑠

…

ℎ = 3

…

…

For 𝑖 = 1, 2, 3, … for all 𝑠, 𝑎

𝑄𝑖
⋆(𝑠, 𝑎) = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉𝑖−1
⋆ (𝑠′)

𝑄𝑖
⋆ 𝑠, 𝑎 = max

𝜋
 𝔼𝜋 ቮ෍

ℎ=1

𝑖

𝛾ℎ−1𝑅(𝑠ℎ , 𝑎ℎ) 𝑠0, 𝑎0 = (𝑠, 𝑎)

𝑉𝑖
⋆ 𝑠 = max

𝜋
 𝔼𝜋 ቮ෍

ℎ=1

𝑖

𝛾ℎ−1𝑅(𝑠ℎ , 𝑎ℎ) 𝑠0 = 𝑠

𝑉0
⋆ 𝑠 = 0 ∀𝑠

1 𝛾 𝛾2

𝑄⋆ 𝑠, 𝑎 = 𝑄∞
⋆ (𝑠, 𝑎) 𝑉⋆ 𝑠 = 𝑉∞

⋆(𝑠)

weight

If 𝑄𝑖
⋆ 𝑠, 𝑎 − 𝑄𝑖−1

⋆ (𝑠, 𝑎) ≤ 𝜖 for all 𝑠, 𝑎 : terminate

Bellman Optimality Equation

𝑄⋆ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉⋆(𝑠′)

𝑉⋆ 𝑠 = max
𝑎

 𝑄⋆(𝑠, 𝑎)

𝑄⋆ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

 𝑄⋆(𝑠′, 𝑎′)

𝑉⋆ 𝑠 = max
𝑎

𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) 𝑉⋆(𝑠′)

or

or

𝜋⋆ 𝑠 = argmax
𝑎

 𝑄⋆(𝑠, 𝑎)

The Solution Quality when VI Terminates

1. Will VI (for policy optimization) always terminate?

What can we say about max
𝑠,𝑎

𝑄𝑖
⋆(𝑠, 𝑎) − 𝑄⋆(𝑠, 𝑎) ?

Unanswered questions:

2. At termination, we know max
𝑠,𝑎

𝑄𝑖
⋆ 𝑠, 𝑎 − 𝑄𝑖−1

⋆ (𝑠, 𝑎) ≤ 𝜖,

And what can we say about the performance of the greedy policy ෝ𝝅

defined as ො𝜋 𝑎|𝑠 = 𝕀 𝑎 = argmax
𝑎′

 𝑄𝑖
⋆(𝑠, 𝑎′) ? or simply ො𝜋 𝑠 = argmax

𝑎′
 𝑄𝑖

⋆(𝑠, 𝑎′)

The Solution Quality when VI Terminates (1/2)

BellmanError 𝑓 = max
𝑠,𝑎

𝑓 𝑠, 𝑎 − 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

 𝑓(𝑠′, 𝑎′)

ValueError 𝑓 = max
𝑠,𝑎

𝑓 𝑠, 𝑎 − 𝑄⋆(𝑠, 𝑎)

Let 𝑓: 𝒮 × 𝒜 → ℝ be any function. Define

ValueError 𝑓 ≤
BellmanError 𝑓

1 − 𝛾

Theorem

The Solution Quality when VI Terminates (2/2)

𝜋𝑓 𝑠 = argmax
𝑎

 𝑓(𝑠, 𝑎)

Let 𝑓: 𝒮 × 𝒜 → ℝ be any function. Define

𝑉⋆ 𝜌 − 𝑉𝜋𝑓 𝜌 ≤
2

1 − 𝛾
 ValueError(𝑓)

Theorem

Policy Iteration

Policy Iteration

Policy Iteration

For 𝑖 = 1, 2, …

∀𝑠, 𝜋𝑖 𝑠 ← argmax
𝑎

 𝑄𝜋𝑖−1(𝑠, 𝑎)

Theorem (monotonic improvement). Policy Iteration ensures

∀𝑠, 𝑎, 𝑄𝜋𝑖 𝑠, 𝑎 ≥ 𝑄𝜋𝑖−1 𝑠, 𝑎

(We will prove this later.)

When converged (i.e., 𝜋𝑖 = 𝜋𝑖−1), we have 𝜋𝑖 = 𝜋⋆.

Generalized Policy Iteration

For 𝑖 = 1, 2, …

𝜋𝑖(𝑠) = max
𝑎

 𝑄𝑖(𝑠, 𝑎)

𝑄(𝑠, 𝑎) ← 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′,𝑎′

𝑃 𝑠′ 𝑠, 𝑎 𝜋𝑖 𝑎′ 𝑠′ 𝑄(𝑠′, 𝑎′)

Repeat for 𝑁 times:

𝑄 ← 𝑄𝑖

𝑄𝑖+1 ← 𝑄

Policy update

Value update

𝑁 = 1 ⇒ Value Iteration for policy optimization

𝑁 = ∞ ⇒ Policy Iteration

Notice: in value iteration for PO, there may not exist a policy 𝜋 such that 𝑄𝑖 = 𝑄𝜋

In contrast, in policy iteration we have 𝑄𝑖 = 𝑄𝜋𝑖−1

VI for PO can be viewed as PI with incomplete policy evaluation

Summary

● Value Iteration for Policy Optimization (VI for PO)

● Is essentially a dynamic programming algorithm

● Finds the value functions of the optimal policy

● Value Iteration for Policy Evaluation (VI for PE)

● Also a dynamic programming algorithm

● Finds the value functions of the given policy

● Policy Iteration (PI)

● An iterative policy improvement algorithm

● Each iteration involves a policy evaluation subtask

● VI for PO and PI can be viewed as special cases of Generalized PI

Performance Difference Lemma

Recall: Regret

Regret = − ෍

𝑡=1

𝑇

෍

ℎ=1

𝜏𝑡

𝑅(𝑠𝑡,ℎ, 𝑎𝑡,ℎ)max
𝜋⋆

 𝔼𝜋⋆
෍

𝑡=1

𝑇

෍

ℎ=1

෤𝜏𝑡

𝑅(ǁ𝑠𝑡,ℎ , 𝜋⋆(ǁ𝑠𝑡,ℎ))

𝔼 Regret = 𝔼 ෍

𝑡=1

𝑇

𝑉1
⋆ 𝑠𝑡,1 − 𝑉1

𝜋𝑡(𝑠𝑡,1)

= 𝔼 ෍

𝑡=1

𝑇

𝑉1
⋆ 𝜌 − 𝑉1

𝜋𝑡(𝜌) 𝑉1
𝜋 𝜌 ≜ 𝔼𝑠∼𝜌 𝑉1

𝜋(𝑠)

Unanswered Questions

● For an estimation ෠𝑄 𝑠, 𝑎 ≈ 𝑄⋆(𝑠, 𝑎) with error, how can we bound

𝑉⋆ 𝜌 − 𝑉ෝ𝜋(𝜌) where ො𝜋 𝑠 = argmax
𝑎

 ෠𝑄(𝑠, 𝑎)?

● How to show that Policy Iteration leads to monotonic policy improvement?

● Also, how are these methods related to the third challenge of online RL:
credit assignment?

Performance Difference Lemma

For any two stationary policies 𝜋′ and 𝜋 in the discounted setting,

𝔼𝑠∼𝜌 𝑉𝜋′
𝑠 − 𝔼𝑠∼𝜌 𝑉𝜋 𝑠 = ෍

𝑠,𝑎

𝑑𝜌
𝜋′

𝑠 𝜋′ 𝑎 𝑠 − 𝜋 𝑎 𝑠 𝑄𝜋(𝑠, 𝑎)

= ෍

𝑠,𝑎

𝑑𝜌
𝜋′

𝑠, 𝑎 𝑄𝜋(𝑠, 𝑎) − 𝑉𝜋(𝑠)

𝑑𝜌
𝜋 𝑠, 𝑎 ≜ 𝔼𝜋 ቮ෍

ℎ=1

∞

𝛾ℎ−1𝕀 (𝑠ℎ, 𝑎ℎ) = (𝑠, 𝑎) 𝑠1 ∼ 𝜌

𝑑𝜌
𝜋 𝑠 ≜ 𝔼𝜋 ቮ෍

ℎ=1

∞

𝛾ℎ−1𝕀 𝑠ℎ = 𝑠 𝑠1 ∼ 𝜌 Discounted occupancy measure on state 𝑠

Performance Difference Lemma

We can also swap the roles of 𝜋′ and 𝜋 and apply the same lemma

𝔼𝑠∼𝜌 𝑉𝜋 𝑠 − 𝔼𝑠∼𝜌 𝑉𝜋′
𝑠 = ෍

𝑠,𝑎

𝑑𝜌
𝜋 𝑠 𝜋 𝑎 𝑠 − 𝜋′ 𝑎 𝑠 𝑄𝜋′

(𝑠, 𝑎)

⇒ 𝔼𝑠∼𝜌 𝑉𝜋′
𝑠 − 𝔼𝑠∼𝜌 𝑉𝜋 𝑠 = ෍

𝑠,𝑎

𝑑𝜌
𝜋 𝑠 𝜋′ 𝑎 𝑠 − 𝜋 𝑎 𝑠 𝑄𝜋′

(𝑠, 𝑎)
× (−1)

𝔼𝑠∼𝜌 𝑉𝜋′
𝑠 − 𝔼𝑠∼𝜌 𝑉𝜋 𝑠 = ෍

𝑠,𝑎

𝑑𝜌
𝜋′

𝑠 𝜋′ 𝑎 𝑠 − 𝜋 𝑎 𝑠 𝑄𝜋(𝑠, 𝑎)

Original version:

=

Performance Difference Lemma (Fixed-Horizon)

For any two Markov policies 𝜋′ and 𝜋 in the fixed-horizon setting,

𝔼𝑠1∼𝜌 𝑉1
𝜋′

𝑠1 − 𝔼𝑠1∼𝜌 𝑉1
𝜋 𝑠1 = ෍

ℎ=1

𝐻

෍

𝑠,𝑎

𝑑𝜌,ℎ
𝜋′

𝑠 𝜋ℎ
′ 𝑎 𝑠 − 𝜋ℎ 𝑎 𝑠 𝑄ℎ

𝜋(𝑠, 𝑎)

= ෍

ℎ=1

𝐻

෍

𝑠,𝑎

𝑑𝜌,ℎ
𝜋′

𝑠, 𝑎 𝑄ℎ
𝜋(𝑠, 𝑎) − 𝑉ℎ

𝜋(𝑠)

𝑑𝜌,ℎ
𝜋 𝑠 ≜ 𝔼𝜋 𝕀 𝑠ℎ = 𝑠 | 𝑠1 ∼ 𝜌 = ℙ𝜋 𝑠ℎ = 𝑠 𝑠1 ∼ 𝜌)

𝑑𝜌,ℎ
𝜋 𝑠, 𝑎 ≜ 𝔼𝜋 𝕀 (𝑠ℎ, 𝑎ℎ) = (𝑠, 𝑎) | 𝑠1 ∼ 𝜌 = ℙ𝜋 (𝑠ℎ, 𝑎ℎ) = (𝑠, 𝑎) 𝑠1 ∼ 𝜌)

The Meaning of Performance Difference Lemma

It tells us how credit are assigned to each state/step

The sub-optimality of a policy 𝜋:

𝔼𝑠∼𝜌 𝑉⋆ 𝑠 − 𝔼𝑠∼𝜌 𝑉𝜋 𝑠 = ෍

𝑠,𝑎

𝑑𝜌
𝜋 𝑠 𝜋⋆ 𝑎 𝑠 − 𝜋 𝑎 𝑠 𝑄𝜋⋆

(𝑠, 𝑎)

= ෍

𝑠,𝑎

𝑑𝜌
𝜋⋆

𝑠, 𝑎 𝑄𝜋(𝑠, 𝑎) − 𝑉𝜋(𝑠)

= ෍

𝑠,𝑎

𝑑𝜌
𝜋 𝑠, 𝑎 𝑉⋆(𝑠) − 𝑄⋆(𝑠, 𝑎)

If 𝜋 is highly sub-optimal, then we can always

find

1) An 𝑠, 𝑎 -pair on the path of 𝜋 such that

𝑉⋆ 𝑠 − 𝑄⋆ 𝑠, 𝑎 is positive and large

2) An 𝑠, 𝑎 -pair on the path of 𝜋⋆ such that

𝑄𝜋 𝑠, 𝑎 − 𝑉𝜋 𝑠 is positive and large

= ෍

𝑠,𝑎

𝑑𝜌
𝜋⋆

𝑠 𝜋⋆ 𝑎 𝑠 − 𝜋 𝑎 𝑠 𝑄𝜋(𝑠, 𝑎)

A game tree for the ‘X’ player, where

the ‘O’ player always plays in the

first available cell (from left to right,

top to bottom).

𝑉⋆ 𝑠 =? 𝑄⋆ 𝑠, 𝑎 =?

0

+1 +1

0

+1

+1

-1

+1

+1

+1

-1 -1 -1

-1

+1

+1

+1

-1 -1 -1 -1

+1 +1

+1

+1
0

+1 -1
+1

+1 -1
-1

-1 +1
-1

-1 +1
-1

-1

+1
+1 -1

+1
+1

A game tree for the ‘X’ player, where

the ‘O’ player always plays in the

first available cell (from left to right,

top to bottom).
𝑉𝜋 𝑠 =? 𝑄𝜋 𝑠, 𝑎 =?

Let 𝜋 be a policy of the ‘X’ player

that always plays the last available

cell.

0

+1 +1

0

+1

+1

-1

+1

+1

+1

-1 -1 -1

-1

+1

+1

+1

-1 -1 -1 -1

-1 -1

-1

+1
0

+1 -1
+1

+1 -1
-1

-1 +1
-1

-1 +1
-1

-1

+1
+1 -1

-1
-1

Proof (Sketch) of Performance Difference Lemma

Unanswered Question 1

Let 𝑓: 𝒮 × 𝒜 → ℝ be any function

𝑓 𝑠, 𝑎 − 𝑄⋆(𝑠, 𝑎) ≤ 𝜖 ∀𝑠, 𝑎
If

then

𝑉⋆ 𝑠 − 𝑉𝜋𝑓 𝑠 ≤
2𝜖

1 − 𝛾
 ∀𝑠

Suboptimality ≤ 𝟏 − 𝜸 −𝟏 Value Error

where 𝜋𝑓 𝑠 = argmax
𝑎

 𝑓(𝑠, 𝑎)

Unanswered Question 2

Policy Iteration ensures

∀𝑠, 𝑎, 𝑄𝜋𝑖 𝑠, 𝑎 ≥ 𝑄𝜋𝑖−1 𝑠, 𝑎

When converged (i.e., 𝜋𝑖 = 𝜋𝑖−1), we have 𝜋𝑖 = 𝜋⋆.

Recap: MDP

● Definitions of 𝑄𝜋 𝑠, 𝑎 , 𝑉𝜋 𝑠 , 𝑄⋆ 𝑠, 𝑎 , 𝑉⋆(𝑠)

● Bellman equations (related to dynamic programming)

● Value Iteration to approximate 𝑄𝜋 𝑠, 𝑎 /𝑉𝜋(𝑠) or 𝑄⋆ 𝑠, 𝑎 /𝑉⋆(𝑠)

● Policy Iteration to find 𝜋⋆ --- involving 𝑄𝜋 𝑠, 𝑎 /𝑉𝜋(𝑠) approximation

● Unified by Generalized Policy Iteration

● Performance difference lemma to decompose 𝔼𝑠∼𝜌 𝑉𝜋′
𝑠 − 𝔼𝑠∼𝜌 𝑉𝜋 𝑠

● Credit assignment

● = σ𝑠,𝑎 𝑑𝜌
𝜋 𝑠, 𝑎 𝑉𝜋′

(𝑠) − 𝑄𝜋′
(𝑠, 𝑎) (helpful in analyzing VI by letting 𝜋′ = 𝜋⋆)

● = σ𝑠,𝑎 𝑑𝜌
𝜋′

𝑠, 𝑎 𝑄𝜋 𝑠, 𝑎 − 𝑉𝜋(𝑠) (helpful in analyzing PI by letting 𝜋′ = 𝜋𝑖+1)

Next

● Our discussion indicates there are two potential ways to find optimal policy

● Value-Iteration-based: approximate ෠𝑄 𝑠, 𝑎 ≈ 𝑄⋆(𝑠, 𝑎) and let ො𝜋(𝑠) = argmax
𝑎

 ෠𝑄(𝑠, 𝑎)

● Policy-Iteration-based: approximate ෠𝑄 𝑠, 𝑎 ≈ 𝑄𝜋(𝑠, 𝑎) and let ො𝜋(𝑠) = argmax
𝑎

 ෠𝑄(𝑠, 𝑎)

● … or something in between (based on generalized policy iteration)

● RL algorithms we will discuss:

● Performing approximate VI or PI using samples

	Slide 1: Markov Decision Processes
	Slide 2: Sequence of Actions
	Slide 3: Sequence of Actions
	Slide 4: Sequence of Actions
	Slide 5: Sequence of Actions
	Slide 6: Interaction Protocol (Episodic Setting)
	Slide 7: From Observations to States
	Slide 8: Regret (Episodic Setting)
	Slide 9: Example: Racing
	Slide 10: Example: Racing
	Slide 11: Formulations
	Slide 12: Interaction Protocols (1/2): Fixed-Horizon
	Slide 13: Interaction Protocols (2/2): Variable-Horizon
	Slide 14: Formulations
	Slide 15: Performance Metric
	Slide 16: Formulations
	Slide 17: Policy for MDPs
	Slide 18
	Slide 19: Value Iteration (Fixed-Horizon + Total-Reward)
	Slide 20: Two Tasks
	Slide 21: Value Iteration for Policy Evaluation
	Slide 22: Bellman Equation
	Slide 23: The Meaning of Bellman Equations
	Slide 24: Value Iteration for Policy Optimization
	Slide 25: Exercise
	Slide 26: Bellman Optimality Equation
	Slide 27: Value Iteration (Variable-Horizon + Discounted Reward)
	Slide 28: Value Iteration for Policy Evaluation
	Slide 29: Bellman Equation
	Slide 30: The Meaning of Bellman Equations
	Slide 31: The Quality of cap Q sub i. to the pi , open paren s ,a. close paren when VI Terminates
	Slide 32: The Quality of cap Q sub i. to the pi , open paren s ,a. close paren when VI Terminates
	Slide 33: Value Iteration for Policy Optimization
	Slide 34: Bellman Optimality Equation
	Slide 35: The Solution Quality when VI Terminates
	Slide 36: The Solution Quality when VI Terminates (1/2)
	Slide 37: The Solution Quality when VI Terminates (2/2)
	Slide 38: Policy Iteration
	Slide 39: Policy Iteration
	Slide 40: Generalized Policy Iteration
	Slide 41: Summary
	Slide 42: Performance Difference Lemma
	Slide 43: Recall: Regret
	Slide 44: Unanswered Questions
	Slide 45: Performance Difference Lemma
	Slide 46: Performance Difference Lemma
	Slide 47: Performance Difference Lemma (Fixed-Horizon)
	Slide 48: The Meaning of Performance Difference Lemma
	Slide 49
	Slide 50
	Slide 51: Proof (Sketch) of Performance Difference Lemma
	Slide 52
	Slide 53
	Slide 54: Unanswered Question 1
	Slide 55
	Slide 56: Unanswered Question 2
	Slide 57
	Slide 58: Recap: MDP
	Slide 59: Next

