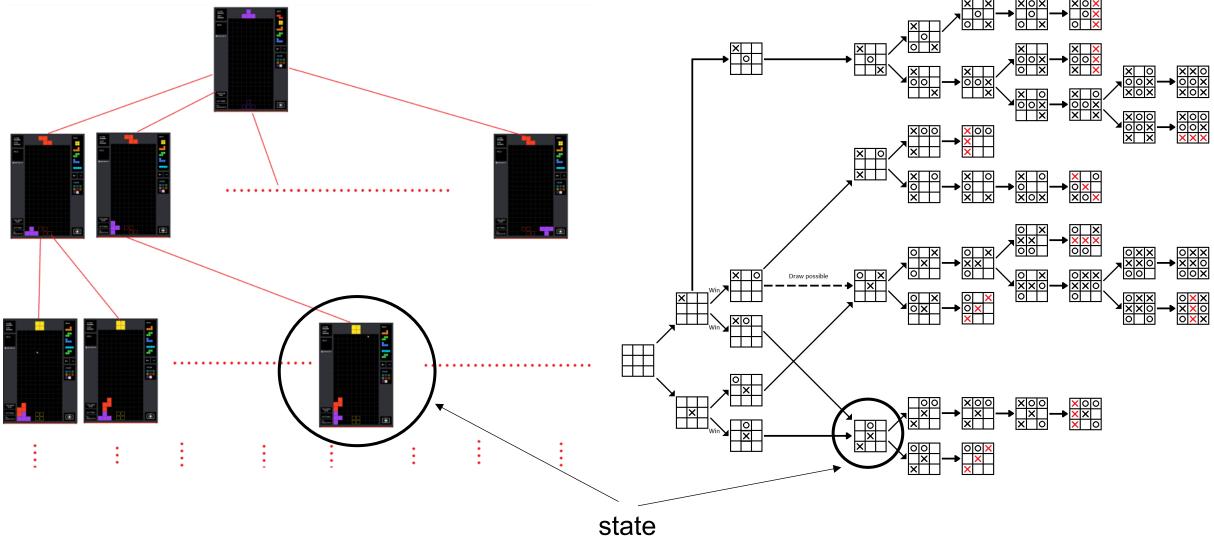
# **Markov Decision Processes**

Chen-Yu Wei



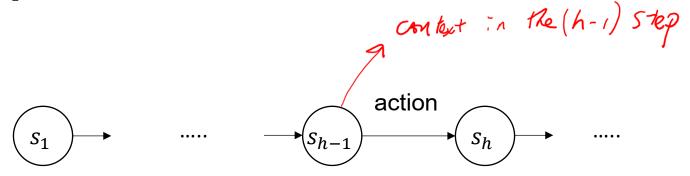
To win the game, the learner has to take a sequence of actions  $a_1 \to a_2 \to \cdots \to a_H$ . The effect of a particular action may not be revealed instantaneously.

- Some effect may be revealed instantaneously
- Some may be revealed later



(a summary of the current status in a multi-stage game)

- The number of possible combinations of actions grows exponentially with the length of the sequence.
- We would like to decompose the problem so that every single decision in the sequence is easy to make.
- State: a summary of the status of the world and the progress of the learner, so that all future decisions can only depend on the state and not on everything else.
  - Games (Go, Chess): To decide future moves, the player only need the current board configuration.
  - Robot navigation to a goal: only need the <u>current position</u> and not the exact path reaching the current position.
  - Inventory management: only need the <u>current inventory level</u>, and not the sequence of past sales.



Like a sequential contextual bandit problem – except that future contexts depends on the learner's past decisions.

## Interaction Protocol (Episodic Setting)

#### For **episode** t = 1, 2, ..., T:

 $h \leftarrow 1$ 

 $\checkmark$  Environment generates initial state  $s_{t,1}$ 

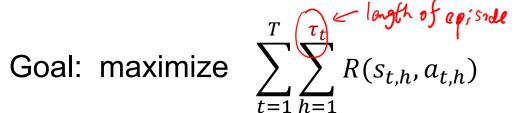
While episode *t* has not ended:

Learner chooses an action  $a_{t,h}$ 

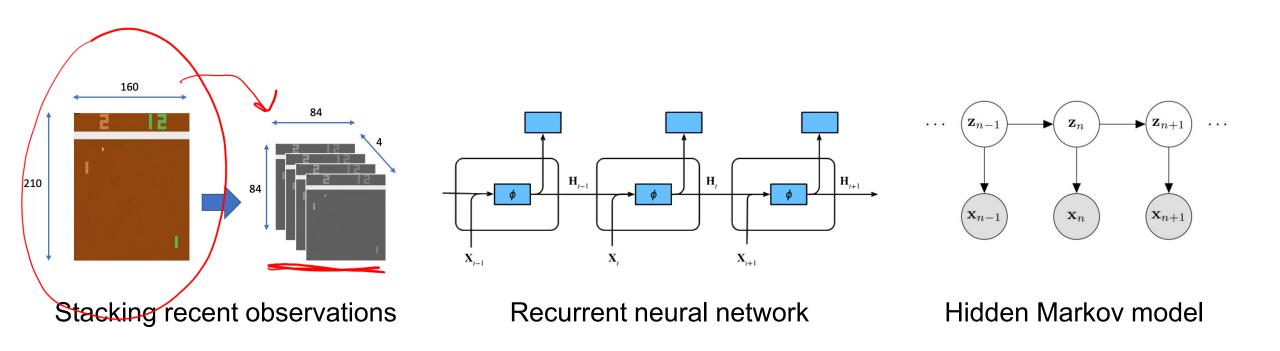
Learner observes instantaneous reward  $r_{t,h}$  with  $\mathbb{E}[r_{t,h}] = R(\underline{s_{t,h}}, \underline{a_{t,h}})$ Environment generates next state  $s_{t,h+1} \sim P(\cdot \mid s_{t,h}, a_{t,h})$ 

$$h \leftarrow h + 1$$

 $r_{t,h}$  and  $s_{t,h+1}$  are conditionally independent of  $(s_{t,1}, a_{t,1}, ..., s_{t,h-1}, a_{t,h-1})$  given  $s_{t,h}$ 



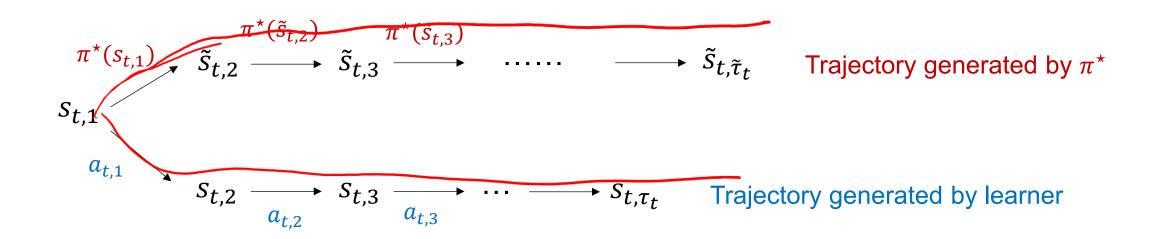
## From Observations to States



## Regret (Episodic Setting)

Policy: mapping from state to actual (action distribute)

Regret = 
$$\max_{\pi^*} \mathbb{E}^{\pi^*} \left[ \sum_{t=1}^{T} \sum_{h=1}^{\tilde{\tau}_t} R(\tilde{s}_{t,h}, \pi^*(\tilde{s}_{t,h})) \right] - \sum_{t=1}^{T} \sum_{h=1}^{\tilde{\tau}_t} R(s_{t,h}, a_{t,h}) \right]$$
Benchmark



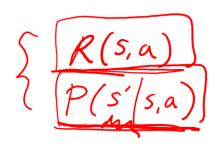
## **Example: Racing**

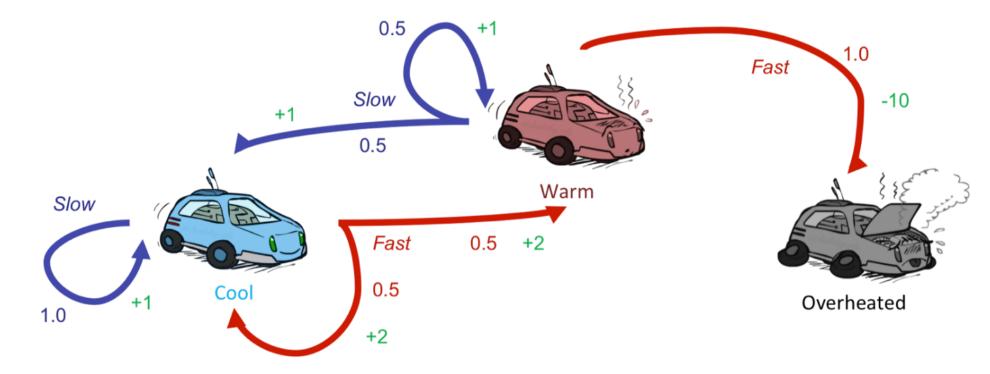
A robot car wants to travel far, quickly

• Three states: Cool, Warm, Overheated

Two actions: Slow, Fast

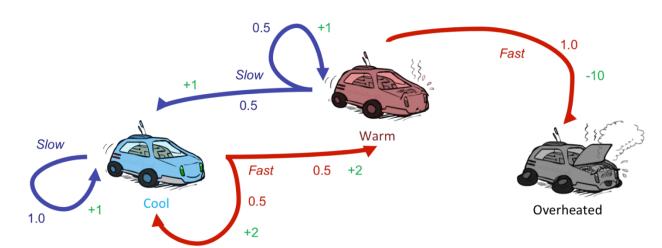
Going faster gets double reward





# **Example: Racing**

| S | a     | s' | P(s' s,a) | R(s,a) |
|---|-------|----|-----------|--------|
|   | Slow  |    | 1.0       | +1     |
|   | Fast  |    | 0.5       | +2     |
|   | Fast  |    | 0.5       | +2     |
|   | Slow  |    | 0.5       | +1     |
|   | Slow  |    | 0.5       | +1     |
|   | Fast  |    | 1.0       | -10    |
|   | (end) |    | 1.0       | 0      |



## **Formulations**

- Interaction Protocol
  - Fixed-Horizon
  - Variable-Horizon
- Performance Metric
  - Total Reward
  - Discounted Reward
- Policy
  - Markov policy
  - Stationary policy

Horizon = Length of an episode

## Interaction Protocols (1/2): Fixed-Horizon

Horizon length is a fixed number *H* 

```
h \leftarrow 1
```

Observe initial state  $s_1 \sim \rho$ 

#### While $h \leq H$ :

Choose action  $a_h$ 

Observe reward  $r_h$  with  $\mathbb{E}[r_h] = R(s_h, a_h)$ 

Observe next state  $s_{h+1} \sim P(\cdot | s_h, a_h)$ 

Examples: games with a fixed number of time

## Interaction Protocols (2/2): Variable-Horizon

The learner interacts with the environment until reaching **terminal states**  $\mathcal{T} \subset \mathcal{S}$ 

```
h \leftarrow 1
Observe initial state s_1 \sim \rho
While s_h \notin \mathcal{T}:
Choose action a_h
Observe reward r_h with \mathbb{E}[r_h] = R(s_h, a_h)
Observe next state s_{h+1} \sim P(\cdot | s_h, a_h)
h \leftarrow h + 1
```

**Examples:** video games, robotics tasks, personalized recommendations, etc.

## **Formulations**

- Interaction Protocol
  - Fixed-Horizon
  - Variable-Horizon
- Performance Metric
  - Total Reward
  - Discounted Reward
- Policy
  - Markov policy
  - Stationary policy

Horizon = Length of an episode

## **Performance Metric**

 $\tau$ : the step where the episode ends

**Total Reward:** 

$$\sum_{h=1}^{\tau} r_h$$

**Discounted Total Reward:** 

$$\sum_{k=1}^{\tau} \gamma^{h-1} r_h$$

 $\gamma \in [0,1)$ : discount factor

Due to discounting, the future reward starting from any state is always upper bounded by  $\frac{\text{range of }r}{1-\gamma}$ , even if the episode length is very very long.

Without discounting, the range of future reward could be unbounded → making it hard to optimize

There is a potential mismatch between our ultimate goal and what we really optimized.

## **Formulations**

- Interaction Protocol
  - Fixed-Horizon
  - Variable-Horizon
- Performance Metric
  - Total Reward
  - Discounted Reward
- Policy
  - Markov policy
  - Stationary policy

## Policy for MDPs

#### Markov Policy

$$a_h \sim \pi_h(\cdot \mid s_h)$$

$$a_h = \pi_h(s_h)$$

 $a_h = \pi_h(s_h)$  For **fixed-horizon** setting, there exists an optimal policy in this class

#### **Stationary Policy**

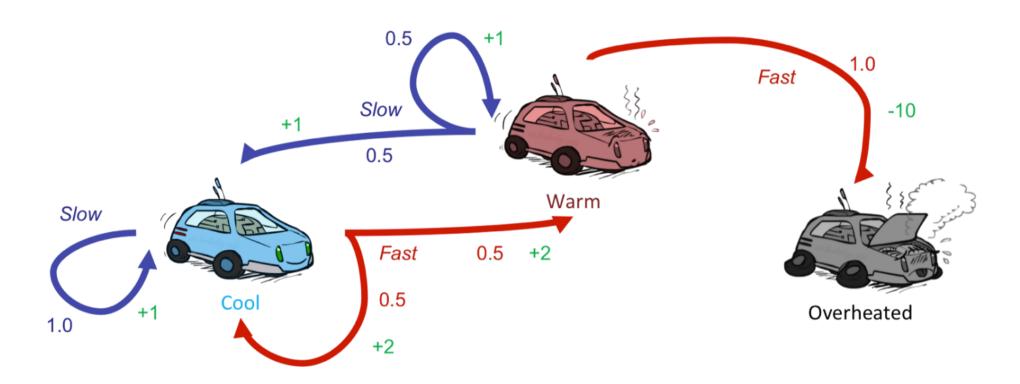
$$a_h \sim \pi(\cdot \mid s_h)$$
 $a_h = \pi(s_h)$ 

 $a_h = \pi(s_h)^n$  For infinite-horizon/goal-oriented settings, there exists an optimal policy in this class

Markov Policy = Stationary Policy where the state is augmented with **the timestep**.

# A stationary policy specifies $\pi(\operatorname{Slow} | \operatorname{Cool})$ $\pi(\operatorname{Fast} | \operatorname{Cool})$ $\pi(\operatorname{Slow} | \operatorname{Warm})$ $\pi(\operatorname{Fast} | \operatorname{Warm})$

```
A Markov policy specifies \pi_h(\operatorname{Slow} | \operatorname{Cool}) \pi_h(\operatorname{Fast} | \operatorname{Cool}) \pi_h(\operatorname{Slow} | \operatorname{Warm}) \pi_h(\operatorname{Fast} | \operatorname{Warm}) \forall h
```



## **Value Iteration**

(Fixed-Horizon + Total-Reward)

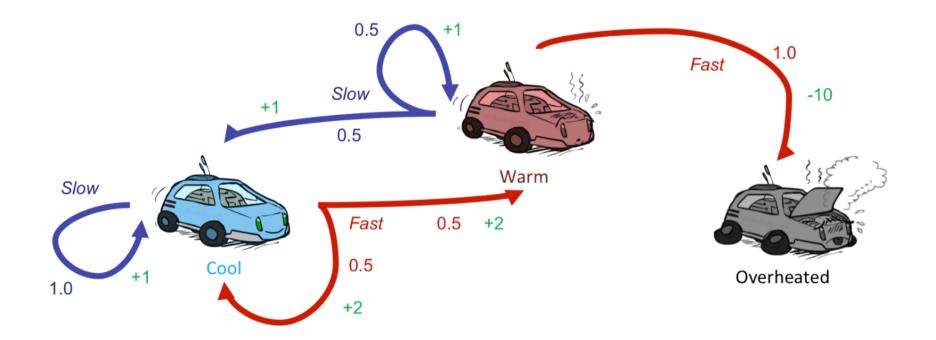
#### Two Tasks

Policy Evaluation: Calculate the expected total reward of a given policy

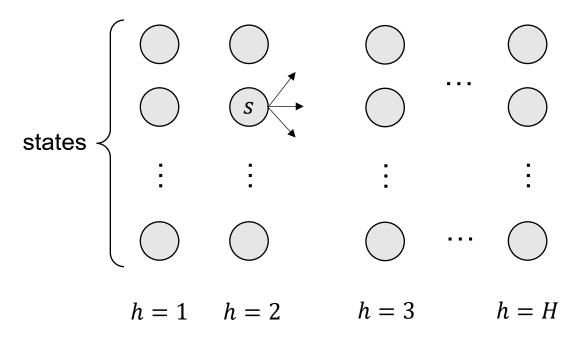
What is the expected total reward for the policy  $\pi(\text{cool}) = \text{fast}$ ,  $\pi(\text{warm}) = \text{slow}$ ?

Policy Optimization: Find the best policy

What is the policy that achieves the highest expected total reward?



## Value Iteration for Policy Evaluation



State transition: P(s'|s,a)

Reward: R(s, a)

$$Q_h^{\pi}(s,a) = \mathbb{E}^{\pi} \left[ \sum_{k=h}^{H} R(s_k, a_k) \mid (s_h, a_h) = (s, a) \right]$$

$$V_h^{\pi}(s) = \mathbb{E}^{\pi} \left[ \sum_{k=h}^{H} R(s_k, a_k) \middle| s_h = s \right]$$

#### **Backward induction:**

$$V_{H+1}^{\pi}(s) = 0 \qquad \forall s$$

For  $h = H, \dots 1$ : for all s, a

$$Q_h^{\pi}(s,a) = R(s,a) + \sum_{s'} P(s'|s,a) V_{h+1}^{\pi}(s')$$

Expected total reward of  $\pi$  from step h + 1

$$V_h^{\pi}(s) = \sum_a \pi_h(a|s) Q_h^{\pi}(s,a)$$

## **Bellman Equation**

 $Q_h^\pi$  is called "the state-action value functions of policy  $\pi$ "  $V_h^\pi$  is called "the state value function of policy  $\pi$ " Both can be just called "**value functions**"

$$Q_h^{\pi}(s,a) = R(s,a) + \sum_{s'} P(s'|s,a) V_{h+1}^{\pi}(s')$$

$$V_h^{\pi}(s) = \sum_{a} \pi_h(a|s) Q_h^{\pi}(s,a)$$

or

$$Q_h^{\pi}(s,a) = R(s,a) + \sum_{s',a'} P(s'|s,a) \, \pi_{h+1}(a'|s') Q_{h+1}^{\pi}(s',a')$$

or

$$V_h^{\pi}(s) = \sum_{a} \pi_h(a|s) \left( R(s,a) + \sum_{s'} P(s'|s,a) \, V_{h+1}^{\pi}(s') \right)$$

## The Meaning of Bellman Equations

#### **Definitions**

$$Q_h^{\pi}(s,a) \triangleq \mathbb{E}^{\pi} \left[ \sum_{k=h}^{H} R(s_k, a_k) \mid (s_h, a_h) = (s,a) \right]$$

$$Q_h^{\pi}(s,a) = R(s,a) + \sum_{s'} P(s'|s,a) V_{h+1}^{\pi}(s')$$

$$V_h^{\pi}(s) \triangleq \mathbb{E}^{\pi} \left[ \sum_{k=h}^{H} R(s_k, a_k) \mid s_h = s \right]$$

$$V_h^{\pi}(s) = \sum_{a} \pi_h(a|s) Q_h^{\pi}(s,a)$$

#### **Relations (Bellman Equations)**

$$Q_h^{\pi}(s,a) = R(s,a) + \sum_{s'} P(s'|s,a) V_{h+1}^{\pi}(s')$$

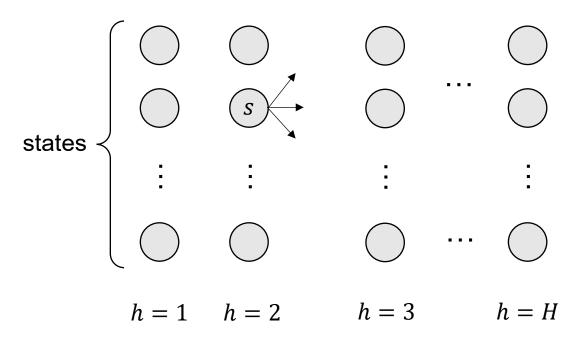
$$V_h^{\pi}(s) = \sum_a \pi_h(a|s) Q_h^{\pi}(s,a)$$

#### Calculation (VI)

Calculate  $Q_h^{\pi}(s,a), V_h^{\pi}(s) \forall s, a$ from h = H to h = 1

Based on Dynamic Programming

## Value Iteration for Policy Optimization



State transition: P(s'|s,a)

Reward: R(s, a)

$$Q_h^{\star}(s,a) = \max_{\pi \in \text{Markov Policy}} \mathbb{E}^{\pi} \left[ \sum_{k=h}^{H} R(s_k, a_k) \middle| (s_h, a_h) = (s, a) \right]$$

$$V_h^{\star}(s) = \max_{\pi \in \text{Markov Policy}} \mathbb{E}^{\pi} \left[ \sum_{k=h}^{H} R(s_k, a_k) \middle| s_h = s \right]$$

#### **Backward induction:**

$$V_{H+1}^{\star}(s) = 0 \quad \forall s$$

For 
$$h = H, \dots 1$$
: for all  $s, a$ 

$$Q_h^{\star}(s,a) = R(s,a) + \sum_{s'} P(s'|s,a) V_{h+1}^{\star}(s')$$

Expected optimal total reward from step h + 1

$$V_h^{\star}(s) = \max_{a} Q_h^{\star}(s, a)$$
  $\pi_h^{\star}(s) = \underset{a}{\operatorname{argmax}} Q_h^{\star}(s, a)$ 

## **Exercise**

| S | a     | s' | P(s' s,a) | R(s,a) |
|---|-------|----|-----------|--------|
|   | Slow  |    | 1.0       | +1     |
|   | Fast  |    | 0.5       | +2     |
|   | Fast  |    | 0.5       | +2     |
|   | Slow  |    | 0.5       | +1     |
|   | Slow  |    | 0.5       | +1     |
|   | Fast  |    | 1.0       | -10    |
|   | (end) |    | 1.0       | 0      |

Assume H = 3

```
Q_3^{\star}(\text{cool}, \text{slow})
Q_3^{\star}(\text{cool}, \text{fast})
Q_3^{\star}(warm, slow)
Q_3^{\star}(warm, fast)
 V_3^{\star}(s)
 V_3^{\star}(\text{cool})
 V_3^{\star}(warm)
 Q_2^{\star}(s,a)
 Q_2^{\star}(\text{cool},\text{slow})
 Q_2^{\star}(\text{cool}, \text{fast})
 Q_2^{\star}(\text{warm, slow})
 Q_2^{\star}(warm, fast)
 V_2^{\star}(s)
 V_2^{\star}(\text{cool})
 V_2^{\star}(warm)
```

 $Q_3^{\star}(s,a)$ 

## **Bellman Optimality Equation**

 $Q_h^{\star}$ : optimal state-action value functions

 $V_h^{\star}$ : optimal state value functions

or "optimal value functions"

$$Q_{h}^{\star}(s,a) = R(s,a) + \sum_{s'} P(s'|s,a) V_{h+1}^{\star}(s')$$
$$V_{h}^{\star}(s) = \max_{a} Q_{h}^{\star}(s,a)$$

or

$$Q_h^{\star}(s,a) = R(s,a) + \sum_{s'} P(s'|s,a) \left( \max_{a'} Q_{h+1}^{\star}(s',a') \right)$$

٥r

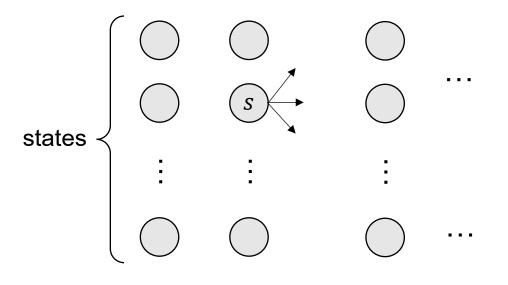
$$V_h^*(s) = \max_a \left( R(s, a) + \sum_{s'} P(s'|s, a) V_{h+1}^*(s') \right)$$

$$\pi_h^{\star}(s) = \underset{a}{\operatorname{argmax}} \ Q_h^{\star}(s, a)$$

## **Value Iteration**

(Variable-Horizon + Discounted Reward)

## Value Iteration for Policy Evaluation



State transition: P(s'|s,a)

h = 1 h = 2 h = 3

 $\gamma^2$ 

Reward: R(s, a)

weight

$$Q_i^{\pi}(s,a) = \mathbb{E}^{\pi} \left[ \sum_{h=1}^i \gamma^{h-1} R(s_h, a_h) \, \middle| \, (s_1, a_1) = (s, a) \right]$$

$$V_i^{\pi}(s) = \mathbb{E}^{\pi} \left[ \sum_{h=1}^i \gamma^{h-1} R(s_h, a_h) \middle| \quad s_1 = s \right]$$

$$Q^{\pi}(s,a) = Q^{\pi}_{\infty}(s,a) \qquad V^{\pi}(s) = V^{\pi}_{\infty}(s)$$

$$V_0^{\pi}(s) = 0 \quad \forall s$$

For i = 1, 2, 3, ... for all s, a

$$Q_i^{\pi}(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) V_{i-1}^{\pi}(s')$$

$$V_i^{\pi}(s) = \sum_{a} \pi(a|s) Q_i^{\pi}(s,a)$$

If  $|Q_i^{\pi}(s,a) - Q_{i-1}^{\pi}(s,a)| \le \epsilon$  for all s,a: **terminate** 

## **Bellman Equation**

$$Q^{\pi}(s, a) = R(s, a) + \gamma \sum_{s'} P(s'|s, a) V^{\pi}(s')$$

$$V^{\pi}(s) = \sum_{a} \pi(a|s)Q^{\pi}(s,a)$$

or

$$Q^{\pi}(s,a) = R(s,a) + \gamma \sum_{s',a'} P(s'|s,a) \, \pi(a'|s') Q^{\pi}(s',a')$$

or 
$$V^{\pi}(s) = \sum_{a} \pi(a|s) \left( R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^{\pi}(s') \right)$$

## The Meaning of Bellman Equations

#### **Definitions**

# $Q^{\pi}(s,a) = \mathbb{E}^{\pi} \left[ \sum_{h=1}^{\infty} \gamma^{h-1} R(s_h, a_h) \middle| (s_1, a_1) = (s, a) \right]$ $Q^{\pi}(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^{\pi}(s')$ $Q^{\pi}(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^{\pi}(s')$ $V^{\pi}(s) = \mathbb{E}^{\pi} \left[ \sum_{h=1}^{\infty} \gamma^{h-1} R(s_h, a_h) \middle| s_1 = s \right]$ $V^{\pi}(s) = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$ $V^{\pi}(s) = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$

#### Relations (Bellman Equations)

$$Q^{\pi}(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^{\pi}(s')$$

## Calculation (VI)

## The Quality of $Q_i^{\pi}(s, a)$ when VI Terminates

#### Unanswered questions:

- 1. Will VI (for policy evaluation) always terminate?
- 2. At termination, we know  $\max_{s,a} \left| Q_i^{\pi}(s,a) Q_{i-1}^{\pi}(s,a) \right| \leq \epsilon$ , but our goal is to approximate  $Q^{\pi}(s,a)$ .
  - What can we say about  $\max_{s,a} |Q_i^{\pi}(s,a) Q^{\pi}(s,a)|$ ?

## The Quality of $Q_i^{\pi}(s,a)$ when VI Terminates

Let  $f: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$  be any function. Define

BellmanError
$$(f) = \max_{s,a} \left| f(s,a) - \left( R(s,a) + \gamma \sum_{s',a'} P(s'|s,a) \pi(a'|s') f(s',a') \right) \right|$$

$$ValueError(f) = \max_{s,a} |f(s,a) - Q^{\pi}(s,a)|$$

#### **Theorem**

$$ValueError(f) \leq \frac{BellmanError(f)}{1 - \gamma}$$

With this theorem, we can argue the quality of  $Q_i^{\pi}(s, a)$  when VI terminates through the following:

- 1. Prove that when VI terminates, BellmanError( $Q_i^{\pi}$ )  $\leq \epsilon$
- 2. Using the theorem, we get ValueError $(Q_i^{\pi}) \leq \frac{\epsilon}{1-\gamma}$

## Value Iteration for Policy Optimization

State transition: P(s'|s,a)

h = 1 h = 2 h = 3

Reward: R(s, a)

weight

$$Q_{i}^{\star}(s, a) = \max_{\pi} \mathbb{E}^{\pi} \left[ \sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| (s_{0}, a_{0}) = (s, a) \right]$$

$$V_{i}^{\star}(s) = \max_{\pi} \mathbb{E}^{\pi} \left[ \sum_{h=1}^{i} \gamma^{h-1} R(s_{h}, a_{h}) \middle| s_{0} = s \right]$$

$$V_0^{\star}(s) = 0 \quad \forall s$$

For i = 1, 2, 3, ... for all s, a

 $Q^{\star}(s,a) = Q_{\infty}^{\star}(s,a)$   $V^{\star}(s) = V_{\infty}^{\star}(s)$ 

$$Q_i^{\star}(s, a) = R(s, a) + \gamma \sum_{s'} P(s'|s, a) V_{i-1}^{\star}(s')$$

$$V_i^{\star}(s) = \max_{a} Q_i^{\star}(s, a)$$

If 
$$|Q_i^*(s,a) - Q_{i-1}^*(s,a)| \le \epsilon$$
 for all  $s,a$ : **terminate**

## **Bellman Optimality Equation** $\pi^*(s) = \operatorname{argmax} Q^*(s, a)$

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} Q^*(s, a)$$

$$Q^*(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^*(s')$$
$$V^*(s) = \max_{a} Q^*(s,a)$$

$$Q^{*}(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q^{*}(s',a')$$

or 
$$V^*(s) = \max_{a} \left( R(s, a) + \gamma \sum_{s'} P(s'|s, a) V^*(s') \right)$$

## The Solution Quality when VI Terminates

#### Unanswered questions:

- 1. Will VI (for policy optimization) always terminate?
- 2. At termination, we know  $\max_{s,a} \left| Q_i^{\star}(s,a) Q_{i-1}^{\star}(s,a) \right| \leq \epsilon$ , What can we say about  $\max_{s,a} \left| Q_i^{\star}(s,a) Q^{\star}(s,a) \right|$ ?

And what can we say about the **performance of the greedy policy**  $\widehat{\pi}$ 

defined as 
$$\hat{\pi}(a|s) = \mathbb{I}\left[a = \underset{a'}{\operatorname{argmax}} Q_i^{\star}(s, a')\right]$$
? or simply  $\hat{\pi}(s) = \underset{a'}{\operatorname{argmax}} Q_i^{\star}(s, a')$ 

## The Solution Quality when VI Terminates (1/2)

Let  $f: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$  be **any** function. Define

BellmanError
$$(f) = \max_{s,a} \left| f(s,a) - \left( R(s,a) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} f(s',a') \right) \right|$$

$$ValueError(f) = \max_{s,a} |f(s,a) - Q^*(s,a)|$$

#### **Theorem**

$$ValueError(f) \leq \frac{BellmanError(f)}{1 - \nu}$$

## The Solution Quality when VI Terminates (2/2)

Let  $f: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$  be **any** function. Define

$$\pi_f(s) = \operatorname*{argmax}_a f(s, a)$$

#### **Theorem**

$$V^{\star}(\rho) - V^{\pi_f}(\rho) \le \frac{2}{1 - \gamma} \text{ ValueError}(f)$$

# **Policy Iteration**

### **Policy Iteration**

#### **Policy Iteration**

For 
$$i = 1, 2, ...$$

$$\forall s, \qquad \pi_i(s) \leftarrow \operatorname*{argmax}_a Q^{\pi_{i-1}}(s, a)$$

Theorem (monotonic improvement). Policy Iteration ensures

$$\forall s, a, \qquad Q^{\pi_i}(s, a) \ge Q^{\pi_{i-1}}(s, a)$$

When converged (i.e.,  $\pi_i = \pi_{i-1}$ ), we have  $\pi_i = \pi^*$ .

(We will prove this later.)

## **Generalized Policy Iteration**

 $N = \infty \Rightarrow \text{Policy Iteration}$ 

 $N = 1 \Rightarrow$  Value Iteration for policy optimization

For 
$$i=1,2,...$$
 
$$\pi_i(s) = \max_a Q_i(s,a) \qquad \qquad \text{Policy update}$$
 
$$Q \leftarrow Q_i$$
 Repeat for  $N$  times: 
$$Q(s,a) \leftarrow R(s,a) + \gamma \sum_{s',a'} P(s'|s,a) \, \pi_i(a'|s') \, Q(s',a') \qquad \qquad \text{Value update}$$
 
$$Q_{i+1} \leftarrow Q$$

**Notice:** in value iteration for PO, there may not exist a policy  $\pi$  such that  $Q_i = Q^{\pi}$  In contrast, in policy iteration we have  $Q_i = Q^{\pi_{i-1}}$ 

VI for PO can be viewed as PI with incomplete policy evaluation

### **Summary**

- Value Iteration for Policy Optimization (VI for PO)
  - Is essentially a **dynamic programming** algorithm
  - Finds the value functions of the optimal policy
- Value Iteration for Policy Evaluation (VI for PE)
  - Also a dynamic programming algorithm
  - Finds the value functions of the given policy
- Policy Iteration (PI)
  - An iterative policy improvement algorithm
  - Each iteration involves a policy evaluation subtask
- VI for PO and PI can be viewed as special cases of Generalized PI

## **Performance Difference Lemma**

## Recall: Regret

Regret = 
$$\max_{\pi^*} \mathbb{E}^{\pi^*} \left[ \sum_{t=1}^{T} \sum_{h=1}^{\tilde{\tau}_t} R(\tilde{s}_{t,h}, \pi^*(\tilde{s}_{t,h})) \right] - \sum_{t=1}^{T} \sum_{h=1}^{\tilde{\tau}_t} R(s_{t,h}, a_{t,h}) \right]$$

$$\mathbb{E}[\text{Regret}] = \mathbb{E}\left[\sum_{t=1}^{T} \left(V_1^{\star}(s_{t,1}) - V_1^{\pi_t}(s_{t,1})\right)\right]$$

$$= \mathbb{E}\left[\sum_{t=1}^{T} \left(V_1^{\star}(\rho) - V_1^{\pi_t}(\rho)\right)\right]$$

$$V_1^{\pi}(\rho) \triangleq \mathbb{E}_{s \sim \rho}[V_1^{\pi}(s)]$$

### **Unanswered Questions**

• For an estimation  $\hat{Q}(s, a) \approx Q^*(s, a)$  with error, how can we bound

$$V^{\star}(\rho) - V^{\widehat{\pi}}(\rho)$$
 where  $\widehat{\pi}(s) = \underset{a}{\operatorname{argmax}} \widehat{Q}(s, a)$ ?

- How to show that Policy Iteration leads to monotonic policy improvement?
- Also, how are these methods related to the third challenge of online RL: credit assignment?

#### **Performance Difference Lemma**

For any two stationary policies  $\pi'$  and  $\pi$  in the discounted setting,

$$\mathbb{E}_{s \sim \rho} \left[ V^{\pi'}(s) \right] - \mathbb{E}_{s \sim \rho} \left[ V^{\pi}(s) \right] = \sum_{s, a} d_{\rho}^{\pi'}(s) \left( \pi'(a|s) - \pi(a|s) \right) Q^{\pi}(s, a)$$

$$= \sum_{s, a} d_{\rho}^{\pi'}(s, a) \left( Q^{\pi}(s, a) - V^{\pi}(s) \right)$$

$$d_{\rho}^{\pi}(s) \triangleq \mathbb{E}^{\pi} \left[ \sum_{h=1}^{\infty} \gamma^{h-1} \mathbb{I}\{s_{h} = s\} \mid s_{1} \sim \rho \right]$$
 Discounted occupancy measure on state  $s$ 

$$d_{\rho}^{\pi}(s,a) \triangleq \mathbb{E}^{\pi} \left[ \sum_{h=1}^{\infty} \gamma^{h-1} \mathbb{I}\{(s_h,a_h) = (s,a)\} \middle| s_1 \sim \rho \right]$$

#### Performance Difference Lemma

We can also swap the roles of  $\pi'$  and  $\pi$  and apply the same lemma

$$\mathbb{E}_{s \sim \rho}[V^{\pi}(s)] - \mathbb{E}_{s \sim \rho}[V^{\pi'}(s)] = \sum_{s,a} d^{\pi}_{\rho}(s) \left(\pi(a|s) - \pi'(a|s)\right) Q^{\pi'}(s,a)$$

$$\stackrel{\times (-1)}{\Rightarrow} \mathbb{E}_{s \sim \rho} \left[ V^{\pi'}(s) \right] - \mathbb{E}_{s \sim \rho} \left[ V^{\pi}(s) \right] = \sum_{s,a} d^{\pi}_{\rho}(s) \left( \pi'(a|s) - \pi(a|s) \right) Q^{\pi'}(s,a)$$

Original version:

$$\mathbb{E}_{s \sim \rho} \left[ V^{\pi'}(s) \right] - \mathbb{E}_{s \sim \rho} \left[ V^{\pi}(s) \right] = \sum_{s, a} d_{\rho}^{\pi'}(s) \left( \pi'(a|s) - \pi(a|s) \right) Q^{\pi}(s, a)$$

П

### Performance Difference Lemma (Fixed-Horizon)

For any two Markov policies  $\pi'$  and  $\pi$  in the fixed-horizon setting,

$$\mathbb{E}_{s_1 \sim \rho} \left[ V_1^{\pi'}(s_1) \right] - \mathbb{E}_{s_1 \sim \rho} \left[ V_1^{\pi}(s_1) \right] = \sum_{h=1}^{H} \sum_{s,a} d_{\rho,h}^{\pi'}(s) \left( \pi'_h(a|s) - \pi_h(a|s) \right) Q_h^{\pi}(s,a)$$

$$= \sum_{h=1}^{H} \sum_{s,a} d_{\rho,h}^{\pi'}(s,a) \left( Q_h^{\pi}(s,a) - V_h^{\pi}(s) \right)$$

$$d_{\rho,h}^{\pi}(s) \triangleq \mathbb{E}^{\pi}[\mathbb{I}\{s_{h} = s\} \mid s_{1} \sim \rho] = \mathbb{P}^{\pi}(s_{h} = s \mid s_{1} \sim \rho)$$

$$d_{\rho,h}^{\pi}(s,a) \triangleq \mathbb{E}^{\pi}[\mathbb{I}\{(s_{h},a_{h}) = (s,a)\} \mid s_{1} \sim \rho] = \mathbb{P}^{\pi}((s_{h},a_{h}) = (s,a) \mid s_{1} \sim \rho)$$

### The Meaning of Performance Difference Lemma

It tells us how credit are assigned to each state/step

The sub-optimality of a policy  $\pi$ :

$$\mathbb{E}_{s\sim\rho}[V^{\star}(s)] - \mathbb{E}_{s\sim\rho}[V^{\pi}(s)]$$

If  $\pi$  is highly sub-optimal, then we can always find

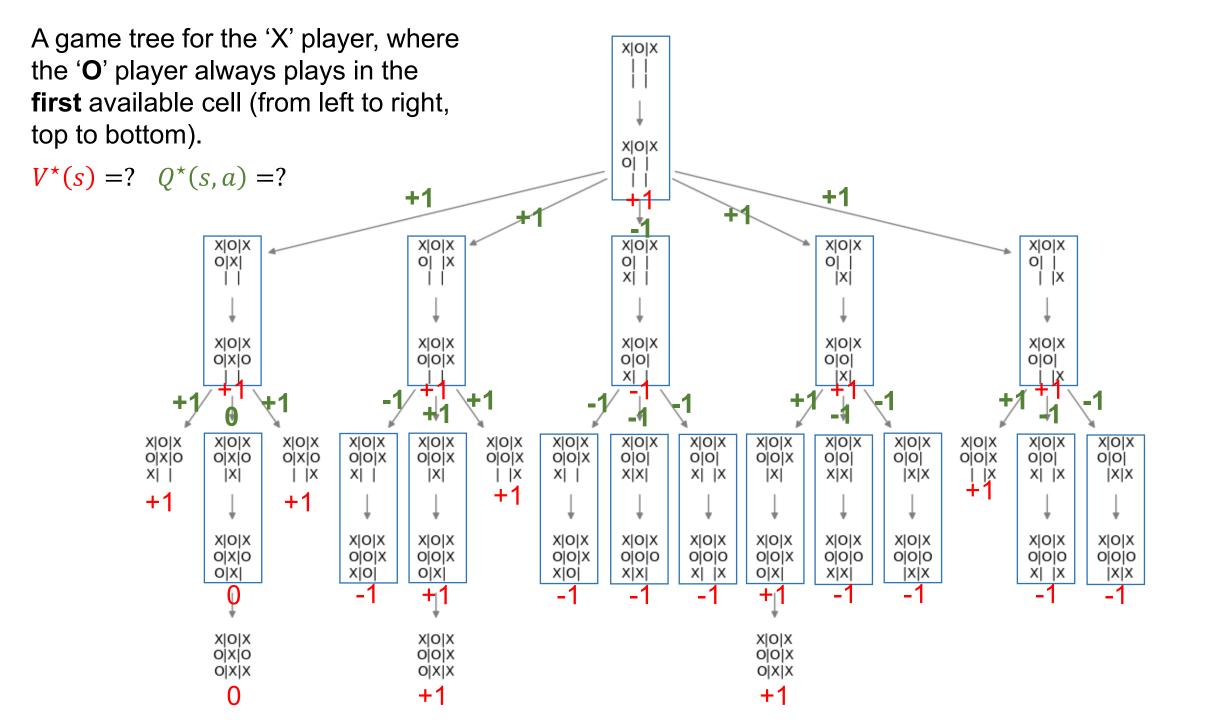
- 1) An (s, a)-pair on the path of  $\pi$  such that  $V^*(s) Q^*(s, a)$  is positive and large
- 2) An (s, a)-pair on the path of  $\pi^*$  such that  $Q^{\pi}(s, a) V^{\pi}(s)$  is positive and large

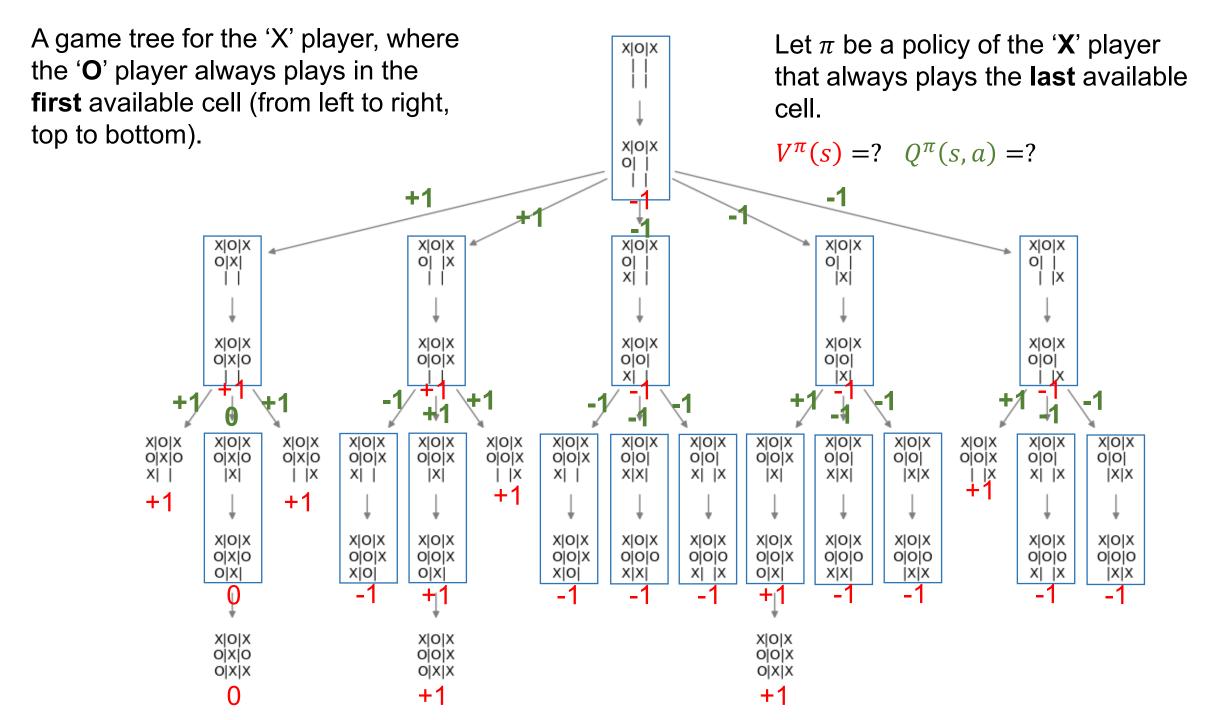
$$= \sum_{s,a} d_{\rho}^{\pi}(s) \left(\pi^{*}(a|s) - \pi(a|s)\right) Q^{\pi^{*}}(s,a)$$

$$= \sum_{s,a} d_{\rho}^{\pi}(s,a) \left(V^{*}(s) - Q^{*}(s,a)\right)$$

$$= \sum_{s,a} d_{\rho}^{\pi^{*}}(s) \left(\pi^{*}(a|s) - \pi(a|s)\right) Q^{\pi}(s,a)$$

$$= \sum_{s,a} d_{\rho}^{\pi^{*}}(s,a) \left(Q^{\pi}(s,a) - V^{\pi}(s)\right)$$





### **Proof (Sketch) of Performance Difference Lemma**

### **Unanswered Question 1**

#### Suboptimality $\leq (1 - \gamma)^{-1}$ Value Error

Let  $f: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$  be any function

lf

$$|f(s,a) - Q^*(s,a)| \le \epsilon \quad \forall s, a$$

then

$$V^*(s) - V^{\pi_f}(s) \le \frac{2\epsilon}{1 - \gamma} \quad \forall s$$

where  $\pi_f(s) = \underset{a}{\operatorname{argmax}} f(s, a)$ 

### **Unanswered Question 2**

Policy Iteration ensures

$$\forall s, a, \qquad Q^{\pi_i}(s, a) \ge Q^{\pi_{i-1}}(s, a)$$

When converged (i.e.,  $\pi_i = \pi_{i-1}$ ), we have  $\pi_i = \pi^*$ .

$$\pi_{i} = \pi_{i-1}$$

$$\Rightarrow \pi_i(s) = \operatorname*{argmax}_{a} Q^{\pi_i}(s, a)$$

$$\Rightarrow Q^{\pi_i}(s, a) = R(s, a) + \gamma \sum_{s', a'} P(s'|s, a) \pi_i(a'|s') Q^{\pi_i}(s', a') = R(s, a) + \gamma \sum_{s'} P(s'|s, a) \max_{a'} Q^{\pi_i}(s', a')$$

- $\Rightarrow Q^{\pi_i}$  satisfies the Bellman optimality equation
- $\Rightarrow$  BellmanError $(Q^{\pi_i}) = 0$

$$\Rightarrow Q^{\pi_i}(s,a) = Q^{\star}(s,a)$$
 by the "ValueError  $\leq \frac{1}{1-\gamma}$  BellmanError" lemma on Page 38

$$\Rightarrow \pi_i(s) = \operatorname*{argmax}_a Q^*(s, a) = \pi^*(s).$$

### Recap: MDP

- Definitions of  $Q^{\pi}(s,a), V^{\pi}(s), Q^{\star}(s,a), V^{\star}(s)$
- Bellman equations (related to dynamic programming)
- Value Iteration to approximate  $Q^{\pi}(s,a)/V^{\pi}(s)$  or  $Q^{\star}(s,a)/V^{\star}(s)$
- Policy Iteration to find  $\pi^*$  --- involving  $Q^{\pi}(s,a)/V^{\pi}(s)$  approximation
- Unified by Generalized Policy Iteration
- Performance difference lemma to decompose  $\mathbb{E}_{s \sim \rho} \left[ V^{\pi'}(s) \right] \mathbb{E}_{s \sim \rho} \left[ V^{\pi}(s) \right]$ 
  - Credit assignment
  - =  $\sum_{s,a} d_{\rho}^{\pi}(s,a) \left( V^{\pi'}(s) Q^{\pi'}(s,a) \right)$  (helpful in analyzing VI by letting  $\pi' = \pi^*$ )
  - =  $\sum_{s,a} d_{\rho}^{\pi'}(s,a) \left(Q^{\pi}(s,a) V^{\pi}(s)\right)$  (helpful in analyzing PI by letting  $\pi' = \pi_{i+1}$ )

#### **Next**

- Our discussion indicates there are two potential ways to find optimal policy
  - Value-Iteration-based: approximate  $\hat{Q}(s, a) \approx Q^*(s, a)$  and let  $\hat{\pi}(s) = \underset{a}{\operatorname{argmax}} \hat{Q}(s, a)$
  - Policy-Iteration-based: approximate  $\hat{Q}(s,a) \approx Q^{\pi}(s,a)$  and let  $\hat{\pi}(s) = \operatorname*{argmax}_{a} \hat{Q}(s,a)$
  - ... or something in between (based on generalized policy iteration)
- RL algorithms we will discuss:
  - Performing approximate VI or PI using samples