Markov Decision Processes
Chen-Yu Wei

Sequence of Actions

MARIO
000000 %00

W T | | |
A_| f = - H{_

To win the game, the learner has to take a sequence of actions a; —» a, —» - = ay.
The effect of a particular action may not be revealed instantaneously.
e Some effect may be revealed instantaneously

e Some may be revealed later

Sequence of Actions

v
[¢]
v
[¢]

ol X

‘

X [Draw possible o] X

O e

0 o[
ol |—»[o o[x
X X X
0
X SMES
olo[x olo[x
X x/OX X| X
o[o olo[x
X\&x 0 X[[0
olo[x olo[X
X S
0 X[o]o
X
X
X X X X
)) —»|0 o[X
X S X[o[X X[o[X
o[X o[X
XX XXX
ox/OO 0|0
X X%
o) \yo X O[X[X
X[X|O X[X|O
<) o] X [e) [e)
o[x O[X
X
0 oo o X[o]o
X X[|—»[X X[X
X 0 %] 1o
0 O[X
X X

state
(a summary of the current status in a multi-stage game)

N\

2

X |© X|X|O
OJo|X OJo|X
X|o|X X|o|X
oo oo
O|o|X O|0|X
X XX
X|X X|X
X|X|O X|X|O
(8] OfX
OIX|X OIX|X
X|X|O X|X|O
o] o OIX|X

Sequence of Actions

e The number of possible combinations of actions grows exponentially with the length of
the sequence.

e \We would like to decompose the problem so that every single decision in the sequence is
easy to make.

e State: a summary of the status of the world and the progress of the learner, so that
all future decisions can only depend on the state and not on everything else.
e Games (Go, Chess): To decide future moves, the player only need the current board configuration.

e Robot navigation to a goal: only need the current position and not the exact path reaching the
current position.

e Inventory management: only need the current inventory level, and not the sequence of past sales.

Sequence of Actions
C et MQ(/I'I) 5_76]9

@

Like a sequential contextual bandit problem — except that
future contexts depends on the learner’s past decisions.

Interaction Protocol (Episodic Setting)

Forepisodet=1,2,...,T:

h<1)sz' T,

(/Environment generates initial stat@

While episode t has not ended:
Learner chooses an action a, j,

Learner observes instantaneous

Environment generates next stat
h<h+1

Markov assumption: .

OT\\S 1,at,1, ""St,h—ll at,h_

itionally independent
given s, p,

re arith [E[rt,h] = R(S¢,n At.n)

P(-| St,hs at,h)

o loafh of episrde

T
Goal: maximize Z R(sen,aep)
t=1 h=1

From Observations to States

xH— I

ackingrecent observations Recurrent neural network Hidden Markov model

Regret (Episodic Settin Policy - mappig Foom Shete po_acins
gret (Ep 9) Poliy - mepry)

T %] T 7t
Regret = may E" > D RGwm G| =)) R(semaen)
t=1h=1 | t=1 h=1
\ Y,
Y
Benchmark

B—

~

...... — Stz, Trajectory generated by n*

St2 — = St;3 LT T St T, Trajectory generated by learner
At 2 t,3

Example: Racing

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated
Two actions: Slow, Fast

Going faster gets double reward

Overheated

Example: Racing

S a s' P(s'|s,a) |R(s,a)
Slow 1.0 +1
Fast 0.5 +2
Fast 0.5 +2
Slow 0.5 +1
0.5 +1
Fast 10
Slow 0.5 +1 Som 0
0.5
Fast 1.0 -10 .
7 ’5 (end) 10 O Fast 05 +2
h 0-5 Overheafed

+2

Formulations

e Interaction Protocol
e Fixed-Horizon
e Variable-Horizon

Horizon = Length of an episode

Interaction Protocols (1/2): Fixed-Horizon

Horizon length is a fixed number H

h <1

Observe initial state s; ~ p

While h < H:
Choose action qa;,
Observe reward r;, with E[r;,] = R(s3, ap)
Observe next state s, ~ P(: |sp, ay)

Examples: games with a fixed number of time

Interaction Protocols (2/2): Variable-Horizon

The learner interacts with the environment until reaching terminal states 7 c §

h <1

Observe initial state s; ~ p

While s, € T':
Choose action qa;,
Observe reward r;, with E[r;,] = R(s3, ap)
Observe next state s, ~ P(: |sp, ay)
h—h+1

Examples: video games, robotics tasks, personalized recommendations, etc.

Formulations

e Performance Metric
e Jotal Reward
e Discounted Reward

Horizon = Length of an episode

Performance Metric

7. the step where the episode ends

Total Reward: T
h=1
T
Discounted Total Reward: Z Y1, y € [0,1): discount factor
h=1

Due to discounting, the future reward starting from any state is always upper bounded by ran?iayof s

even if the episode length is very very long.

Without discounting, the range of future reward could be unbounded - making it hard to optimize

There is a potential mismatch between our ultimate goal and what we really optimized.

Formulations

e Policy
e Markov policy
e Stationary policy

Policy for MDPs

Markov Policy

ap ~ wr(- | Sp)

a, = 1m,(sp) For fixed-horizon setting, there exists an

optimal policy in this class

Stationary Policy

ap ~ (| sp)

a = mw(sy) For infinite-horizon/goal-oriented settings,

there exists an optimal policy in this class

Markov Policy = Stationary Policy where the state is augmented with the timestep.

A stationary policy specifies
m(Slow | Cool)

m(Fast | Cool)

m(Slow | Warm)

m(Fast | Warm)

A Markov policy specifies
1y, (Slow | Cool)

my (Fast | Cool)

my, (Slow | Warm)

my (Fast | Warm)

Vh

Overheated

Value Iteration
(Fixed-Horizon + Total-Reward)

Two Tasks

- Policy Evaluation: Calculate the expected total reward of a given policy

What is the expected total reward for the policy m(cool) = fast, m(warm) = slow?
Policy Optimization: Find the best policy

What is the policy that achieves the highest expected total reward?

Overheated

Value lteration for Policy Evaluation

states <

O
e
.

State transition: P(s’|s,a)
Reward: R(s,a)

>
|
S

Qr(s,a) = E”

H
z R(sg,ay)
k=h

H
Vi (s) = E" [Z R(sk, ax)
k=nh

(Sh; ah) = (S' a)‘

Shzs“

Backward induction:
Viie1(s) =0 Vs
Forh=H,..1: for all s, a

0F(5,0) = R(5,@) +) P(s'l5,0) V5 (5)

\ J
Y

Expected total reward
of m from step h + 1

ViE(s) =) mn(als) QF (s, @)

a

Qr is called “the state-action value functions of policy r”

Be"man Equation Vit is called “the state value function of policy r”

Both can be just called “value functions”

0F(5,0) = R(5,0) +) P(s'ls,) Vi1 (5)

Vi) =) malal $)0F (s, @)

a

or | Qi@ =R(5,a)+) P(s'ls,0) Mper (@150 (5", @)
s',a'

or Vit(s) = 2 my(al s)| R(s,a) + 2 P(s'|s,a) Vit 1 (s)

a

The Meaning of Bellman Equations

Definitions Relations (Bellman Equations) Calculation (VI)

Calculate

Qr(s,a), Vi (s) Vs,a
fromh=Htoh=1

H
0F(5,0) £ E7 [Z R a) | Gnan) = G, a)] 05 (5,0) = R(5,@) +) P(s'l5,@) Vit (5)
k=h S/

Sp = S‘ Vi'(s) = Z mp(al $)Qp (s, a)

a

H
Vit(s) £ E™ lz R(sy, ax)
k=h

N
Based on Dynamic Programming

Value Iteration for Policy Optimization

* _ T
s,a) = max E
Qh() me Markov Policy

H
z R(sy, ax)
k=h

(sn,an) = (s, a)‘

O O O O S
@é) = e maltponiey ® | £, R @) =‘
states < Q Q Q "
: : : Backward induction:
V5.1() =0 |/
O O O O i ’

Forh=H,..1: forall s,a

Q5@ = R(s,@)+) P(s'ls, @) Vi1 (5)

\ J
Y

State transition: P(s’|s, a) Expected optimal total
Reward: R(s,a) reward from step h + 1

Vi(s) = max Qr(s,a) mp(s) = argmax Q;(s,a)

Q3(s, a)

= Q3 (cool, slow
Exercise s()
Q3 (cool, fast)
S a S P(s'ls,a) | R(s,a) Q3 (warm, slow)
Q3 (warm, fast)
Slow 1.0 +1 |
V3(s)
Fast 0.5 +2 V3*(Cool)
Fast 0.5 42 V5 (warm)
Slow 0.5 +1 Q3 (s, a)
Q- (cool, slow)
Slow 0.5 +1 0% (cool, fast)
Fast 1.0 -10 Q2 (warm, slow)
Q; (warm, fast)
7| (end) 1.0 o | e
; V3 (s)
V> (cool)
Assume H = 3 *

Qy, : optimal state-action value functions

Bellman Optlmahty Equation V- optimal state value functions

or “optimal value functions”

0i(5,@) = R(5,@) +) P(s'l5,@) Vi1 (5)

Vi (s) = max Qx(s, a)

or | Q5@ =R +) P('ls) (max Qi (s, @)

or Vi (s) = max| R(s,a) + 2 P(s'|s,a) Vy11(s")
a
Sl

m;(s) = argmax Qj (s, @)
a

Value lteration
(Variable-Horizon + Discounted Reward)

Value Iteration for Policy Evaluation

states <

State transition: P(s’|s,a)
Reward: R(s,a)

l
0f (s, @) = E™ | > ¥ R(sy, an)
h=1

Vi'(s) = E" yh-

Q"(s,a) = Qx(s,a)

(Slial) = (S' a)‘

51=S]

V(s) =V ()

1R(Shr ah)

Vgi(s) =0 Vs
Fori=1,2,3,..

forall s,a

Q(s,a) = R(s,a) -I-]/ZP(S |s,a) V2, (s")

Vis) =) m(als) QF (s, @)

a

If |QZT(Si a) —

Q™ .(s,a)| < eforall s,a: terminate

Bellman Equation

0™(s,a) = R(s,a) +)/2 P(s'|s,a) V™ (s")

Vi(s) =) n(al)Q"(s,)

a

or Q™(s,a) = R(s,a) +vy 2 P(s'|s,a) w(a’|s")Q™(s’,a")

or Ve(s) = 2 m(al s) (R(S, a) + yE P(s'|s,a) V”(S’))

a

The Meaning of Bellman Equations

Definitions Relations (Bellman Equations) Calculation (VI)

co

Q" (s,a) = E* lz Y 1R(sp, an)

h=1

(s1,a1) = (s, a)‘ Q"(s,a) = R(s,a) + Vz P(s'|s,a)V™(s) | Calculate

s’ Qi (s,a),V{"(s) ¥s,a
fori=1,2,..
until terminated

(00]

V™(s) = B lz Y"1R (s, an)

h=1 a

S S‘ V(s) =) n(al $)07(s,0)

The Quality of Q' (s, a) when VI Terminates

Unanswered questions:

1. WIll VI (for policy evaluation) always terminate?

2. At termination, we know max |QF(s,a) — Q™. (s, a)| <€,
S,a
but our goal is to approximate Q™ (s, a).

What can we say about max |Q7 (s, a) — Q™ (s, a)|?
s,a

The Quality of Q' (s, a) when VI Terminates

Let f: S XA — R be any function. Define

BellmanError(f) = max f(s,a) —| R(s,a) +vy z P(s'|s,a)m(a’|s")f(s', a)

ValueError(f) = rglzglxlf(s, a) —Q™(s,a)|

With this theorem, we can argue the quality of Q' (s, a)

Theorem when VI terminates through the following:

BellmanError(f)
1-vy

ValueError(f) < 1. Prove that when VI terminates, BellmanError(Q[") < €

2. Using the theorem, we get ValueError(Q[) < TEY

Value Iteration for Policy Optimization

states <

State transition: P(s’|s,a)
Reward: R(s,a)

(S0, ag) = (s, a)‘

SOZS“

Q*(s,a) = Qx(s,a) V*(s) = Ve (s)

i
0; (s,@) = max B™ | > y"'R(sy,)
h=1

Vi (s) = max E7 | >y R (s, ap)
VIA

Vg(s) =0 Vs

Fori=1,2,3,.. foralls, a
Q;(s,a) = R(s,a) + yz P(s'|s,a) V_{(s")
S/
V7 (s) = max Q} (s, a)
a

If |Qf(s,a) — Q/_,(s,a)| < eforall s,a: terminate

Bellman Optimality Equation =*(s) = argmax Q*(s,a)

Q*(s,a) = R(s,a) + yz: P(s'|s,a) V*(s")

V*(s) = max Q*(s,a)

or Q*(s,a) = R(s,a) +yZP(s’|s, a) max Q*(s',a")

or V*(s) = max (R(S, a)+vy 2 P(s'|s,a) V*(S’))

The Solution Quality when VI Terminates

Unanswered questions:

1. WIll VI (for policy optimization) always terminate?
2. At termination, we know max Q7 (s,a) — Q/_1(s,)| < €,
What can we say about max 1@ (s,a) — Q*(s,a)|?
And what can we say about the performance of the greedy policy 7

defined as 7t(als) =1 [a = argmax Q; (s, a’)]? or simply 7(s) = argmax Q}(s,a’)
a’ a’

The Solution Quality when VI Terminates (1/2)

Let f: S XA — R be any function. Define

BellmanError(f) = max
S,a

f(s,a) — (R(S, a) + yz P(s'|s,a) max f(s’,a’)>

ValueError(f) = rglzcllxlf(s, a) —Q*(s,a)]

Theorem

BellmanError(f)

ValueError(f) <

11—y

The Solution Quality when VI Terminates (2/2)

Let f: S XA — R be any function. Define

m¢(s) = argmax f (s, a)

Theorem

V*(p) — V¥ (p) < 7 2 ValueError(f)

Policy lteration

Policy Iteration

Policy Iteration
Fori=1, 2, ..

Vs, m;(s) <« argmax Q™i-1(s,a)
a

Theorem (monotonic improvement). Policy lteration ensures
Vs,a, Q"i(s,a) = Q"1(s,a)

When converged (i.e., m; = m;_4), we have m; = ™.

(We will prove this later.)

N = oo = Policy Iteration

Generalized Policy Iteration

N = 1 = Value Iteration for policy optimization

Fori=1,2,..

m;(s) = max Q;(s,a) «<— Policy update

Q < Q;

Repeat for N times:

Q(s,a) <« R(s,a) +y z P(s'ls,a) m;(a'ls)Q(s",a’) <[| Value update
sl a'

|

Qi+1 < 0Q

Notice: in value iteration for PO, there may not exist a policy = such that Q; = Q™
In contrast, in policy iteration we have Q; = Q™i-1
VI for PO can be viewed as Pl with incomplete policy evaluation

Summary

Value lteration for Policy Optimization (VI for PO)
e |s essentially a dynamic programming algorithm
e Finds the value functions of the optimal policy

Value lteration for Policy Evaluation (VI for PE)
e Also a dynamic programming algorithm
e Finds the value functions of the given policy

Policy lteration (Pl)
e An iterative policy improvement algorithm
e Each iteration involves a policy evaluation subtask

VI for PO and Pl can be viewed as special cases of Generalized PI

Performance Difference Lemma

Recall: Regret

T

- :
Regret = max E™ z Z IHEI A ETY)
t=1

E[Regret] = E

Tt

h=1

o _
Z(V1*(St,1) — V1nt(5t,1))
t=1 |

> (7 () = 1 (0)
t=1 |

Tt

T
=)) RGsemacn)
t=1h=1

Vi*(p) 2 Es-p[VI* (s)]

Unanswered Questions

e For an estimation Q(s,a) =~ Q*(s, a) with error, how can we bound

V*(p) — V¥ (p) where #(s) = argmax Q (s, a)?

a

e How to show that Policy Iteration leads to monotonic policy improvement?

e Also, how are these methods related to the third challenge of online RL.:
credit assignment?

Performance Difference Lemma

For any two stationary policies ' and m in the discounted setting,

Esp [V ()] = Bep V()] =) dF'(5) (' (als) - m(al$))Q" (s, @)

= > d7'(5,0) (Q"(s5,0) = V™ (s))

dj(s) £ E”

dj(s,a) £ E”

00)

|h=1

Y {sp =5} | s~ p

00)

Y {(sn, an) = (s, @)}

h=1

Discounted occupancy measure on state s

Performance Difference Lemma

We can also swap the roles of ' and m and apply the same lemma

Esp [V ()] = Esop [V7'(5)] = Zd%) (n(als) - 7' (al$))Q™ (s,)
X (—1)
= Eoep [V7(9)] = Eep V()] =) dZ(s) (' (als) - m(als))Q™ (s,)

Original version:

Esp [V7'(5)] = Beep V()] =) dF () (' (als) — m(al$))Q" (5, @)

Performance Difference Lemma (Fixed-Horizon)

For any two Markov policies 7' and r in the fixed-horizon setting,

By, -p [V (50)] = By p VI (51)] = sz 1) (mh(als) — my(al)) QF (s,)

1sa

Z D dz(5,@) (QF (5, @) — Vi (s))

=1 s,a

A%, (s) & E7[I{sy = s} |51 ~ p] = P"(s, = 5| 51 ~ p)

dg,h(s» Cl) = [En[]l{(sh' ah) — (S' a)} | S1 ™~ ,0] — Pn((ShJ ah) — (S! Cl) | S1 ™~ ,0)

The Meaning of Performance Difference Lemma

It tells us how credit are assigned to each state/step
The sub-optimality of a policy :

Es~p [V*(S)] —]Es~p [VH(S)] = Z dg(S) (T[*(CllS) — T[(CllS))Qn*(S, Cl)
s,a
If is highly sub-optimal, then we can always
in =))V - sa)
1) An (s,a)-pair on the path of = such that S,a
V*(s) — Q*(s,a) is positive and large - . ~
2) An (s,a)-pair on the path of ©* such that - Z dp (s) (7‘[(als) - n(als))Q (s,a)
Q™(s,a) — V™(s) is positive and large S,a

=) 5 (50 Q@) ~ V()

A game tree for the ‘X’ player, where
the ‘O’ player always plays in the
first available cell (from left to right,

top to bottom).

V*(s) =? 0Q*(s,a) =?

X|0|X
OX|
| |

!

X|0|X
o|x|o
| J

xjo|x [xjo|x
ojxjo | ojxjo
X[1 IX|

+1 |

X|0|X
o|x|o
O[X]|

y

X|0|X
o|x|o
o] X|X

+g X

X|0|X
o|x|o
| 1X

+1

+1

X|0|X
o] |X
| |

!

X|0|X
oo
'

o

X|0|X
0|0

X|0|X
o|o|x
IX|

!

X|0|X
oo
O[X]|

+l1

X|0|X
o|o|x
o] X|X

+1

X|0|X
0|0
| 1X

+1

X|0|X
|
|
L
X|0|X
o] |
|
X|0|X X|0|X
ol | o] |
X |X]
] |
X|0|X X|0|X
00| 00|
K| J |XI|
¥ 4\ ¥ g X
Xjolx | [Xjojx | [Xjojx | [Xjojx | [Xjox | [xjox
ojo|x | | olo] olo] || olojx | | olo] olo|
i 1| xixi | x| x|] i
| l ! l | |
xjox | | xjoix | | xjo1x | | xjoix | | xjox | | xjolx
ojojx | | olojo | | ojojo | | ojojx | | ojojo | | ojojo
xiol | | xixi || xx||ox || xx IX|X
e I =
X|0|X
0/0|X
o|X|x

+1

X|0|X
o|o|x

L]

X|O|X
0|0|
v
X|O|X X|O|X
elle] 0|0
XX | %X
X|O|X X|O|X
o|ojo o|ojo
XX | %X

A game tree for the ‘X’ player, where
the ‘O’ player always plays in the
first available cell (from left to right,
top to bottom).

+1
1
o
-
XoX | ., — X|O|X
o|x| o] |x
I |
X|0|X X|0|X
o|x|o 00X
H !
+J/ é \t1 -}/ 1 &‘1
Xjox [xjox | xox [xox | [xolx
ojxjo |olxjo | ojxjo | olojx || oo|x
X| | IX] EER IX]
+1 | | +1 | |
X|0|X xjo|x | | xjo|x
o|x|o olo|x | | oJo|x
o|x| X|O| o|x
q') -1 +l1
X|0|X X|0|X
o|x|o 00X
O] X|X O] X|X
0 +1

—'-'-'-'_-
—'-'-'-'_
—'-'-'-'_
—'-'-'-'

X|0|X
0|0
| 1X

+1

X|O]X Let © be a policy of the ‘X’ player
| that always plays the last available
| cell.

ST V@ = s =2

= 1 -H--x"--,____h:_jx
Y —

X|O|X X|O|X T, | X|o|x

of | of | of |

X| | I | [x

X|O]X X|O]X X|0|X

o][e] o][e] elle]

xul IP‘Ui | Jix

/e +1 +1 7, \-

Y 4 74 AN
X|O]X xjo|x | [xjo|x | [xjo[x X[O]X xjo|x | xjo|x [XO|x X[O]X
olojx | | 0]oj 0|0| olojx | | o]oj 0|0| olojx | 0]oj 0|0|
XIL | [oxixt || x| || xixi XX [x| x| | X

1 I I R
X|O]X Xjo|x | | xjo|x | | xjo|x X|O]X X|O]X X|O]X X|O]X
olojx | | ojojo | | olojo | | ojojx | | ojojo | | o]ojo olojo | | ojojo
X|0| X|X| x| X || olx] X|X| [X]% X| | [X]%
-1 -1 1 +l1 -1 -1 -1 -1

X|O]X
0|o|x
0| x|

+1

Proof (Sketch) of Performance Difference Lemma

Unanswered Question 1

Suboptimality < (1 — y)~! Value Error
Let f: § X A — R be any function

If
If(s,a) —Q*(s,a)| <€ Vs,a

then

2€
V*(s) =V (s) < T—> Vs

— 1=V

where m¢(s) = argmax f (s, a)
a

Unanswered Question 2

Policy Iteration ensures
Vs,a, Q"i(s,a) = Q™-1(s,a)

When converged (i.e., m; = m;_,), we have m; = n™.

T = Ti—1

= m;(s) = argmax Q™ (s, a)

a
= Q"(s,a) = R(s,a) +7 Y P(s']s,a)mi(a'|s) QT (', ') = R(s,a) +7 3 P(s'|s,a) max Q" (s', a’)
al
s’.a’ s’
= ()™ satisfies the Bellman optimality equation
= BellmanError(Q™) = 0

1
= Q" (s,a) = Q" (s, a) by the “ValueError < 1~ BellmanError” lemma on Page 38
-

= m;(s) = argmax Q™ (s,a) = 7*(s).

Recap: MDP

Definitions of Q" (s,a),V"™(s),Q*(s,a),V*(s)

Bellman equations (related to dynamic programming)

Value lteration to approximate Q™ (s,a)/V™(s) or Q*(s,a)/V*(s)
Policy Iteration to find =* --- involving Q™ (s, a) /V™(s) approximation
Unified by Generalized Policy Iteration

Performance difference lemma to decompose E;.., [V”' (s)] — Egp[VT(s)]

e Credit assignment
o =Y,qad;(s,a) (V”' (s) — Q™ (s, a)) (helpful in analyzing VI by letting n’ = n™*)
o =Y ,d¥ (s,a) (Q"(s,a) — V™(s)) (helpful in analyzing Pl by letting 7' = ;1)

Next

e Our discussion indicates there are two potential ways to find optimal policy

e Value-lteration-based: approximate Q(s,a) =~ Q*(s,a) and let (s) = argmax Q(s, a)
a

e Policy-lteration-based: approximate Q(s,a) =~ Q™(s,a) and let #(s) = argmax Q(s, a)
a

e ... or something in between (based on generalized policy iteration)

e RL algorithms we will discuss:
e Performing approximate VI or Pl using samples

	Slide 1: Markov Decision Processes
	Slide 2: Sequence of Actions
	Slide 3: Sequence of Actions
	Slide 4: Sequence of Actions
	Slide 5: Sequence of Actions
	Slide 6: Interaction Protocol (Episodic Setting)
	Slide 7: From Observations to States
	Slide 8: Regret (Episodic Setting)
	Slide 9: Example: Racing
	Slide 10: Example: Racing
	Slide 11: Formulations
	Slide 12: Interaction Protocols (1/2): Fixed-Horizon
	Slide 13: Interaction Protocols (2/2): Variable-Horizon
	Slide 14: Formulations
	Slide 15: Performance Metric
	Slide 16: Formulations
	Slide 17: Policy for MDPs
	Slide 18
	Slide 19: Value Iteration (Fixed-Horizon + Total-Reward)
	Slide 20: Two Tasks
	Slide 21: Value Iteration for Policy Evaluation
	Slide 22: Bellman Equation
	Slide 23: The Meaning of Bellman Equations
	Slide 24: Value Iteration for Policy Optimization
	Slide 25: Exercise
	Slide 26: Bellman Optimality Equation
	Slide 27: Value Iteration (Variable-Horizon + Discounted Reward)
	Slide 28: Value Iteration for Policy Evaluation
	Slide 29: Bellman Equation
	Slide 30: The Meaning of Bellman Equations
	Slide 31: The Quality of cap Q sub i. to the pi , open paren s ,a. close paren when VI Terminates
	Slide 32: The Quality of cap Q sub i. to the pi , open paren s ,a. close paren when VI Terminates
	Slide 33: Value Iteration for Policy Optimization
	Slide 34: Bellman Optimality Equation
	Slide 35: The Solution Quality when VI Terminates
	Slide 36: The Solution Quality when VI Terminates (1/2)
	Slide 37: The Solution Quality when VI Terminates (2/2)
	Slide 38: Policy Iteration
	Slide 39: Policy Iteration
	Slide 40: Generalized Policy Iteration
	Slide 41: Summary
	Slide 42: Performance Difference Lemma
	Slide 43: Recall: Regret
	Slide 44: Unanswered Questions
	Slide 45: Performance Difference Lemma
	Slide 46: Performance Difference Lemma
	Slide 47: Performance Difference Lemma (Fixed-Horizon)
	Slide 48: The Meaning of Performance Difference Lemma
	Slide 49
	Slide 50
	Slide 51: Proof (Sketch) of Performance Difference Lemma
	Slide 52
	Slide 53
	Slide 54: Unanswered Question 1
	Slide 55
	Slide 56: Unanswered Question 2
	Slide 57
	Slide 58: Recap: MDP
	Slide 59: Next

