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Recap: Model-Free RL
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Recap: Generalized Policy lteration with Samples

Fork =1, 2, .. -
Fori=1,2,..,N:

Choose action a; with the current policy

: Data collection
Receive reward r; ~ R(s;, a;) and si’ ~ P(-|s;,a;) |

si+1 = S; if episode continues, s;;; ~ p if episode ends
Push (s;,a;,1;,5;) to B

Draw (s,a,r,s") from B, and use them to update policy/value

Policy / val dat
Empty B if under on-policy training olicy / value update




When Is Model-Based Method Helpful?

e Model (transition) is easy to learn
e Deterministic transition could be easier to learn to stochastic one
e System identification: known parameterized model with unknown parameters

e Model is known
e The space/action space is too large for full policy/value iteration (Go, Chess)



Model-Based RL
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Model-Based RL
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Comparison between training methods
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Model-Based RL

Two ways to use the simulator / world model / model:

Any model-free algorithm: \ = / \ @ /

T

Model-assisted model-free learning Planning with a model




1. Model-Assisted Model-Free Learning (Dyna-style)

Fork =1, 2,..
Fori=1,2, .., N: @
Choose action a; with the current policy m;,
Receive reward r; ~ R(s;,a;) and s; ~ P(: |s;, a;)
si+1 = S; if episode continues, s;,; ~ p if episode ends
Push (Mto B

Update model P, R with data in B

Repeat several times:
Sample (s,a) ~ B, or sample s ~ B and a ~ m; (- |s) or uniform
Letr ~ R(s,a) and s’ ~ P(- |s,a)
Update policy / value with sample (s,a,r,s")

Data collection

Model update

Policy / value
update

Lecture 12, Deep Reinforcement Learning by Sergey Levine



https://rail.eecs.berkeley.edu/deeprlcourse-fa23/deeprlcourse-fa23/static/slides/lec-12.pdf

1. Model-Assisted Model-Free Learning (Dyna-style)

Why still sample s from the buffer? Why not generate s randomly or generate it

from the trained model? @ -
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1. Model-Assisted Model-Free Learning (Dyna-style)

Some Dyna-style algorithms:

Gu et al., Continuous deep Q-Learning with model-based acceleration, 2016. (MBA)

Feinberg et al., Model-based value expansion, 2018. (MVE)
Janner et al., When to trust your model: model-based policy optimization. 2019. (MBPO)

The performance of MB-RL is heavily influenced by how to represent and train P
efficiently, while making it predictive and scalable:

Hafner et al., Mastering Diverse Domains through World Models. 2023. (DreamerV3)



https://arxiv.org/pdf/1603.00748
https://arxiv.org/pdf/1603.00748
https://arxiv.org/pdf/1603.00748
https://arxiv.org/pdf/1603.00748
https://arxiv.org/pdf/1603.00748
https://arxiv.org/pdf/1803.00101
https://arxiv.org/pdf/1803.00101
https://arxiv.org/pdf/1803.00101
https://arxiv.org/pdf/1906.08253
https://arxiv.org/pdf/1906.08253
https://arxiv.org/pdf/1906.08253
https://arxiv.org/pdf/2301.04104

2. Planning with A Model

If we have a model / simulator, how to decide the next action without having a
trained policy / value network?

Exact / closed-form solution: finite-state-finite-action, linear system
L DR
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2. Planning with A Model

If we have a model / simulator, how to decide the next action without having a
trained policy / value network?

Search (for large state space without structure):
“Create the policy on the fly”: decidem only when reaching s

N—_—

This is often used when we want to enhance a default policy on the fly.




Monte-Carlo Tree Search (MCTS) 7t Go

Repeat while time remains
Selection —— Expansion —— Simulation —— Backup J



Monte-Carlo Tree Search (MCTS)

Selection

e Starting from the root node, execute tree
policy until reaching a leaf node

e One effective tree policy is given by
UCB1, which chooses an action based
on

W(n) log N(parent(n))
oN CLL&

W (n): total #wins of all playouts that went through node n
N(n): total #playouts that went through node n




Monte-Carlo Tree Search (MCTS) @

Expand

e On some iterations, grow the search tree from @ @ @
selected leaf nodes by adding one or more

child nodes



Monte-Carlo Tree Search (MCTS)

Simulation

e From the selected or expanded node (if
any), execute the rollout policy to the
end of the game

e Rollout policy

e Could be heuristics, such as “consider
capture moves” in chess

e Could be learned through neural networks
by self-play

Execute rollout policy
ole fault

Black wins



Monte-Carlo Tree Search (MCTS)

O
Backup
e Update the #wins and #playouts on nodes @ @
along the tree policy ,.
~
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Monte-Carlo Tree Search (MCTS)

Finally,
e Choose the action from the root node that has the largest visit count.

e After the opponent’s move, start the same procedure from the new state
(can keep the statistics from the previous state)



2. Planning with A Model

If we have a model / simulator, how to decide the next action without having a
trained policy / value network?

Search (for large state space without structure):
“Create the policy on the fly”: decide (- |s) only when reaching s

This is often used when we want to enhance a default policy on the fly.

Plan for multiple steps, but execute only the first step.
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Uncertainty in Model-Based RL



Model Error / Failure of Generalization

As the model is learned with only finite samples, they could have large errors in

uncovered areas.
pIQ N TS
7 /!

We can encounter the same issue in off-policy methods like DQN, DDPG.

&(i:: ) : “ ) ‘ very tempting/’to go here.|.
% 11~

Solution: train 2 target networks and avoid the
max operator to exploit the error of a single network
a




Ensemble Models
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Chua et al. Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models. 2018.
Buckman et al. Sample-Efficient Reinforcement Learning with Stochastic Ensemble Value Expansion. 2018.



Bayesian Neural Network

expected weight uncertainty of the weight

\ L

Common approximation: p(0) = np(Hi) where p(6;) = N (y;, 0;)

Blundell et al., Weight Uncertainty in Neural Networks. 2015.
Gal et al., Concrete Dropout. 2017.



Aleatoric and Epistemic Uncertainty

e Aleatoric uncertainty

e Comes from inherent randomness or noise in the data (e.g., sensor noise, coin flips)
e Irreducible — cannot be removed even with more data

e Epistemic uncertainty
e Comes from lack of data or limited model capacity
e Reducible — can shrink with more data or better models

The “model uncertainty” here refers to Epistemic uncertainty.
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