
Model-Based RL
Chen-Yu Wei

Recap: Model-Free RL

Value Update Policy Update× 𝑁

𝑄 ← 𝒯𝜋𝑄 𝜋(𝑠) ← argmax𝑎 𝑄(𝑠, 𝑎)

𝑄 ← 𝒯𝜋𝑄 means 𝑄(𝑠, 𝑎) ← 𝑅 𝑠, 𝑎 + 𝛾 ෍

𝑠′,𝑎′

𝑃 𝑠′ 𝑠, 𝑎 𝜋 𝑎′ 𝑠′ 𝑄 𝑠′, 𝑎′ for all 𝑠, 𝑎

Recap: Generalized Policy Iteration with Samples

For 𝑘 = 1, 2, …

Draw (𝑠, 𝑎, 𝑟, 𝑠′) from ℬ, and use them to update policy/value

Empty ℬ if under on-policy training
Policy / value update

For 𝑖 = 1, 2, … , 𝑁:

Choose action 𝑎𝑖 with the current policy

Receive reward 𝑟𝑖 ∼ 𝑅(𝑠𝑖 , 𝑎𝑖) and 𝑠𝑖
′ ∼ 𝑃(⋅ |𝑠𝑖 , 𝑎𝑖)

𝑠𝑖+1 = 𝑠𝑖
′ if episode continues, 𝑠𝑖+1 ∼ 𝜌 if episode ends

Data collection

Push (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖
′) to ℬ

When Is Model-Based Method Helpful?

● Model (transition) is easy to learn

● Deterministic transition could be easier to learn to stochastic one

● System identification: known parameterized model with unknown parameters

● Model is known

● The space/action space is too large for full policy/value iteration (Go, Chess)

Model-Based RL

action

feedback

Model-Based RL

action

feedback

simulator / world model

Comparison between training methods

Replay buffer

(𝑠, 𝑎, 𝑟, 𝑠′)

෠𝑃, ෠𝑅

Model-free On-policy Model-free Off-policy Model-based

Model-Based RL

Two ways to use the simulator / world model / model:

෠𝑃, ෠𝑅

Any model-free algorithm: 𝜋

෠𝑃, ෠𝑅

𝑄

Model-assisted model-free learning Planning with a model

1. Model-Assisted Model-Free Learning (Dyna-style)

For 𝑘 = 1, 2, …

Update model ෠𝑃, ෠𝑅 with data in ℬ Model update

For 𝑖 = 1, 2, … , 𝑁:

Choose action 𝑎𝑖 with the current policy 𝜋𝑘

Receive reward 𝑟𝑖 ∼ 𝑅(𝑠𝑖 , 𝑎𝑖) and 𝑠𝑖
′ ∼ 𝑃(⋅ |𝑠𝑖 , 𝑎𝑖)

𝑠𝑖+1 = 𝑠𝑖
′ if episode continues, 𝑠𝑖+1 ∼ 𝜌 if episode ends

Data collection

Push (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖
′) to ℬ

Repeat several times:

Sample 𝑠, 𝑎 ∼ ℬ, or sample 𝑠 ∼ ℬ and 𝑎 ∼ 𝜋𝑘(⋅ |𝑠) or uniform

Let 𝑟 ∼ ෠𝑅(𝑠, 𝑎) and 𝑠′ ∼ ෠𝑃(⋅ |𝑠, 𝑎)

Update policy / value with sample (𝑠, 𝑎, 𝑟, 𝑠′)

Policy / value
update

Lecture 12, Deep Reinforcement Learning by Sergey Levine

https://rail.eecs.berkeley.edu/deeprlcourse-fa23/deeprlcourse-fa23/static/slides/lec-12.pdf

1. Model-Assisted Model-Free Learning (Dyna-style)

Why still sample 𝑠 from the buffer? Why not generate 𝑠 randomly or generate it

from the trained model?

1. Model-Assisted Model-Free Learning (Dyna-style)

Some Dyna-style algorithms:

Gu et al., Continuous deep Q-Learning with model-based acceleration, 2016. (MBA)

Feinberg et al., Model-based value expansion, 2018. (MVE)

Janner et al., When to trust your model: model-based policy optimization. 2019. (MBPO)

Mastering Diverse Domains through World Models

The performance of MB-RL is heavily influenced by how to represent and train ෠𝑃

efficiently, while making it predictive and scalable:

Hafner et al., Mastering Diverse Domains through World Models. 2023. (DreamerV3)

https://arxiv.org/pdf/1603.00748
https://arxiv.org/pdf/1603.00748
https://arxiv.org/pdf/1603.00748
https://arxiv.org/pdf/1603.00748
https://arxiv.org/pdf/1603.00748
https://arxiv.org/pdf/1803.00101
https://arxiv.org/pdf/1803.00101
https://arxiv.org/pdf/1803.00101
https://arxiv.org/pdf/1906.08253
https://arxiv.org/pdf/1906.08253
https://arxiv.org/pdf/1906.08253
https://arxiv.org/pdf/2301.04104

2. Planning with A Model

If we have a model / simulator, how to decide the next action without having a

trained policy / value network?

෠𝑃, ෠𝑅

Exact / closed-form solution: finite-state-finite-action, linear system

2. Planning with A Model

If we have a model / simulator, how to decide the next action without having a

trained policy / value network?

෠𝑃, ෠𝑅

Search (for large state space without structure):

“Create the policy on the fly”: decide 𝜋(⋅ |𝑠) only when reaching 𝑠

This is often used when we want to enhance a default policy on the fly.

Monte-Carlo Tree Search (MCTS)

Monte-Carlo Tree Search (MCTS)

Selection

● Starting from the root node, execute tree
policy until reaching a leaf node

● One effective tree policy is given by
UCB1, which chooses an action based
on

𝑊(𝑛)

𝑁(𝑛)
+ 𝐶 ×

log 𝑁(parent(𝑛))

𝑁(𝑛)

37/100

60/79 1/10 2/11

16/53 6/6 3/4

10/18 0/3 0/3

3/26

27/35

𝑊(𝑛): total #wins of all playouts that went through node 𝑛
𝑁(𝑛): total #playouts that went through node 𝑛

Monte-Carlo Tree Search (MCTS)

Expand

● On some iterations, grow the search tree from
selected leaf nodes by adding one or more
child nodes

37/100

60/79 1/10 2/11

16/53 6/6 3/4

10/18 0/3 0/3

3/26

27/35

0/0

Monte-Carlo Tree Search (MCTS)

Simulation

● From the selected or expanded node (if
any), execute the rollout policy to the
end of the game

● Rollout policy

● Could be heuristics, such as “consider
capture moves” in chess

● Could be learned through neural networks
by self-play

37/100

60/79 1/10 2/11

16/53 6/6 3/4

10/18 0/3 0/3

3/26

27/35

0/0

Black wins

Execute rollout policy

Monte-Carlo Tree Search (MCTS)

Backup

● Update the #wins and #playouts on nodes
along the tree policy

37/101

61/80 1/10 2/11

16/54 6/6 3/4

10/18 0/3 0/3

3/26

28/36

0/1

Monte-Carlo Tree Search (MCTS)

Finally,

● Choose the action from the root node that has the largest visit count.

● After the opponent’s move, start the same procedure from the new state
(can keep the statistics from the previous state)

2. Planning with A Model

If we have a model / simulator, how to decide the next action without having a

trained policy / value network?

෠𝑃, ෠𝑅

Search (for large state space without structure):

“Create the policy on the fly”: decide 𝜋(⋅ |𝑠) only when reaching 𝑠

This is often used when we want to enhance a default policy on the fly.

Plan for multiple steps, but execute only the first step.

Uncertainty in Model-Based RL

Model Error / Failure of Generalization

As the model is learned with only finite samples, they could have large errors in

uncovered areas.

We can encounter the same issue in off-policy methods like DQN, DDPG.

Solution: train 2 target networks and avoid the

max
𝑎

 operator to exploit the error of a single network

Ensemble Models

𝑃𝜃1
(𝑠′|𝑠, 𝑎) 𝑃𝜃2

(𝑠′|𝑠, 𝑎) 𝑃𝜃3
(𝑠′|𝑠, 𝑎) 𝑃𝜃4

(𝑠′|𝑠, 𝑎)

𝑃 𝑠′ 𝑠, 𝑎 ≈
1

𝑁
 ෍

𝑖=1

𝑁

𝑃𝜃𝑖
(𝑠′|𝑠, 𝑎)

Chua et al. Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models. 2018.

Buckman et al. Sample-Efficient Reinforcement Learning with Stochastic Ensemble Value Expansion. 2018.

Bayesian Neural Network

Common approximation: 𝑝 𝜃 = ෑ

𝑖

𝑝(𝜃𝑖) where 𝑝 𝜃𝑖 = 𝒩(𝜇𝑖 , 𝜎𝑖)

expected weight uncertainty of the weight

Blundell et al., Weight Uncertainty in Neural Networks. 2015.

Gal et al., Concrete Dropout. 2017.

Aleatoric and Epistemic Uncertainty

● Aleatoric uncertainty

● Comes from inherent randomness or noise in the data (e.g., sensor noise, coin flips)

● Irreducible — cannot be removed even with more data

● Epistemic uncertainty

● Comes from lack of data or limited model capacity

● Reducible — can shrink with more data or better models

The “model uncertainty” here refers to Epistemic uncertainty.

	Slide 1: Model-Based RL
	Slide 2: Recap: Model-Free RL
	Slide 3: Recap: Generalized Policy Iteration with Samples
	Slide 4: When Is Model-Based Method Helpful?
	Slide 5: Model-Based RL
	Slide 6: Model-Based RL
	Slide 7: Comparison between training methods
	Slide 8: Model-Based RL
	Slide 9: 1. Model-Assisted Model-Free Learning (Dyna-style)
	Slide 10: 1. Model-Assisted Model-Free Learning (Dyna-style)
	Slide 11: 1. Model-Assisted Model-Free Learning (Dyna-style)
	Slide 12: 2. Planning with A Model
	Slide 13: 2. Planning with A Model
	Slide 14: Monte-Carlo Tree Search (MCTS)
	Slide 15: Monte-Carlo Tree Search (MCTS)
	Slide 16: Monte-Carlo Tree Search (MCTS)
	Slide 17: Monte-Carlo Tree Search (MCTS)
	Slide 18: Monte-Carlo Tree Search (MCTS)
	Slide 19: Monte-Carlo Tree Search (MCTS)
	Slide 20: 2. Planning with A Model
	Slide 21
	Slide 22: Uncertainty in Model-Based RL
	Slide 23: Model Error / Failure of Generalization
	Slide 24: Ensemble Models
	Slide 25: Bayesian Neural Network
	Slide 26: Aleatoric and Epistemic Uncertainty

