Model-Based RL

Chen-Yu Wei

Recap: Model-Free RL



$$Q \leftarrow \mathcal{T}^{\pi}Q$$
 means $Q(s,a) \leftarrow R(s,a) + \gamma \sum_{s',a'} P(s'|s,a) \pi(a'|s') Q(s',a')$ for all s,a

Recap: Generalized Policy Iteration with Samples

For k = 1, 2, ...

For i = 1, 2, ..., N:

Choose action a_i with the current policy

Receive reward $r_i \sim R(s_i, a_i)$ and $s_i' \sim P(\cdot | s_i, a_i)$

 $s_{i+1} = s_i'$ if episode continues, $s_{i+1} \sim \rho$ if episode ends

Push (s_i, a_i, r_i, s_i') to \mathcal{B}

Data collection

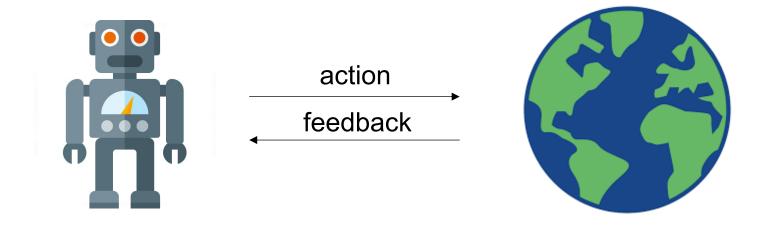
Draw (s, a, r, s') from \mathcal{B} , and use them to update policy/value Empty \mathcal{B} if under on-policy training

Policy / value update

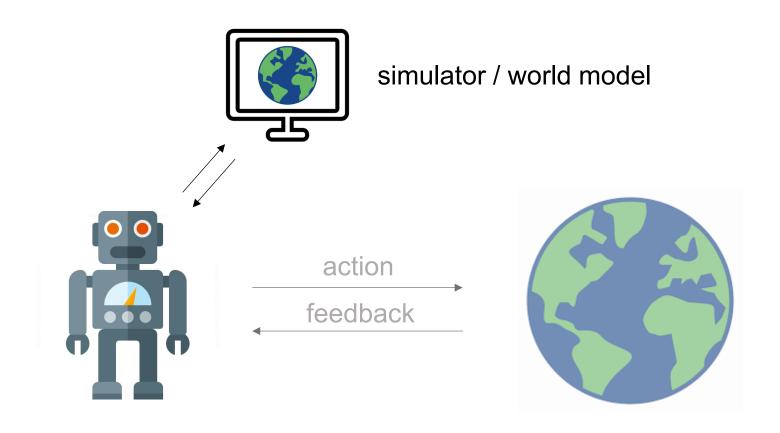
When Is Model-Based Method Helpful?

- Model (transition) is easy to learn
 - Deterministic transition could be easier to learn to stochastic one
 - System identification: known parameterized model with unknown parameters
- Model is known
 - The space/action space is too large for full policy/value iteration (Go, Chess)

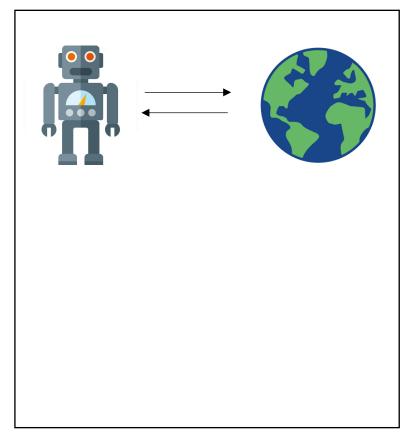
Model-Based RL

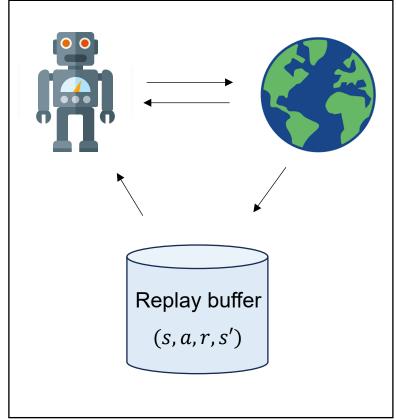


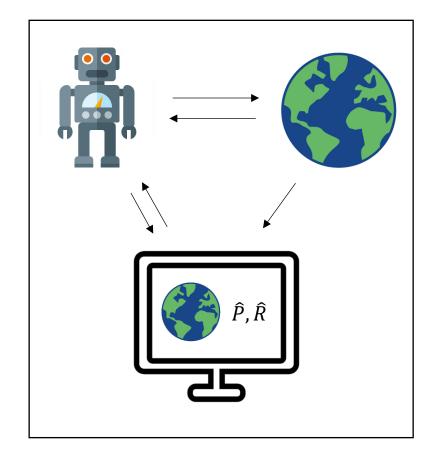
Model-Based RL



Comparison between training methods







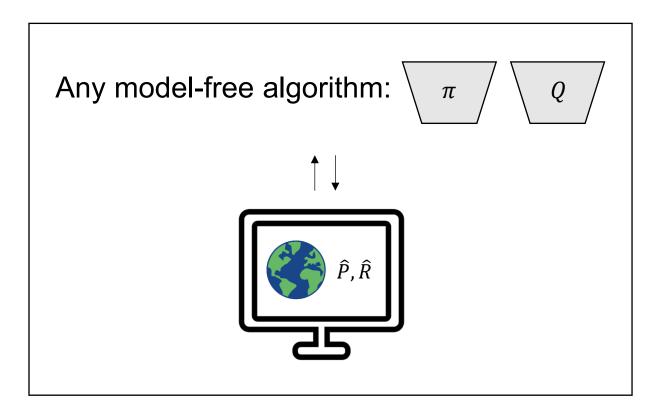
Model-free On-policy

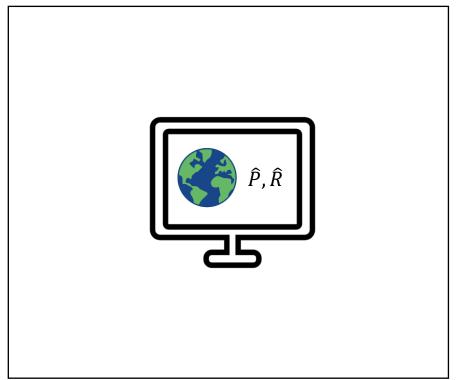
Model-free Off-policy

Model-based

Model-Based RL

Two ways to use the simulator / world model / model:





Model-assisted model-free learning

Planning with a model

1. Model-Assisted Model-Free Learning (Dyna-style)

For k = 1, 2, ...

For i = 1, 2, ..., N:

Choose action a_i with the current policy π_k

Receive reward $r_i \sim R(s_i, a_i)$ and $s_i' \sim P(\cdot | s_i, a_i)$

 $s_{i+1} = s_i'$ if episode continues, $s_{i+1} \sim \rho$ if episode ends

Push (s_i, a_i, r_i, s'_i) to \mathcal{B}

Update model \hat{P} , \hat{R} with data in \mathcal{B}

Repeat several times:

Sample $(s, a) \sim \mathcal{B}$, or sample $s \sim \mathcal{B}$ and $a \sim \pi_k(\cdot | s)$ or uniform

Let $r \sim \hat{R}(s, a)$ and $s' \sim \hat{P}(\cdot | s, a)$

Update policy / value with sample (s, a, r, s')

Data collection

Model update

Policy / value update

1. Model-Assisted Model-Free Learning (Dyna-style)

Why still sample *s* from the buffer? Why not generate *s* randomly or generate it from the trained model?

5

Somethal from p

1. Model-Assisted Model-Free Learning (Dyna-style)

Some Dyna-style algorithms:

Gu et al., <u>Continuous deep Q-Learning with model-based acceleration</u>, 2016. (MBA) Feinberg et al., <u>Model-based value expansion</u>, 2018. (MVE) Janner et al., <u>When to trust your model: model-based policy optimization</u>. 2019. (MBPO)

The performance of MB-RL is heavily influenced by how to represent and train \hat{P} efficiently, while making it predictive and scalable:

Hafner et al., Mastering Diverse Domains through World Models. 2023. (DreamerV3)

2. Planning with A Model

If we have a model / simulator, how to decide the next action without having a trained policy / value network?

Exact / closed-form solution: finite-state-finite-action, linear system

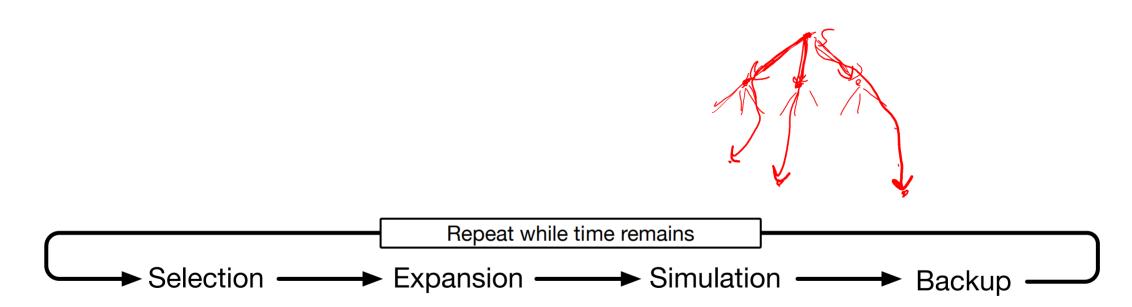
2. Planning with A Model

If we have a model / simulator, how to decide the next action without having a trained policy / value network?

Search (for large state space without structure):

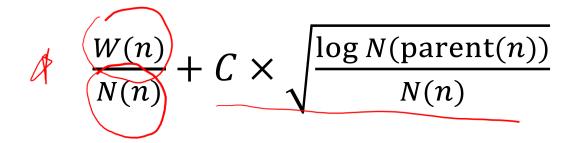
"Create the policy on the fly": $decide(\pi(\cdot | s))$ only when reaching s

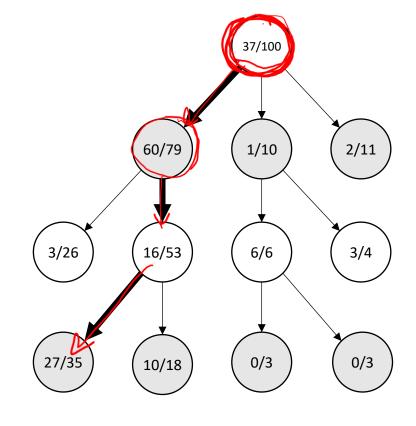
This is often used when we want to enhance a **default** policy on the fly.



Selection

- Starting from the root node, execute tree policy until reaching a leaf node
- One effective tree policy is given by UCB1, which chooses an action based on



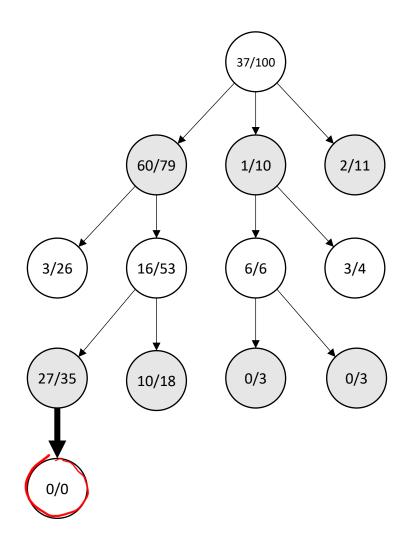


W(n): total #wins of all playouts that went through node n

N(n): total #playouts that went through node n

Expand

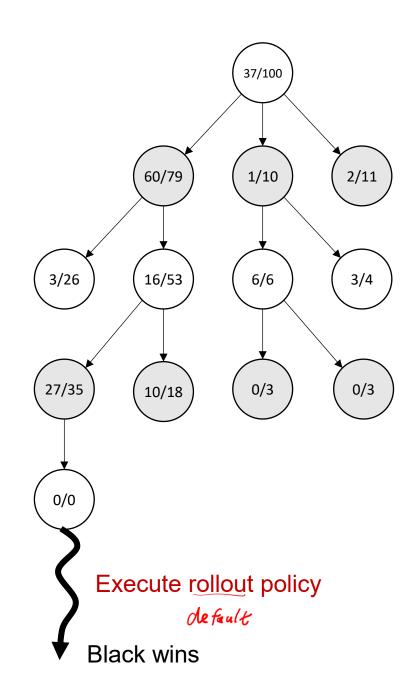
 On some iterations, grow the search tree from selected leaf nodes by adding one or more child nodes



Simulation

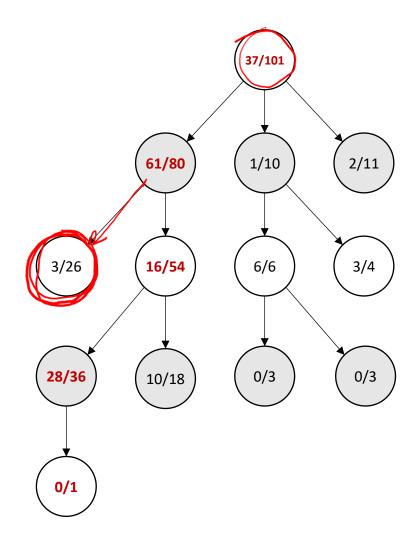
 From the selected or expanded node (if any), execute the rollout policy to the end of the game

- Rollout policy
 - Could be heuristics, such as "consider capture moves" in chess
 - Could be learned through neural networks by self-play



Backup

 Update the #wins and #playouts on nodes along the tree policy



Finally,

- Choose the action from the root node that has the largest visit count.
- After the opponent's move, start the same procedure from the new state (can keep the statistics from the previous state)

2. Planning with A Model

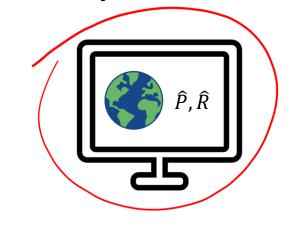
If we have a model / simulator, how to decide the next action without having a trained policy / value network?

Search (for large state space without structure):

"Create the policy on the fly": decide $\pi(\cdot | s)$ only when reaching s

This is often used when we want to enhance a default policy on the fly.

Plan for multiple steps, but execute only the first step.



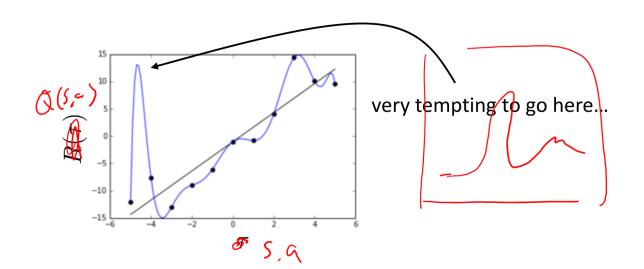
 $S_t \in \mathbb{R}^d$, $a_t \in \mathbb{R}^k$ i = argmax Y;

Uncertainty in Model-Based RL

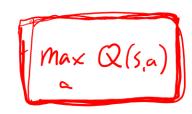
Model Error / Failure of Generalization

As the model is learned with only finite samples, they could have large errors in uncovered areas.

We can encounter the same issue in off-policy methods like DQN, DDPG.



Solution: train 2 target networks and avoid the \max_{a} operator to exploit the error of a single network



Ensemble Models

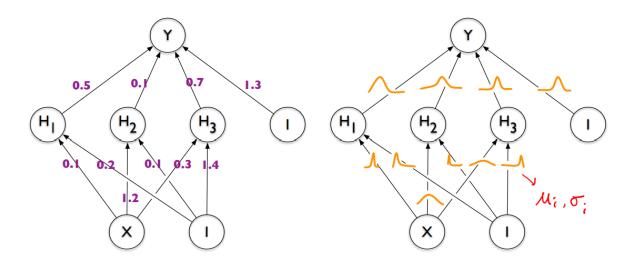
$$P(s'|s,a) \approx \frac{1}{N} \sum_{i=1}^{N} P_{\theta_i}(s'|s,a)$$

$$P(s'|s,a) \approx \frac{1}{N} \sum_{i=1}^{N} P_{\theta_i}(s'|s,a)$$

$$P(s'|s,a) \approx \frac{1}{N} \sum_{i=1}^{N} P_{\theta_i}(s'|s,a)$$

Chua et al. Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models. 2018. Buckman et al. Sample-Efficient Reinforcement Learning with Stochastic Ensemble Value Expansion. 2018.

Bayesian Neural Network



Common approximation:

$$p(\theta) = \prod_{i} p(\theta_i)$$

expected weight uncertainty of the weight where $p(\theta_i) = \mathcal{N}(\mu_i, \sigma_i)$

Blundell et al., Weight Uncertainty in Neural Networks. 2015. Gal et al., Concrete Dropout. 2017.

Aleatoric and Epistemic Uncertainty

Aleatoric uncertainty

- Comes from inherent randomness or noise in the data (e.g., sensor noise, coin flips)
- **Irreducible** cannot be removed even with more data

Epistemic uncertainty

- Comes from lack of data or limited model capacity
- **Reducible** can shrink with more data or better models

The "model uncertainty" here refers to **Epistemic uncertainty**.